Classifying Stein's groups

Hiroki Matui

Chiba University

March 20, 2025 日本数学会 2025 年度年会 @早稲田大学

Stein's group

Suppose we are given:

- $\Lambda \subset (0,\infty),$ a countable multiplicative subgroup,
- $\Gamma \subset \mathbb{R}$, a countable $\mathbb{Z}\Lambda$ -module, dense in \mathbb{R} ,
- $\ell \in \Gamma \cap (0,\infty).$

Stein's group $V(\Gamma, \Lambda, \ell)$ (Stein 1992) is the group consisting of piecewise linear bijections f of $[0, \ell)$ satisfying the following:

- *f* is right continuous,
- f has finitely many discontinuous or nondifferential points, all in $\Gamma,$
- f has slopes only in Λ .

Example

 $V(\mathbb{Z}[1/n], \langle n \rangle, \ell)$ is the Higman-Thompson group.

Main theorem

Theorem (M 2024)

For i = 1, 2, let $V(\Gamma_i, \Lambda_i, \ell_i)$ be Stein's group. Suppose that Λ_i are finitely generated and rank $\Gamma_i \ge 2$. The following are equivalent.

1 $V(\Gamma_1, \Lambda_1, \ell_1)$ is isomorphic to $V(\Gamma_2, \Lambda_2, \ell_2)$.

2 $\Lambda_1 = \Lambda_2$ and there exists s > 0 such that $\Gamma_1 = s\Gamma_2$ and $\ell_1 - s\ell_2$ is zero in $H_0(\Lambda_1, \Gamma_1)$.

Remark

 $2 \Longrightarrow 1$ is obvious.

Outline of proof

Stein groupoid

Let

$$\mathbb{R}_{\Gamma} := (\mathbb{R} \setminus \Gamma) \sqcup \{t_+, t_- \mid t \in \Gamma\}$$

with the natural order topology.

 \mathbb{R}_{Γ} is a totally disconnected space, on which $\Gamma \rtimes \Lambda$ acts.

Then

$$\mathcal{S}(\Gamma,\Lambda) := \mathbb{R}_{\Gamma} \rtimes (\Gamma \rtimes \Lambda) = \mathbb{R}_{\Gamma} \times (\Gamma \times \Lambda)$$

becomes an ample groupoid, that is, a topological groupoid whose unit space is totally disconnected. We call this the Stein groupoid.

It is easy to see that $V(\Gamma, \Lambda, \ell)$ is isomorphic to the topological full group of the ample groupoid $\mathcal{S}(\Gamma, \Lambda)|[0_+, \ell_-]$.

Reconstruction

Theorem (reconstruction, Rubin 1989, M 2015)

For i = 1, 2, let G_i be an ample groupoid whose unit space is a Cantor set. Suppose that G_i are essentially principal and minimal. The following are equivalent.

- **1** The ample groupoids \mathcal{G}_1 and \mathcal{G}_2 are isomorphic.
- **2** The topological full groups $[[\mathcal{G}_1]]$ and $[[\mathcal{G}_2]]$ are isomorphic.

Corollary

The following are equivalent.

1 $\mathcal{S}(\Gamma_1, \Lambda_1)|[0_+, \ell_{1-}]$ is isomorphic to $\mathcal{S}(\Gamma_2, \Lambda_2)|[0_+, \ell_{2-}].$

2 $V(\Gamma_1, \Lambda_1, \ell_1)$ is isomorphic to $V(\Gamma_2, \Lambda_2, \ell_2)$.

Rigidity

Suppose that Λ is finitely generated and $\mathrm{rank}\,\Gamma\geq 2.$

Theorem (cocycle rigidity, M 2024)

The natural homomorphism $\mathcal{S}(\Gamma, \Lambda) \to \Gamma \rtimes \Lambda$ induces an isomorphism between $H^1(\mathcal{S}(\Gamma, \Lambda))$ and $H^1(\Gamma \rtimes \Lambda)$.

Theorem (orbit equivalence rigidity, M 2024)

The following are equivalent.

- **1** $\mathcal{S}(\Gamma_1, \Lambda_1)$ is isomorphic to $\mathcal{S}(\Gamma_2, \Lambda_2)$.
- **2** $\Lambda_1 = \Lambda_2$ and there exists s > 0 such that $\Gamma_1 = s\Gamma_2$.