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1 Introduction

In this section, we review several results for topological full groups of minimal Z
actions. Main reference: [3].

Topological full group Let φ : X → X be a minimal homeomorphism on a
Cantor set X. We define

F(φ) :=
{
α ∈ Homeo(X) | ∃conti. n : X → Z, s.t. α(x) = φn(x)(x)

}
,

and call it the topological full group of (X,φ). This is indeed a group: for α(x) =
φn(x)(x) and β(x) = φm(x)(x) in F(φ), one has

(α ◦ β)(x) = φn(β(x))(β(x)) = φn(β(x))(φm(x)(x))

and n ◦ β +m is continuous.
The following theorem was obtained as a topological analogue of results by Dye

in measurable dynamics.

Theorem 1.1 ([3, Corollary 4.4]). For i = 1, 2, let (Xi, φi) be as above. The
following are equivalent.

(1) φ1 is conjugate to φ2 or φ−1
2 .

(2) F(φ1) and F(φ2) are isomorphic as groups.

(3) There exists an isomorphism π : C(X1) ⋊φ1 Z → C(X2) ⋊φ2 Z such that
π(C(X1)) = C(X2).
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AF system Pick y ∈ X. We denote the forward orbit and backward orbit of y by

Orb+
φ (y) := {φk(y) | k > 0},

Orb−
φ (y) := {φk(y) | k ≤ 0}.

Let F(φ)y be the subgroup consisting of α ∈ F(φ) such that α(Orb+
φ (y)) = Orb+

φ (y).
The subgroup F(φy) corresponds to the orbit breaking subalgebra C

∗(C(X), uC0(X\
{y})), where u is the implementing unitary.

It is known that F(φ)y is an increasing union of finite direct sums of symmetric
groups. In particular, F(φ)y is locally finite.

Theorem 1.2 ([3, Corollary 4.11]). For i = 1, 2, let (Xi, φi) and yi ∈ Xi be as
above. The following are equivalent.

(1) φ1 and φ2 are strongly orbit equivalent.

(2) F(φ1)y1 and F(φ2)y2 are isomorphic as groups.

(3) The C∗-algebras C(X1)⋊φ1 Z and C(X2)⋊φ2 Z are isomorphic.

For α ∈ F(φ), we define

K := Orb−
φ (y) ∩ α−1(Orb+

φ (y)), L := Orb+
φ (y) ∩ α−1(Orb−

φ (y))

I(α) := #K −#L ∈ Z.

Clearly I(α) = 0 for all α ∈ F(φ)y and I(φk) = k for k ∈ Z. Also, one can verify
that I is a homomorphism.

Lemma 1.3. If I(α) = 0, then there exists a transposition τ ∈ F(φ) such that
ατ ∈ F(φ)y.

Proof. There exists a bijection π : K → L. We can construct τ so that:

• τ(z) = π(z) for all z ∈ K,

• τ(z) = π−1(z) for all z ∈ L,

• τ preserves Orb−
φ (y) \K and Orb+

φ (y) \ L.

Then ατ is in F(φ)y.
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Index map Let µ be a φ-invariant probability measure on X. We define a map
Iµ : F(φ) → R as follows. For α ∈ F(φ) such that α(x) = φn(x)(x), we let

Iµ(α) :=

∫
n dµ ∈ R.

When β(x) = φm(x)(x),

Iµ(α ◦ β) =
∫

(n ◦ β +m) dµ =

∫
n dµ+

∫
m dµ = I(α) + I(β),

and so Iµ is a homomorphism.

Proposition 1.4. We have I = Iµ.

Proof. By Lemma 1.3,

Ker I = {products of finite order elements} ⊂ Ker Iµ,

and I(φ) = 1 = Iµ(φ). Therefore I = Iµ.

We call I : F(φ) → Z the index map. This Z comes from Z ∼= K1(C(X)⋊φ Z).

Remark 1.5. We can construct a representation ρ : C(X)⋊φ Z → B(ℓ2(Z)) by

(ρ(f)ξ)(n) := f(φ−n(y))ξ(n)

(ρ(u)ξ)(n) := ξ(n+ 1).

The projection p onto the subspace {ξ | ξ(n) = 0 ∀n ≤ 0} commutes with the
image of ρ up to compact operators.

For α(x) = φn(x)(x) in F(φ),

v :=
∑
k∈Z

uk1n−1(k) ∈ C(X)⋊φ Z

is a unitary. One can check that I(α) equals the Fredholm index of pρ(v)p.

2 Ample groupoids

Main reference: [13], [14], [15], [17].
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2.1 Ample groupoids and topological full groups

Definition 2.1. A topological groupoid G is always assumed to be locally compact
and Hausdorff (LCH). It is said to be étale if the range map r : G → G(0) is a local
homeomorphism.

An ample groupoid is an étale groupoid whose unit space is 0-dimensional (totally
disconnected).

An element g ∈ G can be thought of as an arrow from s(g) to r(g).
For x ∈ G(0), the set r(s−1(x)) is called the orbit of x. When every orbit is dense

in G(0), G is said to be minimal.
The isotropy bundle of G is Iso(G) = {g ∈ G | r(g) = s(g)}. We say that G

is principal if Iso(G) = G(0). When the interior of Iso(G) is G(0), we say that G is
essentially principal.

A subset U ⊂ G is called a bisection if r|U, s|U are injective (a “fat arrow”). Any
open bisection U induces the homeomorphism θU := (r|U) ◦ (s|U)−1 from s(U) to
r(U).

A (probability) measure µ on G(0) is said to be G-invariant if µ(r(U)) = µ(s(U))
holds for every compact open bisection U . The set of all G-invariant probability
measures is denoted by M(G).

Example 2.2 (Transformation groupoids). Let φ : Γ ↷ X be an action of a
countable discrete group Γ on an LCH 0-dimensional space X. The transformation
groupoid G := X⋊φΓ is X×Γ equipped with the product topology. The unit space
of G is given by G(0) = X × {1} (where 1 is the identity of Γ), and identified with
X. The groupoid operations are as follows:

r(x, γ) = (x, 1), s(x, γ) = (φ−1
γ (x), 1),

(x, γ) · (x′, γ′) = (x, γγ′), (x, γ)−1 = (φ−1
γ (x), γ−1).

The groupoid G is principal if and only if the action φ is free, that is, φγ does
not have any fixed points unless γ = 1. The groupoid G is essentially principal if
and only if the action φ is topologically free, that is, {x ∈ X | φγ(x) = x} has no
interior points unless γ = 1. The groupoid G is minimal if and only if the action φ
is minimal, that is, any orbit of φ is dense in X.

A measure µ on G(0) is G-invariant if and only if it is φ-invariant.

Hereafter, we always assume that G is essentially principal.

Definition 2.3 (Topological full groups). Let G be an ample groupoid with G(0)

compact. For a compact open bisection U ⊂ G such that r(U) = G(0) = s(U),
θU = (r|U) ◦ (s|U)−1 is a homeomorphism on G(0). We let F(G) ⊂ Homeo(G(0)) be
the set of those homeomorphisms, and call it the topological full group (TFG) of G.

For G = X ⋊φ Γ with X compact,

F(G) =
{
α ∈ Homeo(X) | ∃conti. n : X → Γ, s.t. α(x) = φn(x)(x)

}
.
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Example 2.4 (AF groupoids). cf. [20, Definition III.1.1], [4, Definition 3.7], [14,
Definition 2.2] K is said to be elementary if K is principal and compact. When K is
elementary:

• the topology on K agrees with the relative topology from K(0) ×K(0),

• the equivalence relation K is uniformly finite, i.e. supx #r−1(x) < ∞.

We say that G is an AF groupoid if it can be written as an increasing union of
open elementary subgroupoids.

The C∗-algebra associated with an AF groupoid is an AF algebra.
It is known that any AF groupoids are represented by Bratteli diagrams (see [4,

Theorem 3.9]). We provide a brief explanation of it. A directed graph B = (V,E) is
called a Bratteli diagram when V =

⊔∞
n=0 Vn and E =

⊔∞
n=1 En are disjoint unions

of finite sets of vertices and edges with maps i : En → Vn−1 and t : En → Vn both
of which are surjective. Let

XB :=

{
e = (en)n ∈

∏
n

En | en ∈ En, t(en) = i(en+1) ∀n ∈ N

}
.

The set XB endowed with the relative topology is called the infinite path space of
B. Define an equivalence relation (i.e. principal groupoid) Km by

Km = {(e, f) ∈ XB ×XB | en = fn ∀n ≥ m}.

Then, Km equipped with the relative topology from XB×XB is a compact principal
ample groupoid. Clearly one has Km ⊂ Km+1. Set G =

∪
m Km. Endowed with the

inductive limit topology, G becomes an AF groupoid. Conversely, Theorem 3.9 of
[4] states that any AF groupoid arises in such a way.

The AF groupoid G is minimal if and only if for any n ∈ N there exists m > n
such that for any v ∈ Vn and w ∈ Vm there exists a path from v to w.

2.2 TFG of AF groupoids

LetB = (V,E) be such as Example 2.4. For paths p, q from V0 to Vm with t(p) = t(q),
we can define τp,q ∈ Homeo(XB) as follows: for (en)n ∈ XB, if its initial segment is
either p or q, then exchange it; otherwise, do nothing. Then, τp,q is in F(G). For a
fixed m ∈ N, we let Gm be the subgroup generated by these τp,q’s. Clearly,

Gm
∼=

⊕
v∈Vm

Sh(v),

where h(v) denotes the number of paths from V0 to v, and

Gm ⊂ Gm+1, F(G) =
∪
m

Gm.
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Theorem 2.5 ([13, Proposition 3.2]). Let G be an ample groupoid with G(0) compact.
The following are equivalent.

(1) G is an AF groupoid.

(2) F(G) is locally finite.

Example 2.6. Let φ : Z ↷ X be minimal and let G := X ⋊φ Z. Pick y ∈ X.
Define

H := G \ {(φm(y), n) ∈ G | m ≤ 0 < m−n or m−n ≤ 0 < m}.

ThenH is known to be a minimal AF groupoid, and its TFG F(H) is F(G)y discussed
in Section 1.

2.3 Homology groups and index map

We do not give a complete definition of homology groups for ample groupoids.
Instead, let us define only H0 and H1.

Definition 2.7 ([14, Section 3.1]). Let G be an ample groupoid.

(1) Define a homomorphism δ1 : Cc(G,Z) → Cc(G(0),Z) by

δ1(f)(x) :=
∑

s(g)=x

f(g)−
∑

r(g)=x

f(g)

and let
H0(G) := Cc(G(0),Z)/ Im δ1.

(2) Let
G(2) := {(g1, g2) | s(g1) = r(g2)}.

Define a homomorphism δ2 : Cc(G(2),Z) → Cc(G,Z) by

δ2(f)(g) :=
∑
k=g

f(h, k)−
∑
hk=g

f(h, k) +
∑
h=g

f(h, k)

and let
H1(G) := Ker δ1/ Im δ2.

The homology groups H∗(G) are the homology of a chain complex:

0 Cc(G(0),Z)oo Cc(G,Z)
δ1oo Cc(G(2),Z)δ2oo · · · .oo

For later use, we observe the following.
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Lemma 2.8. (1) For compact open bisections U, V ⊂ G such that s(U) = r(V ),
let W := (U × V ) ∩ G(2). Then δ2(1W ) = 1U − 1UV + 1V .

(2) For any compact open A ⊂ G(0), [1A] = 0 in H1(G).

(3) For any compact open bisection U ⊂ G(0), [1U + 1U−1 ] = 0 in H1(G).

Example 2.9. When G is the transformation groupoid of φ : Γ ↷ X, Hn(G) is
canonically isomorphic to Hn(Γ, Cc(X,Z)).

In particular, when Γ = Z,

Hn(G) =


Cc(X,Z)/{f − f ◦ φ | f ∈ Cc(X,Z)} n = 0

{f ∈ Cc(X,Z) | f = f ◦ φ} n = 1

0 n ≥ 2.

If φ is minimal, then H1(G) = Z.

Example 2.10. When G is an AF groupoid, H0(G) is the dimension group of the
Bratteli diagram:

lim
m→∞

(
ZVm → ZVm+1

)
,

and Hn(G) = 0 for n ≥ 1.

Definition 2.11 (Index map,[14, Definition 7.1]). For α ∈ F(G), a compact open
bisection U ⊂ G satisfying α = θU uniquely exists. It is easy to see that 1U is in
Ker δ1. We define a map I : F(G) → H1(G) by I(α) := [1U ] and call it the index
map.

By Lemma 2.8 (1), I is a homomorphism. We put K(G) := Ker I. Also, we
denote by D(G) the commutator subgroup of F(G). Thus, we have

D(G) ◁ K(G) ◁ F(G).

Example 2.12. When G arises from a minimal homeomorphism on a Cantor set
X,

F(G)/K(G) = Z, K(G)/D(G) = H0(G)⊗ Z/2
and F(G)y ⊂ K(G) for all y ∈ X. See Section 1.

Example 2.13. Suppose that G is an AF groupoid. One has K(G) = F(G) because
H1(G) = 0. Recall

F(G) =
∪
m

Gm, Gm
∼=

⊕
v∈Vm

Sh(v)

(see Section 2.2). It follows that

D(G) ∼=
∪
m

⊕
v∈Vm

Ah(v)

and
F(G)/D(G) ∼= lim

m

(
(Z/2)Vm → (Z/2)Vm+1

) ∼= H0(G)⊗ Z/2.
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Remark 2.14 (comparison maps). Let G be an ample groupoid.

(1) It is easy to see that there exists a homomorphism µ0 : H0(G) → K0(C
∗
r (G))

such that µ0([1A]) = [1A] for every compact open set A ⊂ G(0).

(2) It is known that there exists a homomorphism µ1 : H1(G) → K1(C
∗
r (G))

such that µ1([1U ]) = [1U ] for every compact open bisection U ⊂ G satisfying
r(U) = G(0) = s(U). See [1].

Problem 2.15. Does there exist µ∗ : H∗(G) → K∗(C
∗
r (G)) for ∗ ≥ 2 ?

2.4 Reconstruction

The following is a generalization of Theorem 1.1.

Theorem 2.16 ([22],[15, Theorem 3.10]). For i = 1, 2, let Gi be a minimal ample
groupoid with compact unit space. The following are equivalent.

(1) G1
∼= G2.

(2) F(G1) ∼= F(G2).

(3) K(G1) ∼= K(G2).

(4) D(G1) ∼= D(G2).

Remark 2.17. The assumption of minimality can be relaxed (see [22]).

The theorem above ensures TFG’s are a rich source of interesting infinite groups.

3 Simplicity

Main reference: [14], [15], [17].

3.1 Two classes

Definition 3.1 ([14, Definition 6.2]). Let G be an ample groupoid with G(0) compact.
We say that G is almost finite (abbreviated as a.f.) if for any compact subset C ⊂ G
and ε > 0 there exists an elementary subgroupoid K ⊂ G such that

#(CKx \ Kx)

#(Kx)
< ε

for all x ∈ G(0).
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This definition says that any compact subset C is almost ‘covered’ by an ele-
mentary subgroupoid K.

This also reminds us of the notion of tracially AF C∗-algebras.
By definition, AF groupoids are almost finite.

Theorem 3.2 ([10, 18]). When Γ ↷ X is a free action of an elementary amenable
group on a Cantor set, its transformation groupoid G = X ⋊ Γ is almost finite.

We remark that for the G above, C∗
r (G) is Z-stable ([9, Theorem 12.4]).

Definition 3.3 ([15, Definition 4.9]). Let G be an ample groupoid with G(0) compact.
We say that G is purely infinite (p.i.) if for every clopen set A ⊂ G(0), there exist
compact open bisections U, V ⊂ G such that s(U) = s(V ) = A, r(U) t r(V ) ⊂ A.

When G is purely infinite, it is easy to see that F(G) contains the free group Z∗Z
([15, Proposition 4.10]). Also, C∗

r (G) is purely infinite ([21, Theorem 4.1]).

Example 3.4 (SFT groupoids). Let (V,E) be a finite directed graph and let A
be its adjacency matrix of (V,E). We assume that A is irreducible and is not a
permutation matrix. Define

X := {(xk)k∈N ∈ EN | t(xk) = i(xk+1) ∀k ∈ N}.

With the product topology, X is a Cantor set. The shift σ on X is called the one-
sided irreducible shift of finite type (SFT) associated with the graph (V,E) (or the
matrix A).

The SFT groupoid G(V,E) is the graph groupoid:

G(V,E) := {(x, n, y) ∈ X × Z×X | ∃k, l ∈ N, n = k−l, σk(x) = σl(y)}

with the topology generated by the sets

{(x, k−l, y) ∈ G(V,E) | x ∈ P, y ∈ Q, σk(x) = σl(y)},

where P,Q ⊂ X are open and k, l ∈ N. The groupoid structure is given by

(x, n, y) · (y, n′, y′) = (x, n+n′, y′), (x, n, y)−1 = (y,−n, x).

We identify X with the unit space G(0)
(V,E) via x 7→ (x, 0, x).

It is easy to see that G(V,E) is minimal and purely infinite.
When V is a singleton, σ is the full shift. The TFG of G(V,E) is isomorphic to

the Higman-Thompson group.

The homology groups of the SFT groupoid G(V,E) was computed in [14].
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Theorem 3.5 ([14, Theorem 4.14]). One has

Hn(G(V,E)) ∼=


Coker(I − At) n = 0

Ker(I − At) n = 1

0 n ≥ 2,

where the matrix A acts on the abelian group ZV by multiplication.

Problem 3.6. Does there exist a minimal ample groupoid which is neither almost
finite nor purely infinite?

3.2 Commutator subgroups

Theorem 3.7 ([15, Theorem 4.7, Theorem 4.16]). Let G be a minimal ample
groupoid. If G is either almost finite or purely infinite, then D(G) is simple.

We give a sketchy proof for the purely infinite case. Assume that G is minimal
and purely infinite. Let N ◁ D(G) be a non-trivial normal subgroup.

Lemma 3.8. For any τ ∈ N and α ∈ F(G), we have ατα−1 ∈ N .

Proof of a part of Theorem 3.9. Let τ ∈ N \ {1}. There exists a non-empty clopen
set A ⊂ G(0) such that A ∩ τ(A) = ∅.

It suffices to show [α, β] ∈ N for any α, β ∈ F(G). We can find α1, α2, β1, β2 ∈
F(G) such that

α = α1α2, β = β1β2

supp(αi) 6= G(0), supp(βi) 6= G(0).

Thanks to the lemma above, we may assume supp(α) 6= G(0) and supp(β) 6= G(0)

from the start.
Since G is purely infinite and minimal, there exists γ ∈ F(G) such that

γ(supp(α)) ∩ supp(β) = ∅ and supp(α) ∪ supp(γ) 6= G(0).

Also, there exists σ ∈ F(G) such that

σ(supp(α) ∪ supp(γ)) ⊂ A.

By the lemma above, τ̃ := σ−1τσ is in N . It follows from A ∩ τ(A) = ∅ that

supp(α) ∩ τ̃(supp(γ)) = ∅.

Hence γ̃ := [γ, τ̃ ] satisfies

γ̃(supp(α)) ∩ supp(β) = ∅,

that is, γ̃αγ̃−1 commutes with β. Again, by the lemma above, γ̃ is in N . Therefore

[α, β] = αβα−1β−1 = α(γ̃α−1γ̃−1)β(γ̃αγ̃−1)α−1β−1 = [[α, γ̃], β]

is in N .
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3.3 Abelianization

Theorem 3.9 ([14, Theorem 7.5], [15, Theorem 5.2]). If G is either almost finite
or purely infinite, then the index map I : F(G) → H1(G) is surjective.

Proof. We give a sketchy proof for the purely infinite case. Suppose that G is purely
infinite.

Let f ∈ Ker δ1. By Lemma 2.8 (3), we may assume that there exist compact
open bisections C1, C2, . . . , Cn such that

f = 1C1 + 1C2 + · · ·+ 1Cn .

By δ1(f) = 0, we have
n∑

i=1

1r(Ci) =
n∑

j=1

1s(Cj).

Hence we can find clopen subsets Aij ⊂ G(0) for i, j = 1, 2, . . . , n satisfying

n⊔
i=1

Aij = r(Cj) and
n⊔

j=1

Aij = s(Ci).

(How to find Aij: Take a clopen partition (Dl)l generated by r(Ci)’s and s(Cj)’s.
For each l,

#{i | Dl ⊂ r(Ci)} = #{j | Dl ⊂ s(Cj)},

and so there exists a bijective correspondence between them. Let us denote it by
i ∼l j. Set

Aij :=
⊔
i∼lj

Dl,

which is a desired one. )
Since G is purely infinite, there exist compact open bisections U1, U2, . . . , Un such

that s(Ui) = r(Ci) and the sets r(Ui) are mutually disjoint. Put

Vij := UiCiAijU
−1
j .

We can check that Vij are compact open bisections such that

r(Vij) = r(UiCiAij) and s(Vij) = s(AijU
−1
j ).

Therefore, V :=
∪

i,j Vij is also a compact open bisection and

r(V ) =
⊔
i

r(UiCi) =
⊔
i

r(Ui) =
⊔
j

s(U−1
j ) = s(V ).
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On one hand, by Lemma 2.8 (1)(3),

[1V ] =

[∑
i,j

1Vij

]
=

[∑
i,j

1UiCiAijU
−1
j

]
=

[∑
i,j

(
1UiCiAij

+ 1AijU
−1
j

)]

=

[∑
i

1UiCi
+
∑
j

1U−1
j

]
=

[∑
i

(1Ui
+ 1Ci

) +
∑
j

1U−1
j

]
= [f ].

Set W := V t (G(0) \ s(V )). Then one has I(θW ) = [f ] as desired.

Let us recall
D(G) ◁ K(G) ◁ F(G).

Example 3.10. (1) When G is an AF groupoid, F(G)/K(G) = 0 and K(G)/D(G) ∼=
H0(G)⊗ Z/2 (see Example 2.13).

(2) When G arises from a minimal action Z ↷ X, F(G)/K(G) = Z and K(G)/D(G) ∼=
H0(G)⊗ Z/2 ([13, Theorem 4.8]).

(3) When G is an SFT groupoid, F(G)/K(G) = H1(G) and K(G)/D(G) ∼= H0(G)⊗
Z/2 ([15, Corollary 6.24]).

When G is minimal, a homomorphism

ζ : H0(G)⊗ Z/2 → K(G)/D(G)

was constructed by V. Nekrashevych [19, Section 7].

Theorem 3.11 ([12, Corollary E]). Let G be a minimal ample groupoid. If G is
either almost finite or purely infinite, then there exists an exact sequence:

H2(D(G)) // H2(G) // H0(G)⊗ Z/2 ζ // H1(F(G)) I // H1(G) // 0

Notice that H1(F(G)) is isomorphic to the abelianization F(G)/D(G).

Li [12] discovered a close connection between homology of TFG and groupoid
homology. The theorem above is one consequence from his deep analysis.

Example 3.12 ([16]). Fix m ∈ N. Let G be the SFT groupoid of the full shift over
m+1 symbols. By Theorem 3.5,

Hk(G) =

{
Z/m k = 0

0 k ≥ 1.

Hence, the Künneth theorem implies

Hk(G × G) =

{
Z/m k = 0, 1

0 k ≥ 2
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and

Hk(G × G × G) =


Z/m k = 0

(Z/m)2 k = 1

Z/m k = 2

0 k ≥ 3.

Let us describe the generator ofH1(G×G) ∼= Z/m. Define β ∈ Homeo(G(0)×G(0))
(the baker’s map) as follows:

β ((xn)n, (yn)n) := ((x2x3 . . . ), (x1y1y2 . . . )) .

Then β is in F(G × G) and I(β) generates H1(G × G) ∼= Z/m.
Now we assume m is even, and let t ∈ H1(F(G×G)) be the image of the generator

of H0 ⊗ Z/2 ∼= Z/2 by the map ζ.
Define τ ∈ F(G × G) by

τ ((xn)n, (yn)n) := ((y1x2x3 . . . ), (x1y2y3 . . . )) .

Thus, τ is a transposition whose support is {(x, y) | x1 6= y1}. It follows that the
equivalence class [τ ] of τ in H1(F(G × G)) equals

m(m+ 1)

2
t.

Let us consider τβ. This sends (x, y) to

((x1x3x4 . . . ), (x2y1y2 . . . )) .

Therefore τβ is a product of m+1 elements with mutually disjoint support and each
of them is conjugate to β. Hence [τβ] = [βm+1] (i.e. τβ−m belongs to D(G × G)),
and so we have

m[β] =
m(m+ 1)

2
t ∈ H1(F(G × G)).

Now we consider G × G × G. We let

β12 := β × id ∈ F(G × G × G)

and
β23 := id×β ∈ F(G × G × G).

Similarly, β13 is defined. Thinking of t as an element in H1(F(G × G × G)), we have

m[β12] = m[β23] = m[β31] =
m(m+ 1)

2
t.

When m ∈ 2Z \ 4Z, this is equal to t. On the other hand, one has β23β12 = β13.
Consequently we obtain t = 0. Thus, the map

ζ : H0(G × G × G)⊗ Z/2 → H1(F(G × G × G))

is zero.
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4 Amenability

Main reference: [7], [6].

K. Juschenko and N. Monod obtained the following remarkable result.

Theorem 4.1 ([7, Theorem A]). When φ : Z ↷ X is minimal, the TFG of G :=
X ⋊φ Z is amenable.

In the proof of this theorem, the notion of extensive amenability plays the central
role. This property was first introduced (without a name) in [7], and studied further
in [8, 6].

We recall the definition of extensive amenability from [6, Definition 1.1]. Let
α : G ↷ Z be an action of a discrete group G on a set Z. Set

P (Z) :=
⊕
Z

Z/2 = {f : Z → Z2 | supp(f) is finite} .

The action α naturally extends to α : G ↷ P (Z). We say that α : G ↷ Z
is extensively amenable if there exists a G-invariant mean (i.e. finitely additive
probability measure) m on P (Z) such that m({1F ∈ P (Z) | E ⊂ F}) = 1 for any
finite subset E ⊂ Z. In [7, Lemma 3.1], it was shown that α : G ↷ Z is extensively
amenable if and only if the action of P (Z)⋊G on P (Z) admits an invariant mean.

We denote by W (Z) the group of all permutations g of Z for which the quantity
sup{|g(j) − j| | j ∈ Z} is finite. In [7, Theorem C], it was shown that the natural
action W (Z) ↷ Z is extensively amenable. (This part is technically quite hard.) It
follows that the action of P (Z)⋊W (Z) on P (Z) admits an invariant mean.

Let φ : Z ↷ X be minimal and let G := X ⋊φ Z. We would like to show that
F(G) is amenable. Fix a point y ∈ X. For α ∈ F(G), we can define α̃ ∈ W (Z) so that
α(φj(y)) = φα̃(j)(y). Define a map π : F(G) → P (Z)⋊W (Z) by π(α) = (1N+1α̃(N), α̃)
for α ∈ F(G). It is routine to check that π is an injective homomorphism. Since
the action of P (Z) ⋊ W (Z) on P (Z) admits an invariant mean, in order to show
the amenability of F(G), it suffices to prove that the stabiliser in π(F(G)) of 1E is
amenable for any finite subset E ⊂ Z.

Lemma 4.2 ([7, Lemma 4.1]). In the setting above, for any finite subset E ⊂ Z,
the stabiliser

S := {α ∈ F(G) | π(α)(1E) = 1E}
is locally finite, and hence amenable.

Proof. By definition, π(α)(1E) = 1N + 1α̃(N) + 1α̃(E), which implies

α ∈ S ⇐⇒ α̃(N∆E) = N∆E,

where ∆ means the symmetric difference. Put

k := #(E ∩ N)−#(E \ N) ∈ Z.
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We can find a transposition τ ∈ F(G) satisfying

{τ(φj(y)) | j > k} = {φj(y) | j ∈ N∆E}.

Then, one has
(τφk)(Orb+

φ (y)) = {φj(y) | j ∈ N∆E}.

Hence
α ∈ S ⇐⇒ ((τφk)−1α(τφk))(Orb+

φ (y)),

which means that S is conjugate to F(G)y discussed in Section 1. Therefore, S is
locally finite, and hence amenable.

In such a way, Theorem 4.1 is proved.
In [8, 6], the notion of extensive amenability is used to prove amenability of

various kinds of groups. Among others, it was shown that all subgroups of the
group of interval exchange transformations that have angular components of rational
rank ≤ 2 are amenable ([6, Theorem 5.1]). In particular, when φ : Z2 ↷ X is
a free minimal action arising from two irrational rotations on the circle (see [5,
Example 30]), the TFG of X ⋊φ Z2 is amenable. On the other hand, it is known
that there exists a free minimal action φ : Z2 ↷ X on a Cantor set such that
its TFG contains the non-abelian free group ([2]). It may be a rather complicated
problem to determine when the TFG is amenable for φ : Z2 ↷ X.

As a generalization of Theorem 4.1, Szőke obtained the following result.

Theorem 4.3 ([23]). Let Γ be a finitely generated group and let X be the Cantor
set.

(1) If Γ is virtually cyclic, then for any minimal action φ : Γ ↷ X, its TFG is
amenable.

(2) If Γ is not virtually cyclic, then there exists a free minimal action φ : Γ ↷ X
whose TFG contains the free group.

Problem 4.4. When is F(G) amenable?

5 Finiteness

Theorem 5.1 ([19]). Suppose that G is minimal and either almost finite or purely
infinite. If G is expansive, then D(G) is finitely generated.

When G arises from φ : Γ ↷ X, G is expansive if and only if φ is expansive.

Example 5.2 ([13, 15]). (1) When φ : Z ↷ X is minimal and expansive, its D(G)
is simple, amenable and finitely generated.

(2) AF groupoids never be expansive.

15



(3) An SFT groupoid is expansive, and so its D(G) (and also F(G)) is finitely
generated. Moreover, it is finitely presented.

X. Li [11] proved that F(G) is of type F∞ (in particular, finitely presented) when
G is a product of SFT groupoids.
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