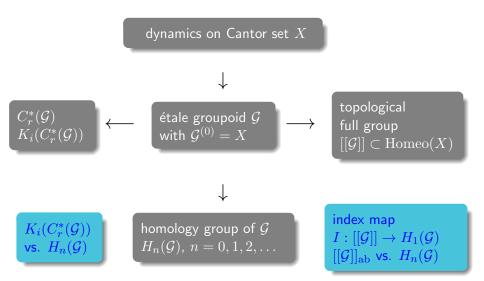
Various examples of topological full groups

Hiroki Matui

Chiba University

June 26, 2020 Symmetry in Newcastle The University of Newcastle

Overview



$\mathsf{Minimal}\ \mathbb{Z}\ \mathsf{action}$

A Cantor set is a compact, metrizable, totally disconnected space with no isolated points.

Any two such spaces are homeomorphic to each other.

The infinite product space $\{0,1\}^{\mathbb{N}}$ is a Cantor set.

Let $\varphi : \mathbb{Z} \curvearrowright X$ be an action on a Cantor set X by homeo. Assume that φ is minimal, i.e. $\{\varphi^n(x) \mid n \in \mathbb{Z}\}$ is dense in X for all $x \in X$.

 $[[\mathcal{G}_{\varphi}]] := \{ \gamma \in \operatorname{Homeo}(X) \mid \exists \mathsf{conti.} \ c : X \to \mathbb{Z}, \ \gamma(x) = \varphi^{c(x)}(x) \}$

is called the topological full group of φ .

TFG of minimal $\ensuremath{\mathbb{Z}}$ action

Let $\varphi, \psi : \mathbb{Z} \frown X$ be minimal \mathbb{Z} -actions.

Theorem (Giordano-Putnam-Skau 1999)

- $[[\mathcal{G}_{\varphi}]] \cong [[\mathcal{G}_{\psi}]]$ iff φ is conjugate to ψ or ψ^{-1} .
- There exists a surjective homo. $I : [[\mathcal{G}_{\varphi}]] \to \mathbb{Z}$ (index map).

Theorem (M 2006)

- $D([[\mathcal{G}_{\varphi}]])$ is simple.
- $[[\mathcal{G}_{\varphi}]]_{\mathrm{ab}} \cong \mathbb{Z} \oplus H_0(\mathbb{Z}, C(X, \mathbb{Z}_2)).$
- $D([[\mathcal{G}_{\varphi}]])$ is finitely generated iff φ is expansive.

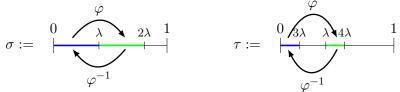
Theorem (Juschenko-Monod 2013) $[[\mathcal{G}_{\varphi}]]$ is amenable.

Example of minimal $\ensuremath{\mathbb{Z}}$ action

Let $0 < \lambda < 1$ be an irrational number and let X be the Cantor set obtained by cutting $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ at the points $n\lambda$, $n \in \mathbb{Z}$. Let $\varphi : X \to X$ be the translation by λ .

 $D([[\mathcal{G}_{\varphi}]])$ is simple, and $[[\mathcal{G}_{\varphi}]]_{ab} \cong \mathbb{Z} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

For simplicity, we assume $1/3 < \lambda < 1/2$.



Then, $[[\mathcal{G}_{\varphi}]]$ is generated by $\varphi,\sigma,\tau.$

 $[[\mathcal{G}_{\varphi}]]$ is amenable.

TFG of minimal \mathbb{Z}^N action

Let $\varphi : \mathbb{Z}^N \curvearrowright X$ be a free minimal action and consider \mathcal{G}_{φ} .

Theorem (M 2012, 2015)

- The index map $I : [[\mathcal{G}_{\varphi}]] \to H_1(\mathcal{G}_{\varphi})$ is surjective.
- There exists an exact sequence:

$$H_0(\mathcal{G}_{\varphi}) \otimes \mathbb{Z}_2 \longrightarrow [[\mathcal{G}_{\varphi}]]_{\mathrm{ab}} \xrightarrow{I} H_1(\mathcal{G}_{\varphi}) \longrightarrow 0$$

• $D([[\mathcal{G}_{\varphi}]])$ is simple.

Theorem (Elek-Monod 2013)

 $[[\mathcal{G}_{\varphi}]]$ is sometimes amenable and sometimes NOT.

Theorem (Nekrashevych 2019)

 $D([[\mathcal{G}_{\varphi}]])$ is finitely generated iff φ is expansive.

Orbit equivalence

 $\varphi:\Gamma \curvearrowright X \text{ and } \psi:\Lambda \curvearrowright Y \text{ are said to be orbit equivalent,}$ if \exists homeo. $h:X \to Y$ such that

$$h(arphi ext{-orbit of }x)=\psi ext{-orbit of }h(x)$$

holds for all $x \in X$.

Theorem (Giordano-M-Putnam-Skau 2010)
Let φ : Z^M ∩ X and ψ : Z^N ∩ Y be minimal actions on Cantor sets. T.F.A.E. **1** φ and ψ are orbit equivalent. **2** ∃ homeo. h : X → Y such that h_{*}({φ-inv. prob. measure}) = {ψ-inv. prob. measure}.

Remark

 $\mathcal{G}_{\varphi}\cong \mathcal{G}_{\psi}$ iff φ and ψ are orbit equivalent with continuous cocycles.

A groupoid G is a 'group-like' algebraic object, in which the product may not be defined for all pairs in G.

- $g \in \mathcal{G}$ is thought of as an arrow \xleftarrow{g} .
- $r: g \mapsto gg^{-1}$ is called the range map.
- $s: g \mapsto g^{-1}g$ is called the source map.
- $\mathcal{G}^{(0)} = r(\mathcal{G}) = s(\mathcal{G}) \subset \mathcal{G}$ is called the unit space.

A groupoid G is a 'group-like' algebraic object, in which the product may not be defined for all pairs in G.

- $g \in \mathcal{G}$ is thought of as an arrow \xleftarrow{g} .
- $r: g \mapsto gg^{-1}$ is called the range map.
- $s: g \mapsto g^{-1}g$ is called the source map.
- $\mathcal{G}^{(0)} = r(\mathcal{G}) = s(\mathcal{G}) \subset \mathcal{G}$ is called the unit space.

 \mathcal{G} is an étale groupoid if \mathcal{G} is equipped with a locally compact Hausdorff topology compatible with the groupoid structure and the range (or source) map is a local homeomorphism.

An arrow $\bullet \xleftarrow{g} \bullet$ is thought of as a germ at $s(g) = g^{-1}g$.

A groupoid G is a 'group-like' algebraic object, in which the product may not be defined for all pairs in G.

- $g \in \mathcal{G}$ is thought of as an arrow \xleftarrow{g} .
- $r: g \mapsto gg^{-1}$ is called the range map.
- $s: g \mapsto g^{-1}g$ is called the source map.
- $\mathcal{G}^{(0)} = r(\mathcal{G}) = s(\mathcal{G}) \subset \mathcal{G}$ is called the unit space.

 \mathcal{G} is an étale groupoid if \mathcal{G} is equipped with a locally compact Hausdorff topology compatible with the groupoid structure and the range (or source) map is a local homeomorphism.

An arrow $\bullet \xleftarrow{g} \bullet$ is thought of as a germ at $s(g) = g^{-1}g$.

 \mathcal{G} is said to be minimal if $r(s^{-1}(x))$ is dense in $\mathcal{G}^{(0)} \ \forall x \in \mathcal{G}^{(0)}$.

A groupoid G is a 'group-like' algebraic object, in which the product may not be defined for all pairs in G.

- $g \in \mathcal{G}$ is thought of as an arrow \xleftarrow{g} .
- $r: g \mapsto gg^{-1}$ is called the range map.
- $s: g \mapsto g^{-1}g$ is called the source map.
- $\mathcal{G}^{(0)} = r(\mathcal{G}) = s(\mathcal{G}) \subset \mathcal{G}$ is called the unit space.

 \mathcal{G} is an étale groupoid if \mathcal{G} is equipped with a locally compact Hausdorff topology compatible with the groupoid structure and the range (or source) map is a local homeomorphism.

An arrow $\bullet \xleftarrow{g} \bullet$ is thought of as a germ at $s(g) = g^{-1}g$.

 \mathcal{G} is said to be minimal if $r(s^{-1}(x))$ is dense in $\mathcal{G}^{(0)} \ \forall x \in \mathcal{G}^{(0)}$.

In what follows, we assume that $\mathcal{G}^{(0)}$ is a Cantor set.

Example of étale groupoid

Let $\varphi: \Gamma \curvearrowright X$ be an action of a discrete group Γ on a Cantor set. $\mathcal{G}_{\varphi} = \Gamma \times X$ with the product topology is an étale groupoid with

$$(\gamma', \varphi_{\gamma}(x)) \cdot (\gamma, x) = (\gamma'\gamma, x), \quad (\gamma, x)^{-1} = (\gamma^{-1}, \varphi_{\gamma}(x)).$$

 \mathcal{G}_{φ} is called the transformation groupoid. Thus, (γ, x) is $\varphi_{\gamma}(x) \bullet \longleftarrow \bullet x$ The unit space $\mathcal{G}_{\varphi}^{(0)} = \{1\} \times X$ is identified with X.

Topological full group

A compact open set $U \subset \mathcal{G}$ is called a bisection if both r|U and s|U are injective. The topological full group $[[\mathcal{G}]]$ is defined by

 $[[\mathcal{G}]] = \left\{ \gamma \in \operatorname{Homeo}(\mathcal{G}^{(0)}) \mid \exists \mathsf{bisection} \ U, \ \gamma = (r|U) \circ (s|U)^{-1} \right\}.$

Topological full group

A compact open set $U \subset \mathcal{G}$ is called a bisection if both r|U and s|U are injective. The topological full group $[[\mathcal{G}]]$ is defined by

 $[[\mathcal{G}]] = \left\{ \gamma \in \operatorname{Homeo}(\mathcal{G}^{(0)}) \mid \exists \mathsf{bisection} \ U, \ \gamma = (r|U) \circ (s|U)^{-1} \right\}.$

Equivalently, $\gamma \in [[\mathcal{G}]]$ if and only if

 $\forall x \in \mathcal{G}^{(0)} \ \exists g \in s^{-1}(x), \ \gamma \text{ equals } g \text{ as a germ at } x.$

Topological full group

A compact open set $U \subset \mathcal{G}$ is called a bisection if both r|U and s|U are injective. The topological full group $[[\mathcal{G}]]$ is defined by

 $[[\mathcal{G}]] = \left\{ \gamma \in \operatorname{Homeo}(\mathcal{G}^{(0)}) \mid \exists \mathsf{bisection} \ U, \ \gamma = (r|U) \circ (s|U)^{-1} \right\}.$

Equivalently, $\gamma \in [[\mathcal{G}]]$ if and only if

$$\forall x \in \mathcal{G}^{(0)} \ \exists g \in s^{-1}(x), \ \gamma \text{ equals } g \text{ as a germ at } x.$$

When $\varphi: \Gamma \curvearrowright X$ is a group action on a Cantor set X, $\mathcal{G}_{\varphi} = \Gamma \times X$ becomes an étale groupoid in a natural way. In this situation,

$$\gamma \in [[\mathcal{G}_{\varphi}]] \iff \exists \mathsf{conti.} \ \mathsf{map} \ c: X \to \Gamma, \ \gamma(x) = \varphi_{c(x)}(x).$$

Groupoid C^* -algebra

For an étale groupoid \mathcal{G} , the space $C_c(\mathcal{G}, \mathbb{C})$ of compactly supported continuous functions becomes a *-algebra by

$$(f_1 \cdot f_2)(g) = \sum_{h \in \mathcal{G}} f_1(gh) f_2(h^{-1}),$$

$$f^*(g) = \overline{f(g^{-1})}.$$

As a completion by a suitable norm, we get a (reduced) groupoid C^* -algebra $C^*_r(\mathcal{G})$.

 $C_r^*(\mathcal{G})$ contains the abelian subalgebra $C(\mathcal{G}^{(0)})$. It is maximal, and its unitary normalizers generate $C_r^*(\mathcal{G})$. Such a subalgebra $C(\mathcal{G}^{(0)})$ is called a Cartan subalgebra.

Isomorphism theorem

Theorem

For minimal groupoids G_1 and G_2 , the following are equivalent.

- **1** \mathcal{G}_1 is isomorphic to \mathcal{G}_2 as an étale groupoid.
- **2** $[[\mathcal{G}_1]]$ is isomorphic to $[[\mathcal{G}_2]]$ as a group.
- **3** $D([[\mathcal{G}_1]])$ is isomorphic to $D([[\mathcal{G}_2]])$ as a group.
- **4** There exists an isomorphism $\pi : C_r^*(\mathcal{G}_1) \to C_r^*(\mathcal{G}_2)$ such that $\pi(C(\mathcal{G}_1^{(0)})) = C(\mathcal{G}_2^{(0)}).$

Thus, $[[\mathcal{G}]]$ (or $D([[\mathcal{G}]])$) 'remembers' \mathcal{G} .

Homology group

 $H_n(\mathcal{G})$ are the homology groups of the chain complex

$$0 \longleftarrow C(\mathcal{G}^{(0)}, \mathbb{Z}) \stackrel{\delta_1}{\longleftarrow} C_c(\mathcal{G}^{(1)}, \mathbb{Z}) \stackrel{\delta_2}{\longleftarrow} C_c(\mathcal{G}^{(2)}, \mathbb{Z}) \stackrel{\delta_3}{\longleftarrow} \dots,$$

where $\mathcal{G}^{(n)}$ is the space of composable strings of n elements.

Homology group

 $H_n(\mathcal{G})$ are the homology groups of the chain complex

$$0 \longleftarrow C(\mathcal{G}^{(0)}, \mathbb{Z}) \stackrel{\delta_1}{\longleftarrow} C_c(\mathcal{G}^{(1)}, \mathbb{Z}) \stackrel{\delta_2}{\longleftarrow} C_c(\mathcal{G}^{(2)}, \mathbb{Z}) \stackrel{\delta_3}{\longleftarrow} \dots,$$

where $\mathcal{G}^{(n)}$ is the space of composable strings of n elements.

$$\delta_1(f)(x) = \sum_{s(g)=x} f(g) - \sum_{r(g)=x} f(g)$$

So,

$$H_0(\mathcal{G}) = C(\mathcal{G}^{(0)}, \mathbb{Z}) / \langle 1_{s(U)} - 1_{r(U)} | U \text{ is a bisection} \rangle.$$

Homology group

 $H_n(\mathcal{G})$ are the homology groups of the chain complex

$$0 \longleftarrow C(\mathcal{G}^{(0)}, \mathbb{Z}) \stackrel{\delta_1}{\longleftarrow} C_c(\mathcal{G}^{(1)}, \mathbb{Z}) \stackrel{\delta_2}{\longleftarrow} C_c(\mathcal{G}^{(2)}, \mathbb{Z}) \stackrel{\delta_3}{\longleftarrow} \dots,$$

where $\mathcal{G}^{(n)}$ is the space of composable strings of n elements.

$$\delta_1(f)(x) = \sum_{s(g)=x} f(g) - \sum_{r(g)=x} f(g)$$

So,

$$H_0(\mathcal{G}) = C(\mathcal{G}^{(0)}, \mathbb{Z}) / \langle 1_{s(U)} - 1_{r(U)} | U \text{ is a bisection} \rangle.$$

If U is a bisection such that $s(U) = r(U) = \mathcal{G}^{(0)}$, then $1_U \in \operatorname{Ker} \delta_1$. Hence, one can define the index map $I : [[\mathcal{G}]] \to H_1(\mathcal{G})$.

When $\mathcal{G} = \mathcal{G}_{\varphi}$, the homology groups $H_n(\mathcal{G}_{\varphi})$ are canonically isomorphic to the group homology $H_n(\Gamma, C(X, \mathbb{Z}))$.

Simplicity of commutator subgroup

Theorem (M 2012, 2015)

Let \mathcal{G} be a minimal étale groupoid which is either almost finite or purely infinite.

- 1 $D([[\mathcal{G}]])$ is simple.
- **2** The index map $I : [[\mathcal{G}]] \to H_1(\mathcal{G})$ is surjective.

Simplicity of commutator subgroup

Theorem (M 2012, 2015)

Let \mathcal{G} be a minimal étale groupoid which is either almost finite or purely infinite.

- 1 $D([[\mathcal{G}]])$ is simple.
- **2** The index map $I : [[\mathcal{G}]] \to H_1(\mathcal{G})$ is surjective.

The transformation groupoid \mathcal{G}_{φ} of $\varphi : \Gamma \curvearrowright X$ is almost finite when Γ is finitely generated and has polynomial growth. If \mathcal{G} is almost finite, there exists an invariant prob. measure.

Simplicity of commutator subgroup

Theorem (M 2012, 2015)

Let \mathcal{G} be a minimal étale groupoid which is either almost finite or purely infinite.

- 1 $D([[\mathcal{G}]])$ is simple.
- **2** The index map $I : [[\mathcal{G}]] \to H_1(\mathcal{G})$ is surjective.

The transformation groupoid \mathcal{G}_{φ} of $\varphi : \Gamma \curvearrowright X$ is almost finite when Γ is finitely generated and has polynomial growth. If \mathcal{G} is almost finite, there exists an invariant prob. measure.

 \mathcal{G} is said to be purely infinite, if every clopen subset $A \subset \mathcal{G}^{(0)}$ admits a paradoxical decomposition: \exists bisections $U, V \subset \mathcal{G}$ such that s(U) = s(V) = A and $r(U) \sqcup r(V) \subset A$.

One-sided shifts of finite type (1/2)

Let $(\mathcal{V},\mathcal{E})$ be an irreducible finite directed graph and let A be the adjacency matrix. Set

$$X = \{ (x_n)_n \in \mathcal{E}^{\mathbb{N}} \mid t(x_n) = i(x_{n+1}) \quad \forall n \in \mathbb{N} \},\$$

The one-sided shift σ on X is called a shift of finite type (SFT).

One-sided shifts of finite type (1/2)

Let $(\mathcal{V},\mathcal{E})$ be an irreducible finite directed graph and let A be the adjacency matrix. Set

$$X = \{ (x_n)_n \in \mathcal{E}^{\mathbb{N}} \mid t(x_n) = i(x_{n+1}) \quad \forall n \in \mathbb{N} \},\$$

The one-sided shift σ on X is called a shift of finite type (SFT).

When $\#\mathcal{V}=1$ and $\#\mathcal{E}=k$, it's called the full shift over k symbols.

One-sided shifts of finite type (1/2)

Let $(\mathcal{V},\mathcal{E})$ be an irreducible finite directed graph and let A be the adjacency matrix. Set

$$X = \{ (x_n)_n \in \mathcal{E}^{\mathbb{N}} \mid t(x_n) = i(x_{n+1}) \quad \forall n \in \mathbb{N} \},\$$

The one-sided shift σ on X is called a shift of finite type (SFT).

When $\#\mathcal{V}=1$ and $\#\mathcal{E}=k$, it's called the full shift over k symbols.

The SFT groupoid \mathcal{G}_A of (X, σ) (or of A) is

$$\mathcal{G}_A = \left\{ (x, k-l, y) \in X \times \mathbb{Z} \times X \mid \exists k, l \in \mathbb{N}, \ \sigma^k(x) = \sigma^l(y) \right\}$$

with the product $(x, m, y) \cdot (y, n, z) := (x, m+n, z)$. It is known $H_0(\mathcal{G}_A) \cong \operatorname{Coker}(\operatorname{id} - A^t)$, $H_1(\mathcal{G}_A) \cong \operatorname{Ker}(\operatorname{id} - A^t)$ and $H_n(\mathcal{G}_A) = 0$ for $n \ge 2$. (M 2012)

In 1965 R. Thompson gave the first example of a finitely presented infinite simple group. G. Higman and K. S. Brown later generalized it to infinite families $F_n \subset T_n \subset V_n$ for $n \in \mathbb{N} \setminus \{1\}$.

In 1965 R. Thompson gave the first example of a finitely presented infinite simple group. G. Higman and K. S. Brown later generalized it to infinite families $F_n \subset T_n \subset V_n$ for $n \in \mathbb{N} \setminus \{1\}$.

The group V_n consists of PL right continuous bijections $f:[0,1) \rightarrow [0,1)$ with finitely many singularities, all in $\mathbb{Z}[1/n]$, slopes lying in powers of n, and mapping $\mathbb{Z}[1/n] \cap [0,1)$ to itself. V_n is called the Higman-Thompson group.

In 1965 R. Thompson gave the first example of a finitely presented infinite simple group. G. Higman and K. S. Brown later generalized it to infinite families $F_n \subset T_n \subset V_n$ for $n \in \mathbb{N} \setminus \{1\}$.

The group V_n consists of PL right continuous bijections $f:[0,1) \rightarrow [0,1)$ with finitely many singularities, all in $\mathbb{Z}[1/n]$, slopes lying in powers of n, and mapping $\mathbb{Z}[1/n] \cap [0,1)$ to itself. V_n is called the Higman-Thompson group.

It is known that V_n is finitely presented, $D(V_n)$ is simple, and $(V_n)_{ab}$ is trivial when n is even and is \mathbb{Z}_2 when n is odd.

In 1965 R. Thompson gave the first example of a finitely presented infinite simple group. G. Higman and K. S. Brown later generalized it to infinite families $F_n \subset T_n \subset V_n$ for $n \in \mathbb{N} \setminus \{1\}$.

The group V_n consists of PL right continuous bijections $f:[0,1) \to [0,1)$ with finitely many singularities, all in $\mathbb{Z}[1/n]$, slopes lying in powers of n, and mapping $\mathbb{Z}[1/n] \cap [0,1)$ to itself. V_n is called the Higman-Thompson group.

It is known that V_n is finitely presented, $D(V_n)$ is simple, and $(V_n)_{ab}$ is trivial when n is even and is \mathbb{Z}_2 when n is odd.

 F_n is a subgroup of V_n consisting of continuous maps f. F_n is also finitely presented.

It is not yet known if F_n is amenable or not.

Nekrashevych's observation

Theorem (Nekrashevych 2004)

When (X, σ) is the full shift over n symbols, the topological full group $[[\mathcal{G}_n]]$ is isomorphic to V_n .

Let $\mathcal{V} = \{*\}$ and $\mathcal{E} = \{0, 1, \dots, n-1\}$. The continuous map $\rho : \mathcal{E}^{\mathbb{N}} \to [0, 1]$ defined by

$$\rho((x_k)_k) = \sum_{k=1}^{\infty} \frac{x_k}{n^k}$$

induces the isomorphism $[[\mathcal{G}_n]] \cong V_n$.

Nekrashevych's observation

Theorem (Nekrashevych 2004)

When (X, σ) is the full shift over n symbols, the topological full group $[[\mathcal{G}_n]]$ is isomorphic to V_n .

Let $\mathcal{V} = \{*\}$ and $\mathcal{E} = \{0, 1, \dots, n-1\}$. The continuous map $\rho : \mathcal{E}^{\mathbb{N}} \to [0, 1]$ defined by

$$\rho((x_k)_k) = \sum_{k=1}^{\infty} \frac{x_k}{n^k}$$

induces the isomorphism $[[\mathcal{G}_n]] \cong V_n$.

 $[[\mathcal{G}_A]]$ for general SFT groupoids \mathcal{G}_A may be thought of as a generalization of the Higman-Thompson group V_n .

One-sided shifts of finite type (2/2)

Let A be the adjacency matrix of an irreducible finite directed graph $(\mathcal{V}, \mathcal{E})$.

Theorem (Matsumoto-M 2014)

The triple $(\text{Coker}(\text{id} - A^t), [u_A], \det(\text{id} - A))$ is a complete invariant for the isomorphism class of \mathcal{G}_A within SFT groupoids.

Theorem (M 2015)

- $D([[\mathcal{G}_A]])$ is simple.
- $[[\mathcal{G}_A]]_{\mathrm{ab}} \cong H_1(\mathcal{G}_A) \oplus (H_0(\mathcal{G}_A) \otimes \mathbb{Z}_2).$
- $[[\mathcal{G}_A]]$ is of type F_{∞} (in particular, finitely presented).
- $[[\mathcal{G}_A]]$ has the Haagerup property.

Boundary action of the free group

Let $F_2 := \langle a, b \rangle$ be the free group and let $S := \{a, b, a^{-1}, b^{-1}\}$. The hyperbolic boundary of F_2 is

$$\partial F_2 := \left\{ (x_n)_n \in S^{\mathbb{N}} \mid \{x_n, x_{n+1}\} \neq \{a, a^{-1}\}, \ \{b, b^{-1}\} \quad \forall n \in \mathbb{N} \right\}.$$

Let $\varphi: F_2 \curvearrowright \partial F_2$ be the boundary action.

Boundary action of the free group

Let $F_2 := \langle a, b \rangle$ be the free group and let $S := \{a, b, a^{-1}, b^{-1}\}$. The hyperbolic boundary of F_2 is

$$\partial F_2 := \left\{ (x_n)_n \in S^{\mathbb{N}} \mid \{x_n, x_{n+1}\} \neq \{a, a^{-1}\}, \ \{b, b^{-1}\} \quad \forall n \in \mathbb{N} \right\}.$$

Let $\varphi: F_2 \curvearrowright \partial F_2$ be the boundary action.

Then, \mathcal{G}_{φ} is canonically isomorphic to the SFT groupoid \mathcal{G}_A with

$$A := \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

In particular, $H_0(\mathcal{G}_{\varphi}) \cong H_1(\mathcal{G}_{\varphi}) \cong \mathbb{Z}^2$ and $H_n(\mathcal{G}_{\varphi}) = 0$ for $n \ge 2$.

Cleary's group (1/2)

Let $\lambda > 0$ be an irrational number. Let $P = \{\lambda^n \mid n \in \mathbb{Z}\}$ and $A = \mathbb{Z}[\lambda, \lambda^{-1}]$.

Let $\lambda > 0$ be an irrational number. Let $P = \{\lambda^n \mid n \in \mathbb{Z}\}$ and $A = \mathbb{Z}[\lambda, \lambda^{-1}]$.

Consider the group V_{λ} consisting of right continuous bijections of [0,1) which are piecewise linear, with finitely many discontinuities and singularities, all in A, slopes in P, and mapping $A \cap [0,1)$ to itself.

Let $\lambda > 0$ be an irrational number. Let $P = \{\lambda^n \mid n \in \mathbb{Z}\}$ and $A = \mathbb{Z}[\lambda, \lambda^{-1}]$.

Consider the group V_{λ} consisting of right continuous bijections of [0,1) which are piecewise linear, with finitely many discontinuities and singularities, all in A, slopes in P, and mapping $A \cap [0,1)$ to itself.

Cleary (1995, 2000) showed that V_{λ} is of type F_{∞} when $\lambda > 0$ satisfies $\lambda^2 + n\lambda - 1 = 0$, $n \in \mathbb{N}$.

Let $\lambda > 0$ be an irrational number. Let $P = \{\lambda^n \mid n \in \mathbb{Z}\}$ and $A = \mathbb{Z}[\lambda, \lambda^{-1}]$.

Consider the group V_{λ} consisting of right continuous bijections of [0,1) which are piecewise linear, with finitely many discontinuities and singularities, all in A, slopes in P, and mapping $A \cap [0,1)$ to itself.

Cleary (1995, 2000) showed that V_{λ} is of type F_{∞} when $\lambda > 0$ satisfies $\lambda^2 + n\lambda - 1 = 0$, $n \in \mathbb{N}$.

There exists an étale groupoid \mathcal{G}_{λ} such that $[[\mathcal{G}_{\lambda}]] \cong V_{\lambda}$.

Let $\lambda > 0$ be an irrational number. Let $P = \{\lambda^n \mid n \in \mathbb{Z}\}$ and $A = \mathbb{Z}[\lambda, \lambda^{-1}]$.

Consider the group V_{λ} consisting of right continuous bijections of [0,1) which are piecewise linear, with finitely many discontinuities and singularities, all in A, slopes in P, and mapping $A \cap [0,1)$ to itself.

Cleary (1995, 2000) showed that V_{λ} is of type F_{∞} when $\lambda > 0$ satisfies $\lambda^2 + n\lambda - 1 = 0$, $n \in \mathbb{N}$.

There exists an étale groupoid \mathcal{G}_{λ} such that $[[\mathcal{G}_{\lambda}]] \cong V_{\lambda}$.

K-groups of $C_r^*(\mathcal{G}_{\lambda})$ were computed for many values of λ by Carey-Phillips-Putnam-Rennie (2011).

Theorem

1 When $\lambda > 0$ satisfies $\lambda^2 + n\lambda - 1 = 0$, $n \in \mathbb{N}$,

$$H_0(\mathcal{G}_{\lambda}) = \mathbb{Z}_n, \quad H_1(\mathcal{G}_{\lambda}) = \mathbb{Z}_2, \quad H_k(\mathcal{G}_{\lambda}) = 0 \text{ for } k \ge 2.$$

2 When $\lambda > 0$ satisfies $\lambda^2 - n\lambda + 1 = 0$, $n \in \mathbb{N} \setminus \{1, 2\}$,

$$egin{aligned} H_0(\mathcal{G}_\lambda) &= \mathbb{Z}_{n-2}, \quad H_1(\mathcal{G}_\lambda) = \mathbb{Z}, \quad H_2(\mathcal{G}_\lambda) = \mathbb{Z}, \ &H_k(\mathcal{G}_\lambda) = 0 \ \textit{for } k \geq 3. \end{aligned}$$

In both cases, we have

$$\bigoplus_{n} H_{2n+i}(\mathcal{G}_{\lambda}) \cong K_i(C_r^*(\mathcal{G}_{\lambda})) \quad i = 0, 1$$

and

$$[[\mathcal{G}_{\lambda}]]_{\mathrm{ab}} \cong (H_0(\mathcal{G}_{\lambda}) \otimes \mathbb{Z}_2) \oplus H_1(\mathcal{G}_{\lambda}).$$

Simple periodic group (1/2)

Let $\tau \in \operatorname{Homeo}(X)$ be an involution, i.e. $\tau^2 = \operatorname{id}$. A finite subgroup $A \subset \operatorname{Homeo}(X)$ is called a fragmentation of τ if the following hold:

- $\forall x \in X$, $\forall h \in A$, one has h(x) = x or $h(x) = \tau(x)$,
- $\forall x \in X$, $\exists h \in A$ such that $h(x) = \tau(x)$.

Simple periodic group (1/2)

Let $\tau \in \operatorname{Homeo}(X)$ be an involution, i.e. $\tau^2 = \operatorname{id}$. A finite subgroup $A \subset \operatorname{Homeo}(X)$ is called a fragmentation of τ if the following hold:

- $\forall x \in X$, $\forall h \in A$, one has h(x) = x or $h(x) = \tau(x)$,
- $\forall x \in X$, $\exists h \in A$ such that $h(x) = \tau(x)$.

Let $\lambda := (\sqrt{5} - 1)/2$ and consider the Cantor set Xobtained by cutting $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ at the points $n\lambda$, $n \in \mathbb{Z}$. Define involutions $\tau, \sigma \in \text{Homeo}(X)$ by

$$\tau(x) := \lambda - x, \quad \sigma(x) := 1 - x.$$

Simple periodic group (1/2)

Let $\tau \in \operatorname{Homeo}(X)$ be an involution, i.e. $\tau^2 = \operatorname{id}$. A finite subgroup $A \subset \operatorname{Homeo}(X)$ is called a fragmentation of τ if the following hold:

- $\forall x \in X$, $\forall h \in A$, one has h(x) = x or $h(x) = \tau(x)$,
- $\forall x \in X$, $\exists h \in A$ such that $h(x) = \tau(x)$.

Let $\lambda := (\sqrt{5} - 1)/2$ and consider the Cantor set Xobtained by cutting $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ at the points $n\lambda$, $n \in \mathbb{Z}$. Define involutions $\tau, \sigma \in \text{Homeo}(X)$ by

$$\tau(x) := \lambda - x, \quad \sigma(x) := 1 - x.$$

Then, $\tau \circ \sigma$ is the translation by λ , which induces a minimal \mathbb{Z} -action on X.

Simple periodic group (2/2)

Theorem (Nekrashevych 2018)

There exist fragmentations A and B of τ and σ , respectively, such that $F := \langle A \cup B \rangle$ satisfies the following.

- There exists a non-Hausdorff étale groupoid \mathcal{G} on X such that $F = [[\mathcal{G}]].$
- F is periodic and has subexponential growth.
- D(F) is simple and $F_{ab} \cong (\mathbb{Z}_2)^9$.

Simple periodic group (2/2)

Theorem (Nekrashevych 2018)

There exist fragmentations A and B of τ and σ , respectively, such that $F := \langle A \cup B \rangle$ satisfies the following.

- There exists a non-Hausdorff étale groupoid \mathcal{G} on X such that $F = [[\mathcal{G}]].$
- F is periodic and has subexponential growth.
- D(F) is simple and $F_{ab} \cong (\mathbb{Z}_2)^9$.

The involution σ has one fixed point x_0 corresponding to $1/2 \in [0, 1]$. The fragmentation B above has the following property: for every $h \in B$, the closure of the interior of Fix(h) contains x_0 .

The fragmentation A of τ also has the same property.

HK conjecture

In many cases, we have

$$\bigoplus_{n} H_{2n+i}(\mathcal{G}) \cong K_i(C_r^*(\mathcal{G})) \quad i = 0, 1.$$

Does this always hold true?

HK conjecture

In many cases, we have

$$\bigoplus_{n} H_{2n+i}(\mathcal{G}) \cong K_i(C_r^*(\mathcal{G})) \quad i = 0, 1.$$

Does this always hold true?

Scarparo (arXiv:2018) found a counterexample.

But...

HK conjecture

In many cases, we have

$$\bigoplus_{n} H_{2n+i}(\mathcal{G}) \cong K_i(C_r^*(\mathcal{G})) \quad i = 0, 1.$$

Does this always hold true?

Scarparo (arXiv:2018) found a counterexample.

But...

Theorem (Proietti-Yamashita, arXiv:2020) Let G be an étale groupoid with torsion-free stabilizers satisfying the strong Baum-Connes conjecture. Then there exists a convergent spectral sequence

$$E_{p,q}^2 = H_p(\mathcal{G}, K_q(\mathbb{C})) \implies K_{p+q}(C_r^*(\mathcal{G})).$$