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Overview

dynamics on Cantor set X

!

étale groupoid G full group
H (0,) — 7
with G = X [[G]] € Homeo(X)

topological

homology group of G
H,(G), n=0,1,2,...
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Minimal Z action

A Cantor set is a compact, metrizable, totally disconnected space
with no isolated points.

Any two such spaces are homeomorphic to each other.

The infinite product space {0, 1}" is a Cantor set.

Let ¢ : Z ~ X be an action on a Cantor set X by homeo.
Assume that ¢ is minimal, i.e.

{¢"(z) | n € Z} is dense in X for all z € X.

1G]] := {y € Homeo(X) | Fconti. ¢: X — Z, v(zx) = ¢ ()}

is called the topological full group of .
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TFG of minimal Z action
Let v, : Z ~ X be minimal Z-actions.

Theorem (Giordano-Putnam-Skau 1999)
o [[G,]] 2 [[Gy]] iff ¢ is conjugate to ¢ or 1.

e There exists a surjective homo. I : [[G,]] — 7Z (index map).

4

Theorem (M 2006)
e D([[G,]]) is simple.
e [[Gollab = Z @ Ho(Z,C (X, Zs)).
e D([[G,]]) is finitely generated iff  is expansive.

Theorem (Juschenko-Monod 2013)

[[G,]] is amenable.
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Example of minimal Z action

Let 0 < A < 1 be an irrational number and let X be the Cantor set
obtained by cutting T = R/Z at the points nA, n € Z.
Let ¢ : X — X be the translation by A.

D([[G,]]) is simple, and [[Gy]lab = Z ® Zo @ Zs.

For simplicity, we assume 1/3 < A < 1/2.
P

@
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Then, [[G,]] is generated by ¢, 0, 7.

[[G,]] is amenable.
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TFG of minimal Z" action
Let ¢ : ZY¥ ~ X be a free minimal action and consider G,,.

Theorem (M 2012, 2015)
e The index map I : [[G,]] — H1(G,) is surjective.
e There exists an exact sequence:

Ho(Gy) © Zy —— [[Gplla —— Hi(G,) — 0

e D([[G,]]) is simple.

Theorem (Elek-Monod 2013)

[[G,]] is sometimes amenable and sometimes NOT.

Theorem (Nekrashevych 2019)
D([[G,]]) is finitely generated iff ¢ is expansive.
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Orbit equivalence

p: '~ X and ¢ : A ~ Y are said to be orbit equivalent,
if 3 homeo. h: X — Y such that

h(p-orbit of x) = 1p-orbit of h(x)
holds for all x € X.

Theorem (Giordano-M-Putnam-Skau 2010)
Let p: ZM ~ X and 1) : ZN ~'Y be minimal actions
on Cantor sets. T.F.A.E.

@® ¢ and Y are orbit equivalent.

® 1 homeo. h: X — Y such that
h«({-inv. prob. measure}) = {1-inv. prob. measure}.

Remark

G, = Gy iff ¢ and 1 are orbit equivalent with continuous cocycles.

v
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Etale groupoid
A groupoid G is a ‘group-like’ algebraic object, in which the
product may not be defined for all pairs in G.
e g € G is thought of as an arrow e <o .
e r:grrgg!
e 5:gr> g 'gis called the source map.
e GO =1r(G) = 5(G) C G is called the unit space.

is called the range map.
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Etale groupoid
A groupoid G is a ‘group-like’ algebraic object, in which the
product may not be defined for all pairs in G.
e g € G is thought of as an arrow e <o .
e r:grrgg!
e 5:gr> g 'gis called the source map.
e GO =1r(G) = 5(G) C G is called the unit space.

is called the range map.

G is an étale groupoid if G is equipped with a locally compact
Hausdorff topology compatible with the groupoid structure and
the range (or source) map is a local homeomorphism.

An arrow e <2 e is thought of as a germ at s(g) =g 'g.

G is said to be minimal if r(s~!(x)) is dense in GO Vz € GO,

In what follows, we assume that G(©) is a Cantor set.



Example of étale groupoid

Let ¢ : I' ~ X be an action of a discrete group I' on a Cantor set.

G, = I' x X with the product topology is an étale groupoid with

(Y, oy(@) - (v,2) = (V7.2),  (r.2)7" = (v ey(2)).

G, is called the transformation groupoid.
Thus, (v,z)is  Py(T)e ~———ox
The unit space géo) = {1} x X is identified with X.
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Topological full group
A compact open set U C G is called a bisection
if both |U and s|U are injective.
The topological full group [[G]] is defined by

6] = {7 € Homeo(G©)) | 3bisection U, y=(r|U) o (5|U)—1} :
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Topological full group
A compact open set U C G is called a bisection
if both |U and s|U are injective.
The topological full group [[G]] is defined by

16]] = {~ € Homeo(G")) | bisection U, y=(r|U) o (s|U)~" } .
Equivalently, v € [[G]] if and only if

vee g 3g ¢ s71(x), v equals g as a germ at .

When ¢ : I' ~ X is a group action on a Cantor set X,
G, = I' x X becomes an étale groupoid in a natural way.
In this situation,

v € [[Gp]] <= Fconti. map c: X = T, ¥(x) = pe(q)(2).
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Groupoid C*-algebra

For an étale groupoid G, the space C.(G,C) of compactly
supported continuous functions becomes a x-algebra by

(fr- f2)(9) =D filgh) (™),

heg

f(9)=Flg™).
As a completion by a suitable norm,
we get a (reduced) groupoid C*-algebra C(G).

C*(G) contains the abelian subalgebra C'(G().
It is maximal, and its unitary normalizers generate C;(G).
Such a subalgebra C'(G(?)) is called a Cartan subalgebra.
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Isomorphism theorem

Theorem
For minimal groupoids G and Gs, the following are equivalent.
@ G, is isomorphic to Go as an étale groupoid.
@® [[G1]] is isomorphic to [[G2]] as a group.
® D([[G1]]) is isomorphic to D([[G2]]) as a group.
@ There exists an isomorphism 7 : C(G1) — C}(G2) such that
7(C(G") = C(Gy").

Thus, [[G]] (or D(][G]])) ‘remembers’ G.
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Homology group

H,,(G) are the homology groups of the chain complex
04— C(G©,2) - 06V, 2) % C(6P,2) & ..

where G(™) is the space of composable strings of n elements.
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Homology group
H,,(G) are the homology groups of the chain complex

0+ (G0, 7) &= 0.(gW, z) &2 (G, z) & ..

where G(™) is the space of composable strings of n elements.

a(f)x) =Y flo— > flg)

(9)== r(g)=z
So,

Hy(G) = C(Q(O),Z)/(IS(U)—lT(U) | U is a bisection).
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Homology group
H,,(G) are the homology groups of the chain complex

0+ (G0, 7) &= 0.(gW, z) &2 (G, z) & ..

where G(™) is the space of composable strings of n elements.
(@)=Y flo)— > flo)
s(g)=x r(g)=z
So,

Hy(G) = C(g(o),Z)/(ls(U)—lT(U) | U is a bisection).

If U is a bisection such that s(U) = r(U) = G, then
1y € Ker d1. Hence, one can define the index map

I:[9]] = Hi(9).

When G = G, the homology groups H,,(G,) are canonically
isomorphic to the group homology H,, (I, C'(X,7Z)).

13 /24



Simplicity of commutator subgroup

Theorem (M 2012, 2015)

Let G be a minimal étale groupoid which is either almost finite or
purely infinite.

® D([[G]]) is simple.
@® The index map I : [[G]] — H1(G) is surjective.

14 /24



Simplicity of commutator subgroup

Theorem (M 2012, 2015)

Let G be a minimal étale groupoid which is either almost finite or
purely infinite.
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Simplicity of commutator subgroup

Theorem (M 2012, 2015)
Let G be a minimal étale groupoid which is either almost finite or
purely infinite.

® D([[G]]) is simple.

@® The index map I : [[G]] — H1(G) is surjective.

The transformation groupoid G, of ¢ : I' ~ X is almost finite
when I is finitely generated and has polynomial growth.
If G is almost finite, there exists an invariant prob. measure.

G is said to be purely infinite, if every clopen subset A ¢ G(©)
admits a paradoxical decomposition: 3 bisections U,V C G
such that s(U) =s(V)=A and r(U)Ur(V) C A.
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One-sided shifts of finite type (1/2)

Let (V, &) be an irreducible finite directed graph and
let A be the adjacency matrix.
Set
X ={(zp)n € EN | t(x,) = i(zpy1) Vn e N},

The one-sided shift o on X is called a shift of finite type (SFT).
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One-sided shifts of finite type (1/2)

Let (V, &) be an irreducible finite directed graph and
let A be the adjacency matrix.
Set
X ={(zp)n € EN | t(x,) = i(zpy1) Vn e N},

The one-sided shift o on X is called a shift of finite type (SFT).
When #V=1 and #E=k, it's called the full shift over k& symbols.
The SFT groupoid G4 of (X, o) (or of A) is

Ga = {(m,k—l,y) € X xZxX|3kIleN, ak(ac):al(y)}
with the product (z,m,y) - (y,n, 2) := (z,m+n, z).

It is known H(G4) = Coker(id —A?), H1(Ga) = Ker(id —A") and
Ho(G4) = 0 for n > 2. (M 2012)
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Higman-Thompson groups

In 1965 R. Thompson gave the first example of a finitely presented
infinite simple group. G. Higman and K. S. Brown later generalized
it to infinite families F,, C T,, C V}, for n € N'\ {1}.

16 /24



Higman-Thompson groups

In 1965 R. Thompson gave the first example of a finitely presented
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The group V,, consists of PL right continuous bijections

f:]0,1) — [0,1) with finitely many singularities, all in Z[1/n],
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Higman-Thompson groups

In 1965 R. Thompson gave the first example of a finitely presented
infinite simple group. G. Higman and K. S. Brown later generalized
it to infinite families F,, C T,, C V}, for n € N'\ {1}.

The group V,, consists of PL right continuous bijections

f:]0,1) — [0,1) with finitely many singularities, all in Z[1/n],
slopes lying in powers of n, and mapping Z[1/n] N[0, 1) to itself.
V,, is called the Higman-Thompson group.

It is known that V}, is finitely presented, D(V,,) is simple, and
(Viu)ab is trivial when n is even and is Zs when n is odd.

F, is a subgroup of V,, consisting of continuous maps f.
F,, is also finitely presented.
It is not yet known if F}, is amenable or not.
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Nekrashevych'’s observation

Theorem (Nekrashevych 2004)

When (X, o) is the full shift over n symbols,
the topological full group [[G,]] is isomorphic to V.

Let V= {x}and £ ={0,1,...,n—1}.
The continuous map p : EY — [0, 1] defined by

-3

k=1

RiE

induces the isomorphism [[G,,]] =V,
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Nekrashevych'’s observation

Theorem (Nekrashevych 2004)

When (X, o) is the full shift over n symbols,
the topological full group [[G,]] is isomorphic to V.

Let V= {x}and £ ={0,1,...,n—1}.
The continuous map p : EY — [0, 1] defined by

Tk

pllae) =Y %
k=1

e

induces the isomorphism [[G,]] = V.

[[Gal] for general SFT groupoids G4 may be thought of
as a generalization of the Higman-Thompson group V;,.
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One-sided shifts of finite type (2/2)

Let A be the adjacency matrix of
an irreducible finite directed graph (V,&).

Theorem (Matsumoto-M 2014)

The triple (Coker(id —A?), [ua],det(id —A)) is a complete
invariant for the isomorphism class of G4 within SFT groupoids.

Theorem (M 2015)

o D([[4l]) is simple.

* [[Gallab = H1(Ga) ® (Ho(Ga) ® Z2).
e [[GA]] is of type F (in particular, finitely presented).
e [[Ga]] has the Haagerup property.

18/24



Boundary action of the free group

Let I, := (a,b) be the free group and let S := {a,b,a"%,b"1}.
The hyperbolic boundary of Fs is

OFy = {(xn)n € SN | {zn, 2nir} # {a,a 1), (0,671} Wne N}.

Let ¢ : Fo ~ OFy be the boundary action.
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Boundary action of the free group

Let I, := (a,b) be the free group and let S := {a,b,a"%,b"1}.
The hyperbolic boundary of Fs is

OFy = {(xn)n € SN | {zn, 2nir} # {a,a 1), (0,671} Wne N}.

Let ¢ : Fo ~ OFy be the boundary action.

Then, G, is canonically isomorphic to the SFT groupoid G4 with

—_ = O =
— = = O
O = =
—_— O =

In particular, Hy(G,) & H1(G,) = Z? and H,,(G,) = 0 for n > 2.
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Cleary's group (1/2)

Let A > 0 be an irrational number.
Let P={A\"|n€Z}and A =7\, )\_1].

20 /24



Cleary's group (1/2)

Let A > 0 be an irrational number.
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Cleary's group (1/2)

Let A > 0 be an irrational number.
Let P={\"|n€Z}and A=Z[\ 1]

Consider the group V), consisting of right continuous bijections of
[0,1) which are piecewise linear, with finitely many discontinuities
and singularities, all in A, slopes in P, and mapping AN[0,1) to
itself.

Cleary (1995, 2000) showed that V) is of type Fo
when \ > 0 satisfies A2 +nA —1=0, n € N

There exists an étale groupoid G such that [[G)\]] = V).

K-groups of C(G)) were computed for many values of A
by Carey-Phillips-Putnam-Rennie (2011).
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Cleary's group (2/2)
Theorem
® When )\ > 0 satisfiess \> +nA—1=0,n €N,

Ho(G)) = Zn, H1(G\) = Z2, Hp(Gx) =0 fork > 2.

@® When X\ > 0 satisfies \A> —nA+1=0, n € N\ {1,2},

Ho(G\) = Zn—2, H1(G)\) =7, H2(G\) =Z,
Hk(g)\) =0 fork > 3.

In both cases, we have

EBH%H(Q/\) = Ki(Cr(Gy) i=0,1

and
[[G\]]ab = (Ho(Gr) ® Z2) © H1(Gy)-
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Simple periodic group (1/2)

Let 7 € Homeo(X) be an involution, i.e. 72 = id.
A finite subgroup A C Homeo(X) is called a fragmentation of 7
if the following hold:

e Vx € X, Vh € A, one has h(x) =z or h(z) = 7(x),
e Vx € X, 3h € A such that h(z) = 7(z).
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Let X := (v/5 —1)/2 and consider the Cantor set X
obtained by cutting T = R/Z at the points n\, n € Z.
Define involutions 7,0 € Homeo(X) by

() =A—z, o(z):=1-=zx.

Then, 7 o o is the translation by A\, which induces a minimal
Z-action on X.



Simple periodic group (2/2)

Theorem (Nekrashevych 2018)
There exist fragmentations A and B of T and o, respectively,
such that F' := (AU B) satisfies the following.
o There exists a non-Hausdorff étale groupoid G on X
such that F' = [[G]].
e F' s periodic and has subexponential growth.

o D(F) is simple and Fyy, = (Z2)°.
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Simple periodic group (2/2)

Theorem (Nekrashevych 2018)

There exist fragmentations A and B of T and o, respectively,
such that F' := (AU B) satisfies the following.

o There exists a non-Hausdorff étale groupoid G on X
such that F' = [[G]].

e F' s periodic and has subexponential growth.
e D(F) is simple and Fy, = (Z3)°.

The involution ¢ has one fixed point zy corresponding to

1/2 € [0, 1]. The fragmentation B above has the following
property: for every h € B, the closure of the interior of Fix(h)
contains x.

The fragmentation A of 7 also has the same property.
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HK conjecture

In many cases, we have

P Hanri(9) = Ki(CF(G)) i=0,1.

Does this always hold true?
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HK conjecture

In many cases, we have

P Hanri(9) = Ki(CF(G)) i=0,1.

Does this always hold true?
Scarparo (arXiv:2018) found a counterexample.

But...
Theorem (Proietti-Yamashita, arXiv:2020)

Let G be an étale groupoid with torsion-free stabilizers
satisfying the strong Baum-Connes conjecture.
Then there exists a convergent spectral sequence

E;g,q = Hy(G, K4(C)) = Kp+q(Cr(9)).
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