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1 Introduction

In this section, we review several results for topological full groups of minimal Z
actions. Main reference: [7], [20], [12].

Let φ : X → X be a minimal homeomorphism on a Cantor set X. We define

F(φ) :=
{
α ∈ Homeo(X) | ∃conti. n : X → Z, s.t. α(x) = φn(x)(x)

}
,

and call it the topological full group of (X,φ).
The following theorem was obtained as a topological analogue of results by Dye

in measurable dynamics.

Theorem 1.1 ([7, Corollary 4.4]). For i = 1, 2, let (Xi, φi) be as above. The
following are equivalent.

(1) φ1 is conjugate to φ2 or φ−1
2 .

(2) F(φ1) and F(φ2) are isomorphic as groups.

Later, the following properties were shown.

Theorem 1.2 ([20, 12]). (1) The commutator subgroup of F(φ) is simple.

(2) The abelianization of F(φ) is Z⊕ (H0(X,φ)⊗ Z/2).

(3) F(φ) is finitely generated if and only if φ is expansive.

(4) F(φ) is amenable.

2 Ample groupoids

Main reference: [20], [21], [22], [24].
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2.1 Ample groupoids and topological full groups

A groupoid G is a small category in which every morphism is invertible. We identify
objects with identity maps, and denote it by G(0).

The range map and the source map r, s : G → G(0) are given by g 7→ gg−1 and
g 7→ g−1g.

An element g ∈ G can be thought of as an arrow from s(g) to r(g).

Definition 2.1. A topological groupoid G is always assumed to be locally compact
and Hausdorff (LCH). It is said to be étale if the range map r : G → G(0) is a local
homeomorphism.

An ample groupoid is an étale groupoid whose unit space is 0-dimensional (totally
disconnected).

For x ∈ G(0), the set r(s−1(x)) is called the orbit of x. When every orbit is dense
in G(0), G is said to be minimal.

The isotropy bundle of G is Iso(G) = {g ∈ G | r(g) = s(g)}. We say that G
is principal if Iso(G) = G(0). When the interior of Iso(G) is G(0), we say that G is
essentially principal (or effective).

A subset U ⊂ G is called a bisection if r|U, s|U are injective (a “fat arrow”). Any
open bisection U induces the homeomorphism θU := (r|U) ◦ (s|U)−1 from s(U) to
r(U).

A (probability) measure µ on G(0) is said to be G-invariant if µ(r(U)) = µ(s(U))
holds for every compact open bisection U . The set of all G-invariant probability
measures is denoted by M(G).

Example 2.2 (Transformation groupoids). Let φ : Γ ↷ X be an action of a
countable discrete group Γ on an LCH 0-dimensional space X. The transformation
groupoid G := X⋊φΓ is X×Γ equipped with the product topology. The unit space
of G is given by G(0) = X × {1} (where 1 is the identity of Γ), and identified with
X. The groupoid operations are as follows:

r(x, γ) = (x, 1), s(x, γ) = (φ−1
γ (x), 1),

(x, γ) · (x′, γ′) = (x, γγ′), (x, γ)−1 = (φ−1
γ (x), γ−1).

The groupoid G is principal if and only if the action φ is free, that is, φγ does
not have any fixed points unless γ = 1. The groupoid G is essentially principal if
and only if the action φ is topologically free, that is, {x ∈ X | φγ(x) = x} has no
interior points unless γ = 1. The groupoid G is minimal if and only if the action φ
is minimal, that is, any orbit of φ is dense in X.

A measure µ on G(0) is G-invariant if and only if it is φ-invariant.

Hereafter, we always assume that G is essentially principal.
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Definition 2.3 (Topological full groups). Let G be an ample groupoid with G(0)

compact. For a compact open bisection U ⊂ G such that r(U) = G(0) = s(U),
θU = (r|U) ◦ (s|U)−1 is a homeomorphism on G(0). We let F(G) ⊂ Homeo(G(0)) be
the set of those homeomorphisms, and call it the topological full group (TFG) of G.

For G = X ⋊φ Γ with X compact,

F(G) =
{
α ∈ Homeo(X) | ∃conti. n : X → Γ, s.t. α(x) = φn(x)(x)

}
.

Example 2.4 (AF groupoids). cf. [28, Definition III.1.1], [8, Definition 3.7], [21,
Definition 2.2] K is said to be elementary if K is principal and compact. When K is
elementary:

• the topology on K agrees with the relative topology from K(0) ×K(0),

• the equivalence relation K is uniformly finite, i.e. supx #r−1(x) < ∞.

We say that G is an AF (approximately finite) groupoid if it can be written as
an increasing union of open elementary subgroupoids.

It is known that any AF groupoids are represented by Bratteli diagrams (see [8,
Theorem 3.9]). We provide a brief explanation of it. A directed graph B = (V,E) is
called a Bratteli diagram when V =

⊔∞
n=0 Vn and E =

⊔∞
n=1 En are disjoint unions

of finite sets of vertices and edges with maps i : En → Vn−1 and t : En → Vn both
of which are surjective. Let

XB :=

{
e = (en)n ∈

∏
n

En | en ∈ En, t(en) = i(en+1) ∀n ∈ N

}
.

The set XB endowed with the relative topology is called the infinite path space of
B. Define an equivalence relation (i.e. principal groupoid) Km by

Km = {(e, f) ∈ XB ×XB | en = fn ∀n ≥ m}.

Then, Km equipped with the relative topology from XB×XB is a compact principal
ample groupoid. Clearly one has Km ⊂ Km+1. Set G :=

⋃
m Km. Endowed with the

inductive limit topology, G becomes an AF groupoid. Conversely, Theorem 3.9 of
[8] states that any AF groupoid arises in such a way.

The AF groupoid G is minimal if and only if for any n ∈ N there exists m > n
such that for any v ∈ Vn and w ∈ Vm there exists a path from v to w.

2.2 TFG of AF groupoids

LetB = (V,E) be such as Example 2.4. For paths p, q from V0 to Vm with t(p) = t(q),
we can define τp,q ∈ Homeo(XB) as follows: for (en)n ∈ XB, if its initial segment is
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either p or q, then exchange it; otherwise, do nothing. Then, τp,q is in F(G). For a
fixed m ∈ N, we let Gm be the subgroup generated by these τp,q’s. Clearly,

Gm
∼=

⊕
v∈Vm

Sh(v),

where h(v) denotes the number of paths from V0 to v, and

Gm ⊂ Gm+1, F(G) =
⋃
m

Gm.

Theorem 2.5 ([20, Proposition 3.2]). Let G be an ample groupoid with G(0) compact.
The following are equivalent.

(1) G is an AF groupoid.

(2) F(G) is locally finite.

Example 2.6. Let φ : Z ↷ X be minimal and let G := X ⋊φ Z. Pick y ∈ X.
Define

H := G \ {(φm(y), n) ∈ G | m ≤ 0 < m−n or m−n ≤ 0 < m}.

Then H is known to be a minimal AF groupoid.

2.3 Homology groups and index map

For an LCH 0-dimensional space X, we let Z[X] denote the compactly supported
Z-valued continuous functions.

When π : X → Y is a local homeomorphism, we can define a homomorphism
π∗ : Z[X] → Z[Y ] by

π∗(f)(y) :=
∑

π(x)=y

f(x).

Let G be an ample groupoid. For n ∈ N, we write G(n) for the space of composable
strings of n elements in G, that is,

G(n) := {(g1, g2, . . . , gn) ∈ Gn | s(gi) = r(gi+1) for all i = 1, 2, . . . , n−1}.

For n ≥ 2 and i = 0, 1, . . . , n, we let d
(n)
i : G(n) → G(n−1) be a map defined by

d
(n)
i (g1, g2, . . . , gn) :=


(g2, g3, . . . , gn) i = 0

(g1, . . . , gigi+1, . . . , gn) 1 ≤ i ≤ n−1

(g1, g2, . . . , gn−1) i = n.

4



When n = 1, we let d
(1)
0 , d

(1)
1 : G(1) → G(0) be the source map and the range

map, respectively. Clearly the maps d
(n)
i are local homeomorphisms. Define the

homomorphisms δn : Z[G(n)] → Z[G(n−1)] by

δn :=
n∑

i=0

(−1)id
(n)
i∗ .

The abelian groups Z[G(n)] together with the boundary operators δn form a chain
complex.

Definition 2.7 ([5, Section 3.1], [21, Definition 3.1]). For n ≥ 0, we let Hn(G) be
the homology groups of the chain complex above, i.e. Hn(G) := Ker δn/ Im δn+1, and
call them the homology groups of G.

Remark 2.8 ([1, 18]). (1) G(n) and d
(n)
i form a semi-simplicial space, which gives

the classifying space BG. We have H∗(G) ∼= H∗(BG).

(2) Z[G] is a ring with the convolution product

(f1 ∗ f2)(g) :=
∑
hk=g

f1(h)f2(k),

and Z[G(0)] is a left and right Z[G]-module via

(fm)(x) :=
∑

s(g)=x

f(g−1)m(r(g)), (mf)(x) :=
∑

r(g)=x

m(s(g))f(g−1).

It is known that H∗(G) is isomorphic to TorZ[G]∗ (Z[G(0)],Z[G(0)]).

The map δ1 : Z[G] → Z[G(0)] is

δ1(f)(x) =
∑

s(g)=x

f(g)−
∑

r(g)=x

f(g),

and
H0(G) = Z[G(0)]/ Im δ1.

The map δ2 : Z[G(2)] → Z[G] is

δ2(f)(g) =
∑
k=g

f(h, k)−
∑
hk=g

f(h, k) +
∑
h=g

f(h, k),

and
H1(G) = Ker δ1/ Im δ2.

For later use, we observe the following.
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Lemma 2.9. (1) For compact open bisections U, V ⊂ G such that s(U) = r(V ),
let W := (U × V ) ∩ G(2). Then δ2(1W ) = 1U − 1UV + 1V .

(2) For any compact open A ⊂ G(0), [1A] = 0 in H1(G).

(3) For any compact open bisection U ⊂ G(0), [1U + 1U−1 ] = 0 in H1(G).

Example 2.10. When G is the transformation groupoid of φ : Γ ↷ X, Hn(G) is
canonically isomorphic to Hn(Γ,Z[X]).

In particular, when Γ = Z,

Hn(G) =


Z[X]/{f − f ◦ φ | f ∈ Z[X]} n = 0

{f ∈ Z[X] | f = f ◦ φ} n = 1

0 n ≥ 2.

If φ is minimal, then H1(G) = Z.

Example 2.11. When G is an AF groupoid, H0(G) is the dimension group of the
Bratteli diagram:

lim
m→∞

(
ZVm → ZVm+1

)
,

and Hn(G) = 0 for n ≥ 1.

Definition 2.12 (Index map,[21, Definition 7.1]). For α ∈ F(G), a compact open
bisection U ⊂ G satisfying α = θU uniquely exists. It is easy to see that 1U is in
Ker δ1. We define a map I : F(G) → H1(G) by I(α) := [1U ] and call it the index
map.

By Lemma 2.9 (1), I is a homomorphism. We put K(G) := Ker I. Also, we
denote by D(G) the commutator subgroup of F(G). Thus, we have

D(G) ◁ K(G) ◁ F(G).

Example 2.13. When G arises from a minimal homeomorphism on a Cantor set
X,

F(G)/K(G) = Z, K(G)/D(G) = H0(G)⊗ Z/2.

For α(x) = φn(x)(x) in F(G), it is known that I(α) ∈ H1(G) ∼= Z is computed as

I(α) =

∫
n(x) dµ(x),

where µ is in M(G).

Example 2.14. Suppose that G is an AF groupoid. One has K(G) = F(G) because
H1(G) = 0. Recall

F(G) =
⋃
m

Gm, Gm
∼=

⊕
v∈Vm

Sh(v)
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(see Section 2.2). It follows that

D(G) ∼=
⋃
m

⊕
v∈Vm

Ah(v)

and
F(G)/D(G) ∼= lim

m

(
(Z/2)Vm → (Z/2)Vm+1

) ∼= H0(G)⊗ Z/2.

Moreover, if G is minimal, then D(G) is simple (Ak is simple when k ≥ 5).

Remark 2.15 (comparison maps). Let G be an ample groupoid.

(1) It is easy to see that there exists a homomorphism µ0 : H0(G) → K0(C
∗
r (G))

such that µ0([1A]) = [1A] for every compact open set A ⊂ G(0).

(2) It is known that there exists a homomorphism µ1 : H1(G) → K1(C
∗
r (G))

such that µ1([1U ]) = [1U ] for every compact open bisection U ⊂ G satisfying
r(U) = G(0) = s(U). See [1].

Problem 2.16. Does there exist µ∗ : H∗(G) → K∗(C
∗
r (G)) for ∗ ≥ 2 ?

2.4 Reconstruction

Theorem 2.17 ([30],[22, Theorem 3.10]). For i = 1, 2, let Gi be a minimal ample
groupoid with compact unit space. The following are equivalent.

(1) G1
∼= G2.

(2) F(G1) ∼= F(G2).

(3) K(G1) ∼= K(G2).

(4) D(G1) ∼= D(G2).

Remark 2.18. The assumption of minimality can be relaxed (see [30]).

The theorem above ensures TFG’s are a rich source of interesting infinite groups.

3 Simplicity

Main reference: [21], [22], [24].
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3.1 Two classes

Definition 3.1 ([21, Definition 6.2]). Let G be an ample groupoid with G(0) compact.
We say that G is almost finite (abbreviated as a.f.) if for any compact subset C ⊂ G
and ε > 0 there exists an elementary subgroupoid K ⊂ G such that

#(CKx \ Kx)

#(Kx)
< ε

for all x ∈ G(0).

This definition says that any compact subset C is almost ‘covered’ by an ele-
mentary subgroupoid K.

This also reminds us of the notion of tracially AF C∗-algebras.
By definition, AF groupoids are almost finite.

Theorem 3.2 ([15, 26]). When Γ ↷ X is a free action of an elementary amenable
group on a Cantor set, its transformation groupoid G = X ⋊ Γ is almost finite.

We remark that for the G above, C∗
r (G) is Z-stable ([14, Theorem 12.4]).

Definition 3.3 ([22, Definition 4.9]). Let G be an ample groupoid with G(0) compact.
We say that G is purely infinite (p.i.) if for every clopen set A ⊂ G(0), there exist
compact open bisections U, V ⊂ G such that s(U) = s(V ) = A, r(U) ⊔ r(V ) ⊂ A.

When G is purely infinite, it is easy to see that F(G) contains the free group Z∗Z
([22, Proposition 4.10]). Also, C∗

r (G) is purely infinite ([29, Theorem 4.1]).

Example 3.4 (SFT groupoids). Let (V,E) be a finite directed graph and let A
be its adjacency matrix of (V,E). We assume that A is irreducible and is not a
permutation matrix. Define

X := {(xk)k∈N ∈ EN | t(xk) = i(xk+1) ∀k ∈ N}.

With the product topology, X is a Cantor set. The shift σ on X is called the one-
sided irreducible shift of finite type (SFT) associated with the graph (V,E) (or the
matrix A).

The SFT groupoid G(V,E) (or GA) is the graph groupoid:

G(V,E) := {(x, n, y) ∈ X × Z×X | ∃k, l ∈ N, n = k−l, σk(x) = σl(y)}

with the topology generated by the sets

{(x, k−l, y) ∈ G(V,E) | x ∈ P, y ∈ Q, σk(x) = σl(y)},

where P,Q ⊂ X are open and k, l ∈ N. The groupoid structure is given by

(x, n, y) · (y, n′, y′) = (x, n+n′, y′), (x, n, y)−1 = (y,−n, x).

We identify X with the unit space G(0)
(V,E) via x 7→ (x, 0, x).

It is easy to see that G(V,E) is minimal and purely infinite.
When V is a singleton, σ is the full shift. The TFG of G(V,E) is isomorphic to

the Higman-Thompson group.
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The homology groups of the SFT groupoid G(V,E) was computed in [21].

Theorem 3.5 ([21, Theorem 4.14]). One has

Hn(G(V,E)) ∼=


Coker(I − At) n = 0

Ker(I − At) n = 1

0 n ≥ 2,

where the matrix A acts on the abelian group ZV by multiplication.

The classification of SFT groupoids was given in [19].

Theorem 3.6 ([19, Theorem 3.6]). Two SFT groupoids GA and GB are isomorphic if
and only if there exists an isomorphism Φ : H0(GA) → H0(GB) such that Φ([1XA

]) =
[1XB

] and det(I − A) = det(I −B).

Example 3.7. Let Γ := ⟨a, b⟩ be the free group and consider the boundary action
Γ ↷ ∂Γ. We may identify ∂Γ with

{(xk)k ∈ EN | aa−1, a−1a, bb−1, b−1b do not apper},

where E := {a, a−1, b, b−1}. Then the transformation groupoid G of Γ ↷ ∂Γ is
canonicaly isomorphic to the SFT groupoid GA of the martix

A :=


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

 .

Hence we have

Hn(G) ∼=

{
Z2 n = 0, 1

0 n ≥ 2.

Problem 3.8. Does there exist a minimal ample amenable groupoid which is neither
almost finite nor purely infinite?

3.2 Commutator subgroups

Theorem 3.9 ([22, Theorem 4.7, Theorem 4.16]). Let G be a minimal ample
groupoid. If G is either almost finite or purely infinite, then D(G) is simple.

We give a sketchy proof for the purely infinite case. Assume that G is minimal
and purely infinite. Let N ◁ D(G) be a non-trivial normal subgroup.

Lemma 3.10. For any τ ∈ N and α ∈ F(G), we have ατα−1 ∈ N .
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Proof of a part of Theorem 3.9. Let τ ∈ N \ {1}. There exists a non-empty clopen
set A ⊂ G(0) such that A ∩ τ(A) = ∅.

It suffices to show [α, β] ∈ N for any α, β ∈ F(G). We can find α1, α2, β1, β2 ∈
F(G) such that

α = α1α2, β = β1β2

supp(αi) ̸= G(0), supp(βi) ̸= G(0).

Thanks to the lemma above, we may assume supp(α) ̸= G(0) and supp(β) ̸= G(0)

from the start.
Since G is purely infinite and minimal, there exists γ ∈ F(G) such that

γ(supp(α)) ∩ supp(β) = ∅ and supp(α) ∪ supp(γ) ̸= G(0).

Also, there exists σ ∈ F(G) such that

σ(supp(α) ∪ supp(γ)) ⊂ A.

By the lemma above, τ̃ := σ−1τσ is in N . It follows from A ∩ τ(A) = ∅ that

supp(α) ∩ τ̃(supp(γ)) = ∅.

Hence γ̃ := [γ, τ̃ ] satisfies

γ̃(supp(α)) ∩ supp(β) = ∅,

that is, γ̃αγ̃−1 commutes with β. Again, by the lemma above, γ̃ is in N . Therefore

[α, β] = αβα−1β−1 = α(γ̃α−1γ̃−1)β(γ̃αγ̃−1)α−1β−1 = [[α, γ̃], β]

is in N .

3.3 Abelianization

Theorem 3.11 ([21, Theorem 7.5], [22, Theorem 5.2]). If G is either almost finite
or purely infinite, then the index map I : F(G) → H1(G) is surjective.

Proof. We give a sketchy proof for the purely infinite case. Suppose that G is purely
infinite.

Let f ∈ Ker δ1. By Lemma 2.9 (3), we may assume that there exist compact
open bisections C1, C2, . . . , Cn such that

f = 1C1 + 1C2 + · · ·+ 1Cn .

By δ1(f) = 0, we have
n∑

i=1

1r(Ci) =
n∑

j=1

1s(Cj).
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Hence we can find clopen subsets Aij ⊂ G(0) for i, j = 1, 2, . . . , n satisfying

n⊔
i=1

Aij = r(Cj) and
n⊔

j=1

Aij = s(Ci).

(How to find Aij: Take a clopen partition (Dl)l generated by r(Ci)’s and s(Cj)’s.
For each l,

#{i | Dl ⊂ r(Ci)} = #{j | Dl ⊂ s(Cj)},

and so there exists a bijective correspondence between them. Let us denote it by
i ∼l j. Set

Aij :=
⊔
i∼lj

Dl,

which is a desired one. )
Since G is purely infinite, there exist compact open bisections U1, U2, . . . , Un such

that s(Ui) = r(Ci) and the sets r(Ui) are mutually disjoint. Put

Vij := UiCiAijU
−1
j .

We can check that Vij are compact open bisections such that

r(Vij) = r(UiCiAij) and s(Vij) = s(AijU
−1
j ).

Therefore, V :=
⋃

i,j Vij is also a compact open bisection and

r(V ) =
⊔
i

r(UiCi) =
⊔
i

r(Ui) =
⊔
j

s(U−1
j ) = s(V ).

On one hand, by Lemma 2.9 (1)(3),

[1V ] =

[∑
i,j

1Vij

]
=

[∑
i,j

1UiCiAijU
−1
j

]
=

[∑
i,j

(
1UiCiAij

+ 1AijU
−1
j

)]

=

[∑
i

1UiCi
+
∑
j

1U−1
j

]
=

[∑
i

(1Ui
+ 1Ci

) +
∑
j

1U−1
j

]
= [f ].

Set W := V ⊔ (G(0) \ s(V )). Then one has I(θW ) = [f ] as desired.

Let us recall
D(G) ◁ K(G) ◁ F(G).

Example 3.12. (1) When G is an AF groupoid, F(G)/K(G) = 0 and K(G)/D(G) ∼=
H0(G)⊗ Z/2 (see Example 2.14).

(2) When G arises from a minimal action Z ↷ X, F(G)/K(G) = Z and K(G)/D(G) ∼=
H0(G)⊗ Z/2 ([20, Theorem 4.8]).
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(3) When G is an SFT groupoid, F(G)/K(G) = H1(G) and K(G)/D(G) ∼= H0(G)⊗
Z/2 ([22, Corollary 6.24]).

When G is minimal, a homomorphism

ζ : H0(G)⊗ Z/2 → K(G)/D(G)

was constructed by V. Nekrashevych [27, Section 7]. The map ζ can be described
as follows. When U ⊂ G is a compact open bisection such that r(U) ∩ s(U) = ∅,

τ(x) :=


θU(x) x ∈ s(U)

θ−1
U (x) x ∈ r(U)

x else

is a transposition. Then ζ([1s(U)]) equals the equivalence class of τ .

Theorem 3.13 ([18, Corollary E]). Let G be a minimal ample groupoid. If G is
either almost finite or purely infinite, then there exists an exact sequence:

H2(D(G)) // H2(G) // H0(G)⊗ Z/2 ζ // H1(F(G)) I // H1(G) // 0

Notice that H1(F(G)) is isomorphic to the abelianization F(G)/D(G).

Li [18] discovered a close connection between homology of TFG and groupoid
homology. The theorem above is one consequence from his deep analysis.

Example 3.14 ([23]). Fix m ∈ N. Let G be the SFT groupoid of the full shift over
m+1 symbols. By Theorem 3.5,

Hk(G) =

{
Z/m k = 0

0 k ≥ 1.

Hence, the Künneth theorem implies

Hk(G × G) =

{
Z/m k = 0, 1

0 k ≥ 2

and

Hk(G × G × G) =


Z/m k = 0

(Z/m)2 k = 1

Z/m k = 2

0 k ≥ 3.

Let us describe the generator ofH1(G×G) ∼= Z/m. Define β ∈ Homeo(G(0)×G(0))
(the baker’s map) as follows:

β ((xn)n, (yn)n) := ((x2x3 . . . ), (x1y1y2 . . . )) .
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Then β is in F(G × G) and I(β) generates H1(G × G) ∼= Z/m.
Now we assume m is even, and let t ∈ H1(F(G×G)) be the image of the generator

of H0 ⊗ Z/2 ∼= Z/2 by the map ζ.
Define τ ∈ F(G × G) by

τ ((xn)n, (yn)n) := ((y1x2x3 . . . ), (x1y2y3 . . . )) .

Thus, τ is a transposition whose support is {(x, y) | x1 ̸= y1}. It follows that the
equivalence class [τ ] of τ in H1(F(G × G)) equals

m(m+ 1)

2
t =

{
0 m ∈ 4Z
t m ∈ 2Z \ 4Z.

Let us consider τβ. This sends (x, y) to

((x1x3x4 . . . ), (x2y1y2 . . . )) .

Therefore τβ is a product of m+1 elements with mutually disjoint support and each
of them is conjugate to β. Hence [τβ] = [βm+1] (i.e. τβ−m belongs to D(G × G)),
and so we have

m[β] =
m(m+ 1)

2
t ∈ H1(F(G × G)).

Now we consider G × G × G. We let

β12 := β × id ∈ F(G × G × G)

and
β23 := id×β ∈ F(G × G × G).

Similarly, β13 is defined. Thinking of t as an element in H1(F(G × G × G)), we have

m[β12] = m[β23] = m[β31] =
m(m+ 1)

2
t.

When m ∈ 2Z \ 4Z, this is equal to t. On the other hand, one has β23β12 = β13.
Consequently we obtain t = 0. Thus, the map

ζ : H0(G × G × G)⊗ Z/2 → H1(F(G × G × G))

is zero.

4 Amenability

Main reference: [12], [11].

K. Juschenko and N. Monod obtained the following remarkable result.
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Theorem 4.1 ([12, Theorem A]). When φ : Z ↷ X is minimal, the TFG of
G := X ⋊φ Z is amenable.

In the proof of this theorem, the notion of extensive amenability plays the central
role. This property was first introduced (without a name) in [12], and studied further
in [13, 11].

We recall the definition of extensive amenability from [11, Definition 1.1]. Let
α : G ↷ Z be an action of a discrete group G on a set Z. Set

P (Z) :=
⊕
Z

Z/2 = {f : Z → Z2 | supp(f) is finite} .

The action α naturally extends to α : G ↷ P (Z). We say that α : G ↷ Z
is extensively amenable if there exists a G-invariant mean (i.e. finitely additive
probability measure) m on P (Z) such that m({1F ∈ P (Z) | E ⊂ F}) = 1 for any
finite subset E ⊂ Z. In [12, Lemma 3.1], it was shown that α : G ↷ Z is extensively
amenable if and only if the action of P (Z)⋊G on P (Z) admits an invariant mean.

We denote by W (Z) the group of all permutations g of Z for which the quantity
sup{|g(j)− j| | j ∈ Z} is finite. In [12, Theorem C], it was shown that the natural
action W (Z) ↷ Z is extensively amenable. (This part is technically quite hard.) It
follows that the action of P (Z)⋊W (Z) on P (Z) admits an invariant mean.

Let φ : Z ↷ X be minimal and let G := X ⋊φ Z. We would like to show that
F(G) is amenable. Fix a point y ∈ X. For α ∈ F(G), we can define α̃ ∈ W (Z) so that
α(φj(y)) = φα̃(j)(y). Define a map π : F(G) → P (Z)⋊W (Z) by π(α) = (1N+1α̃(N), α̃)
for α ∈ F(G). It is routine to check that π is an injective homomorphism. Since
the action of P (Z) ⋊ W (Z) on P (Z) admits an invariant mean, in order to show
the amenability of F(G), it suffices to prove that the stabiliser in π(F(G)) of 1E is
amenable for any finite subset E ⊂ Z.

Lemma 4.2 ([12, Lemma 4.1]). In the setting above, for any finite subset E ⊂ Z,
the stabiliser

S := {α ∈ F(G) | π(α)(1E) = 1E}

is locally finite, and hence amenable.

Proof. By definition, π(α)(1E) = 1N + 1α̃(N) + 1α̃(E), which implies

α ∈ S ⇐⇒ α̃(N∆E) = N∆E,

where ∆ means the symmetric difference. Put

k := #(E ∩ N)−#(E \ N) ∈ Z.

We can find a transposition τ ∈ F(G) satisfying

{τ(φj(y)) | j > k} = {φj(y) | j ∈ N∆E}.
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Then, one has
(τφk)(Orb+

φ (y)) = {φj(y) | j ∈ N∆E}.

Hence
α ∈ S ⇐⇒ ((τφk)−1α(τφk))(Orb+

φ (y)),

which means that S is conjugate to the TFG of H mentioned in Example 2.6.
Therefore, S is locally finite, and hence amenable.

In such a way, Theorem 4.1 is proved.
In [13, 11], the notion of extensive amenability is used to prove amenability

of various kinds of groups. Among others, it was shown that all subgroups of the
group of interval exchange transformations that have angular components of rational
rank ≤ 2 are amenable ([11, Theorem 5.1]). In particular, when φ : Z2 ↷ X
is a free minimal action arising from two irrational rotations on the circle (see [9,
Example 30]), the TFG of X⋊φZ2 is amenable. On the other hand, it is known that
there exists a free minimal action φ : Z2 ↷ X on a Cantor set such that its TFG
contains the non-abelian free group ([6]). It may be a rather complicated problem
to determine when the TFG is amenable for φ : Z2 ↷ X.

As a generalization of Theorem 4.1, Szőke obtained the following result.

Theorem 4.3 ([32]). Let Γ be a finitely generated group and let X be the Cantor
set.

(1) If Γ is virtually cyclic, then for any minimal action φ : Γ ↷ X, its TFG is
amenable.

(2) If Γ is not virtually cyclic, then there exists a free minimal action φ : Γ ↷ X
whose TFG contains the free group.

Problem 4.4. When is F(G) amenable?

As mentioned before, when G is purely infinite, F(G) contains Z ∗ Z, and hence
is not amenable. But, it is meaningful to question weak versions of amenability.

Theorem 4.5 ([10],[22, Theorem 6.7]). When GA is an SFT groupoid, F(GA) has
the Haagerup property.

5 Finiteness

Main reference: [27], [22], [16].

Theorem 5.1 ([27]). Suppose that G is minimal and either almost finite or purely
infinite. If G is expansive, then D(G) is finitely generated.

When G arises from φ : Γ ↷ X, G is expansive if and only if φ is expansive.
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Example 5.2 ([20, 22]). (1) When φ : Z ↷ X is minimal and expansive, its D(G)
is simple, amenable and finitely generated.

(2) AF groupoids never be expansive.

(3) An SFT groupoid is expansive, and so its D(G) (and also F(G)) is finitely
generated. Moreover, F(G) is of type F∞.

X. Li [16] proved that F(G) is of type F∞ (in particular, finitely presented) when
G is a product of SFT groupoids.

6 Stein groupoids

Main reference: [25].

Definition 6.1 (Stein’s groups, [31]). Let Λ ⊂ (0,∞) be a countable multiplicative
subgroup and let Γ ⊂ R be a countable ZΛ-module, which is dense in R. Let
ℓ ∈ Γ ∩ (0,∞). Stein’s group V (Γ,Λ, ℓ) is the group consisting of piecewise linear
bijections f of [0, ℓ) satisfying the following:

• f is right continuous,

• f has finitely many discontinuous or nondifferential points, all in Γ,

• f has slopes only in Λ.

Set Vλ := V (⟨λ⟩,Z[λ, λ−1], 1).

Example 6.2. The following are known to be of type F∞.

• For n ∈ N \ {1}, Vn ([2]).

• For n1, . . . , nk ∈ N \ {1}, V (⟨n1, . . . , nk⟩,Z[1/(n1 . . . nk)], ℓ) ([31]).

• For λ =
√
2 + 1, (

√
5 + 1)/2, Vλ ([3, 4]).

Theorem 6.3 ([25, Theorem 5.10]). For i = 1, 2, suppose that Λi ⊂ (0,∞) is finitely
generated and rankΓi ≥ 2. The following conditions are equivalent.

(1) V (Γ1,Λ1, ℓ1) is isomorphic to V (Γ2,Λ2, ℓ2) as discrete groups.

(2) Λ1 = Λ2 and there exists s > 0 such that Γ1 = sΓ2 and ℓ1 − sℓ2 is zero in
H0(Λ1,Γ1).
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Notice that (2) =⇒ (1) is obvious.
Stein’s groups are realized as TFG of ample groupoids (this was first observed

by O. Tanner [33]).
Consider

RΓ := (R \ Γ) ⊔ {t+, t− | t ∈ Γ}

endowed with the natural total order (t− < t+ for all t ∈ Γ). Then, RΓ with the
order topology is a totally disconnected LCH space. For any t, s ∈ Γ with t < s, the
interval

(t−, s+) = [t+, s−]

is compact and open in RΓ, and these intervals form a basis for the topology on RΓ.
The group Γ⋊ Λ naturally acts on RΓ. We let

S(Γ,Λ) := RΓ ⋊ (Γ⋊ Λ)

and call it the Stein groupoid.
It is easy to see that Stein’s group V (Γ,Λ, ℓ) is isomorphic to the TFG of the

ample groupoid S(Γ,Λ)|[0+, ℓ−]. Here, G|Y := r−1(Y ) ∩ s−1(Y ) is the reduction of
G to Y ⊂ G(0). Thanks to the reconstruction theorem (Theorem 2.17), the proof of
Theorem 6.3 is reduced to the classification of S(Γ,Λ) or its reduction.

Example 6.4 ([17]). For λ > 1, let Sλ := S(⟨λ⟩,Z[λ, λ−1]). Li [17] computed the
homology of Sλ for many values of λ.

(1) For λ = n ∈ N,

H∗(Sn) =

{
Z/(n−1) ∗ = 0

0 ∗ ≥ 1.

(2) For λ =
√
2 + 1,

H∗(Sλ) =

{
Z/2 ∗ = 0, 1

0 ∗ ≥ 2.

(3) For λ = (
√
5 + 1)/2,

H∗(Sλ) =

{
Z/2 ∗ = 1

0 ∗ = 0,≥ 2.

(4) For λ =
√
n (n ̸= square),

H∗(Sn) =


Z/(n−1) ∗ = 0

Z/(n+1) ∗ = 1

0 ∗ ≥ 2.
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(5) For any transcendental λ,

H∗(Sλ) =
∞⊕
i=0

Z ∀ ∗ .

How do we recover the data Γ and Λ from S = S(Γ,Λ)?
There exists a canonical homomorphism:

S = RΓ ⋊ Γ⋊ Λ // Γ⋊ Λ // Λ.

Lemma 6.5. (1) For any x ∈ RΓ, Sx → Λ is injective, where Sx := r−1(x) ∩
s−1(x).

(2) For any t ∈ Γ, St± → Λ is an isomorphism.

Proof. (1) If (x, t, λ) is in the kernel, then λ = 1. If (x, t, 1) is in Sx, then t = 0.
(2) For any λ ∈ Λ, (t±, (1− λ)t, λ) is in St± .

Thus, S remembers (at least) the isomorphism class of Λ.

Definition 6.6. Let G ↷ X be an action of a group G on a totally disconnected
LCH space X. We say that X ⋊ G is H1-rigid if X ⋊ G → G induces H1(G) ∼=
H1(X ⋊G).

From now on, we assume Λ ∼= ZN and rankΓ ≥ 2.

Proposition 6.7. S = RΓ ⋊ (Γ⋊ Λ) is H1-rigid.

Proof. First, one can prove that H := RΓ ⋊ Γ is H1-rigid using rankΓ ≥ 2.
Any λ ∈ Λ induces an automorphism of H. The cohomology long exact sequence

implies:

0 // Z // H1(Γ⋊λ Z) //

H1(π′)
��

H1(Γ)
id−H1(λ)//

H1(π) ∼=
��

H1(Γ)

H1(π) ∼=
��

0 // Z // H1(H⋊λ Z) // H1(H)
id−H1(λ)// H1(H).

It follows that H1(π′) is also an isomorphism. As Λ ∼= ZN , we can repeat this
argument, and conclude that S = H⋊ Λ is H1-rigid.

To proceed further, we need the concept of the ratio set. Let G be an ample
groupoid and let µ be a measure on G(0). For g ∈ G and λ ∈ (0,∞), we write

g∗ dµ = λ dµ
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if there exists a compact open bisection U ⊂ G such that g ∈ U and µ(r(V )) =
λµ(s(V )) holds for all clopen subset V ⊂ U (i.e. θU ∗µ = λµ). We set

R(G, µ) := {λ ∈ (0,∞) | g∗ dµ = λ dµ for some g ∈ G}.

and call it the ratio set for (G, µ).
The following proposition says that we can recover Λ from S.

Proposition 6.8. Suppose that a homomorphism ξ : S → ZN satisfies the following.

(1) Ker ξ admits a unique invariant measure up to scalar multiplication.

(2) The essential range of ξ is ZN .

Then, letting ν be a Ker ξ-invariant measure, one has R(S, ν) = Λ.

Proof. By the H1-rigidity, there exists ζ ∈ Hom(Γ⋊Λ,ZN) such that ξ is cohomol-
ogous to ζ ◦ π, where π : S → Γ⋊ Λ. Thus, we can find f ∈ C(RΓ,ZN) satisfying

ξ = ζ ◦ π + (f ◦ r − f ◦ s).

By (2), ζ is surjective. By (1), ζ factors through Λ and ζ|Λ is injective. Let
ω : ZN → Λ be the inverse of ζ|Λ. Let µ be an H-invariant measure on RΓ. Then,

dν(x) := ω(f(x))−1 dµ(x)

gives a Ker ξ-invariant measure. Now, it is easy to see R(S, ν) = Λ.

Theorem 6.9 ([25, Theorem 5.8]). For i = 1, 2, let Si := S(Γi,Λi), where Λi is
finitely generated and rankΓi ≥ 2. The following conditions are equivalent.

(1) S1
∼= S2.

(2) Λ1 = Λ2 and there exists s > 0 such that Γ1 = sΓ2.

Proof. (2) =⇒ (1) is obvious.
To show the converse, let Φ : S1 → S2 be an isomorphism. We may assume

Λ1
∼= Λ2

∼= ZN . Choose an isomorphism Λ1
∼= ZN and let ξ be

S1
// Γ1 ⋊ Λ1

// Λ1
// ZN .

We can apply the proposition above to ξ ◦ Φ−1 and obtain Λ1 = Λ2. With some
extra effort, one can also get Γ1 = sΓ2.

Notice that the condition (2) in Theorem 6.9 implies the conjugacy of (Γi⋊Λi) ↷
RΓi

.
Now Theorem 6.3 follows from Theorem 6.9.
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