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Etale groupoid

A groupoid G is a ‘group-like’ algebraic object, in which the
product may not be defined for all pairs in G.
e g € G is thought of as an arrow e ..
o 7r:g+rgg!
e 5:g+ g 'gis called the source map.
o GO = r(G) = s(G) C G is called the unit space.

is called the range map.

G is an étale groupoid if G is equipped with a locally compact
Hausdorff topology compatible with the groupoid structure and
the range (or source) map is a local homeomorphism.

An arrow e <2 e is thought of as a germ at s(g) =g 'g.



Example of étale groupoid

Let o : ' ~ X be an action of a discrete group I on a locally
compact Hausdorff space X.
G, =TI x X is an étale groupoid with

(Y, oy(@) - (v,2) = (Y7.2),  (v.2)"" = (v oy(2)).

gw is called the transformation groupoid.
Thus, (v,z)is  Py(@)e ———ox

The unit space gé,‘” = {1} x X is identified with X.

The groupoid C*-algebra C}5(G,) is canonically isomorphic to
the crossed product Cp(X) X, I

When X is totally disconnected, the homology groups H,,(G,) are
canonically isomorphic to the group homology H, (T, C.(X,Z)).
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Groupoid C*-algebra

For an étale groupoid G, the space C.(G,C) of compactly
supported continuous functions becomes a x-algebra by

(f1- f2)(9) = filgh) (1),

heg

f(9) = Flg™).
As a completion by a suitable norm,
we get a (reduced) groupoid C*-algebra C(G).

C*(G) contains the abelian subalgebra Cy(G(?)).
It is maximal, and its unitary normalizers generate C;(G).
Such a subalgebra C(G(?)) is called a Cartan subalgebra.
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Homology group

Suppose that G is totally disconnected.
H,,(G) are the homology groups of the chain complex

04— C(60,7) & €. (6W,Z) &2 (6D, 7) L,
where G(™) is the space of composable strings of n elements:
G" = {(g1,92:---,90) € G" | s(9i) = r(gir1) Vi}.
We denote by C(G) the chain complex above.

For a transformation groupoid G, arising from ¢ : I' ~ X,
we have H,(G,) = H,(I',Cc(X, Z)).
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Putnam’s Thm for factor groupoid (1/2)

Let G and H be étale groupoids, and let ig,i1 : H — G be
two continuous injective homomorphisms with disjoint images.
We assume:

o ij(H®) c GO is G-invariant and G|i;(H(?) = i;(H).
e For any f € Cy(G,R), the function ¢(f) : H — R defined by

Uf)g) = flio(g)) — flir(9) geH

belongs to Cy(H,R).

e G':=G/(io(g) ~ i1(g9) | g € H) is a locally compact and
Hausdorff groupoid.

e The quotient map 7w : G — G’ is proper.

One can prove that G’ is an étale groupoid.
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Putnam’s Thm for factor groupoid (2/2)

Theorem (Putnam 1998)

There exists a six-term exact sequence:

Ki(Ci(H)) —— Ko(CA(@)) 2 Ko(C(G))

[ l

Ki(CH©)) <L k(€@ —— Ko(CE(H)),

where ©* : C(G") — CX(G) is the inclusion map.

The vertical arrows are induced by an element in
KK(C!G),Cr(H)). (Hint: CX(G) acts on the Hilbert module
Cr(H) @ Cf(H) by left multiplication. )



Homology group version (1/2)

Assume that H, G, G’ are totally disconnected.

Theorem (M)

There exists a long exact sequence of homology groups

EE— anl(g/) M) anl(g) *—L°—> anl(/H)

The theorem above is a direct consequence of the following exact
sequence of chain complexes:

0 —— C(G) —=— C(G) —“— C(H) —— 0.
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Homology group version (2/2)

*

0 —— C(Gg") —— C(G) SN C(H) —— 0

We assumed 7 : G — G’ is proper, and so (™ : g — g/(") s
also proper. It follows that

(7)1 C(G'™,Z) = Ce(6™, Z)
is well-defined, and we get the chain map 7*.

The homomorphisms i; : H =G (j =0,1) naturally induce
i§n) : H™ — G We can prove that

L)) = G ©) — £ (€) Ve e MM,

gives rise to a well-defined homomorphism
[ C(6™, Z) — C(H™, 7).

Clearly * = (:{™),, is a chain map.
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Putnam’s Thm for subgroupoid (1/2)

Let G be an étale groupoid and let G’ C G be an open subgroupoid
with G/(© = G(O) Assume that a closed subset L C G satisfies the
following.

e G is the disjoint union of G’, L and L1
e r(L) and s(L) are disjoint.
e IG'CcLand G'L C L.

Define a groupoid H by
M= G|(r(L)Us(L)) = (Glr(L) U (Gls(L) ULU L™

With a suitable new topology, H becomes an étale groupoid.
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Putnam’s Thm for subgroupoid (2/2)

Theorem (Putnam 1998)

There exists a six-term exact sequence:

Ko(Cr(H)) —— Ko(CH(G") 222 Ko(Cr(G))

I |

Ki(CHG)) £ Ky (Cx(G) +—— Ki(CE(H)),

where o : C(G') — C*(G) is the inclusion map.

The vertical arrows are induced by an element in
KKYC#(G),Ct(H)). (Hint: C¥(G) acts on the Hilbert module
C}(H) by left multiplication, and there exists a suitable
self-adjoint unitary z € L(C}(H)). )
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Homology group version (1/2)

Assume that H, G, G’ are totally disconnected.

Theorem (M)

There exists a long exact sequence of homology groups

. —— H,(H) —— H,(G) —— Hu(9)

—_— anl('H) E— anl(g/) e anl(g)

In order to prove the theorem above, we set
H:=HNG =H\(LUL) = (GIr(L)) U (Gls(L)),

which is an open subgroupoid of

H = G|(r(L) Us(L)) = (G|r(L)) U (G|s(L)) U LU L.
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Homology group version (2/2)

As sets,
G\ G™ ={(g1,....9.) €G™ | Ik, gy e LUL™Y}
={(g1,---90) €HM |3k, g€ LUL™Y} = HO \ 1™

Lemma
G\ G'™ is homeomorphic to H™ \ H'™ . In particular,

Co(G™,7)/C(G'™, Z) = C.(H™,Z)/Co(H' ™, 7).

0 —— C(g) —— C(G) —— C(9)/C(Gg) —— 0

H

0 —— C(H) —— C(H) —— C(H)/C(H) —— 0

Since H' is similar to H @& H, we get the conclusion.
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Example | (factor groupoid)

Let X be a Cantor set and let ¢ : I' ~ X be a free action.
Suppose that two points xg,x1 € X satisfy

vlin;o dist (i (w0), (1)) = 0.

Let H =T x I' be the groupoid of the left translation I' ~ I'.

One has C*(H) = K(2(T)).
Define two homomorphisms i; : H — G, (j =0,1) by

i(7,7) = (1, 0y (25)).
Then G' := G, /(i0(9) ~i1(g) | g € H) is an étale groupoid.
By the theorem, we get

Hn(gtp) = Hn(g/) n =1, Ho(g<p) = Ho(g,) b Z.

16
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Example Il (factor groupoid) (1/3)

1,2,...,m—1 2.3,
. Q
Consider the above graph whose adjacency matrix is

m—1 1
A= [ 1 m—l] '

Let X be the one-sided infinite path space.
G = {((zr)ken, (Yr)ken) € X X X | zp = yi, eventually}
becomes an AF groupoid. We have H,,(G) =0 for n > 1 and
1 .72 2
Hy(G) =lim (A : Z° — Z7).
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Example Il (factor groupoid) (2/3)
1,2,...,m—1 2,3,
el
Define Y)Y’ C X by

Y = {(ap)r € X | xx € {2,3,m—1} eventually},

Y= {(zp)r € X | ax € {2,3, (m—1)"} eventually} .

There exist an AF groupoid H with Ho(H) = Z[1/(m—2)] and
injective homomorphisms ig : H — G|Y and iy : H — G|Y'. Then

G' =G/ (io(g) ~i1(g) | g € H)

becomes an AF groupoid such that Hy(G') = Z[1/m].
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Example Il (factor groupoid) (3/3)

1,2,...,m—1 2.3,

The long exact sequence

D Ho(¢) 9 g6 — Hy(H) ——
implies
0 —— Z[1] —— Hy(G) z[:5]

is exact.
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Example 11l (factor groupoid) (1/3)

Modifying the previous example, we consider the graph:

B+1 B+1

' Q

B+1
I F)’ +1I|
As before, let X be the one-sided infinite path space.

whose adjacency matrix is A =

G = {((@r)r, L, (yr)r) € X X Z X X | x4y = yp eventually}

becomes an étale groupoid, called SFT groupoid.
Its homology groups are

Hy(G) = Coker(id —A), H1(G) 2 Ker(id—A), H,(G) =0 (n > 2).
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Example 1l (factor groupoid) (2/3)
B+1 B+1
As before, we define Y, Y’ C X by

Y := {(zx)r € X | % is in B eventually},

Y/ .— {(zp)r € X | x is in I3 eventually},

We can introduce injective homomorphisms iy : H — G|Y and
i1 : H — G|Y’, and define

G :=G/(io(g) ~i1(g) | g € H)

which is the SFT groupoid of the graph corresponding to B + 21.
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Example 11l (factor groupoid) (3/3)

The long exact sequence gives us

~ 3

I} ~ Ker(B — 1)

0—>Ker(B—|—I)—>Ker[ B

— Coker(B + I) — Coker ﬁ} é] — Coker(B —I) — 0.
2 1 3
For example, when B = |1 2 1], we have
4 4 3

0 —— Z —— 7?2 — 7

— S 7Pl —— 72Dl —— DTy — 0.
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Example IV (subgroupoid) (1/2)

Let ¢ : Z ~ X be a minimal action on a Cantor set X and
let G, = Z x X be the transformation groupoid.

Let Y C X be a closed subset such that Y N¢"(Y) = ()
for all n € N. Define

L:={(m,¢"(y)) €Gy |y €Y, n <0< m+n},

and set G/ := G, \ (LU L_l), which is an open subgroupoid of G.

It is known that G’ is an AF groupoid.

Then,
H = G|(r(L)Us(L))

is isomorphic to Y X Z x 7Z, because Y N " (Y) = 0.
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Example IV (subgroupoid) (2/2)

In this setting, the long exact sequence
. —— Hi(H) —— H1(¢") —— Hi(Gy)
—— Ho(H) —— Ho(¢') —— Ho(G,) —— 0
becomes
L — 0 _— 0 — Z

—— C(Y,Z) —— Hy(G') —— Hy(G,) — 0.
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Example V (subgroupoid) (1/2)
Let X := {a,b} x {1,2,...,m}" and consider the AF groupoid
G = {((x1)r, (Yp)r) € X x X | xp = yy, eventually}.
We have Hy(G) = Z[1/m).
1,2,...,m—1 2.3,.

el

Let G’ be the AF groupoid associated with the graph above,

which was discussed in Example II.

By ‘“forgetting the prime symbol”, we can obtain a homomorphism
from G’ to G and identify G’ as an open subgroupoid of G.

25 /28



Example V (subgroupoid) (2/2)

In this setting, the long exact sequence

. —— H,(H) —— Hp(G¢') —— Hp(G) —— ...

implies

0 Z[l] Ho(G) —— Z[L] —— 0

is exact.
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Example VI (subgroupoid) (1/2)
In the same way as in the factor groupoid example, one can
generalize the graph of Example V to the graph

B+1 B+1
. Q
and consider the SFT groupoids instead of AF groupoids

Thus,

G "=" SFT groupoid of B + 21

G SFT groupoid of [B +! I }

I B+1
H “=" SFT groupoid of B.
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Example VI (subgroupoid) (2/2)

The long exact sequence gives us

~ 3

I} ~ Ker(B + 1)

0—>Ker(B—I)—>Ker[ B

— Coker(B — I) — Coker ﬁ} é] — Coker(B + 1) — 0.
2 1 3
For example, when B = |1 2 1], we have
4 4 3

0 —— Z —— 7?2 — 7

— S 72Dl —— 72Dl —— DTy — 0.
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