Cantor minimal \mathbb{Z}^d -systems and C^* -algebras

Hiroki Matui Graduate School of Science and Technology Chiba University Japan We consider minimal dynamical systems on Cantor sets. Let

 $X = \{0, 1\}^{\mathbb{N}}$

be a Cantor set and let

 $\varphi: \mathbb{Z}^d \to \mathsf{Homeo}(X)$

be an action of \mathbb{Z}^d on X by homeomorphisms.

 φ is said to be free, if $\varphi^n(x) \neq x$ for any $n \in \mathbb{Z}^d \setminus \{0\}$ and $x \in X$. φ is said to be minimal, if every φ -orbit is dense in X.

When φ is free and minimal, we call (X, φ) a Cantor minimal \mathbb{Z}^d -system.

Let $C^*(X, \varphi)$ denote the crossed product C^* algebra arising from (X, φ) . $C^*(X, \varphi)$ is a unital simple stably finite C^* algebra.

Crossed product C^* -algebras

Theorem 1 (Putnam 1990). When d = 1, $C^*(X, \varphi)$ is a unital simple AT algebra with real rank zero.

Problem 2. Let $d \ge 2$. Does $C^*(X, \varphi)$ have tracial rank zero ?

The following result provides circumstantial evidence for an affirmative answer to the problem above.

Theorem 3 (N. C. Phillips 2005). For any $d \ge 1$, $C^*(X, \varphi)$ has the following properties.

- (1) Real rank zero.
- (2) Stable rank one.
- (3) The order on the K_0 -group is determined by traces.

Moreover, these properties also hold for the C^* -algebras arising from tiling spaces.

The proof of the theorem above uses Forrest's construction of a 'large' AF subalgebra of $C^*(X, \varphi)$. Another evidence for tracial rank zero is the AF embeddability.

Theorem 4 (M 2002). Let X be a compact metrizable space and let $\varphi : \mathbb{Z}^2 \to \text{Homeo}(X)$ be a free minimal action. If there exists $n \in \mathbb{Z}^2 \setminus \{0\}$ satisfying

 $\forall \varphi^n$ -invariant open subset $U \neq \emptyset$

 $\exists \varphi^n$ -invariant open subset $V \neq \emptyset$

s.t. $\overline{V} \subset U$,

then $C^*(X, \varphi)$ is AF embeddable.

For example, we can apply this theorem to any almost one-to-one extension of a product system of two minimal \mathbb{Z} -systems.

Problem 5. Let $d \ge 2$ and let φ be a free minimal action of \mathbb{Z}^d on a compact metrizable space X. Is the crossed product $C^*(X, \varphi)$ always AF embeddable ?

Recently, H. Lin proved the following theorem.

Theorem 6 (H. Lin). Let X be a compact metrizable space and let $\varphi : \mathbb{Z}^2 \to \text{Homeo}(X)$ be an action which is not necessarily minimal. If there exists a φ -invariant probability measure whose support is X, then $C^*(X, \varphi)$ is quasi-diagonal.

We note that if φ is minimal, then every φ -invariant measure has full support.

Problem 7. Is it possible to extend the result above to the case of \mathbb{Z}^d -actions ?

Problem 8. Let d = 2. What is the necessary and sufficient condition so that $C^*(X, \varphi)$ is quasi-diagonal ?

Examples from tiling spaces

Let \mathcal{P} be a finite collection of non-empty polyhedra in \mathbb{R}^d . We call each element of \mathcal{P} a prototile. For $p \in \mathcal{P}$ and $t \in \mathbb{R}^d$, p + t is called a tile.

A collection T of tiles is called a tiling, if the elements of T cover \mathbb{R}^d with pairwise disjoint interiors.

We equip the set of tilings with a topology as follows:

Two tilings T and T' are close, if there exist a small $\varepsilon \in \mathbb{R}^d$ and a large R > 0 such that $T + \varepsilon$ and T' agree on B(0, R).

We obtain a topological space consisting of tilings and an action of \mathbb{R}^d on it by translation.

Let T_0 be an aperiodic and repetitive tiling which satisfies the finite pattern condition. Let Ω be the orbit closure of T_0 , namely

 $\Omega = \overline{\{T_0 + t \mid t \in \mathbb{R}^d\}}.$

Then, it is known that Ω is compact and metrizable.

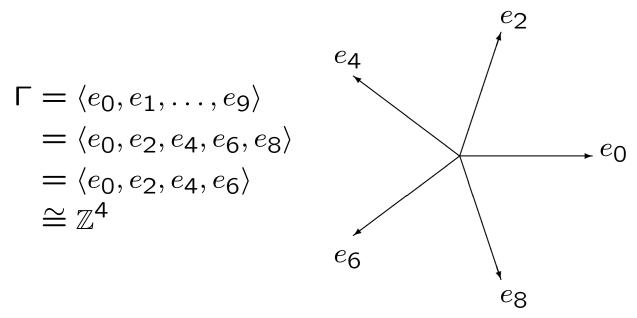
In addition, the natural \mathbb{R}^d action φ on Ω is free and minimal.

Theorem 9 (Sadun-Williams 2003, etc). For any (Ω, φ) as above, there exists a Cantor minimal \mathbb{Z}^d -system (Y, ψ) such that $C^*(Y, \psi)$ is strong Morita equivalent to $C(\Omega) \times_{\varphi} \mathbb{R}^d$.

We would like to describe (Y, ψ) of the theorem above for the tiling space (Ω, φ) arising from the Penrose tiling.

For $n = 0, 1, \dots, 9$, we put $e_n = \left(\cos\frac{2\pi n}{10}, \sin\frac{2\pi n}{10}\right) \in \mathbb{R}^2.$

Let Γ be the \mathbb{Z} -span of e_0, e_1, \ldots, e_9 .

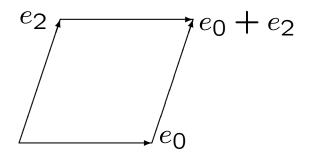


Let $\mathbb{R}e_n$ denote the line which is parallel to e_n and passes through the origin. Then

$$\mathcal{C} = \{\gamma + \mathbb{R}e_n \mid \gamma \in \Gamma, n = 0, 1, \dots, 9\}$$

is a countable family of lines in \mathbb{R}^2 . By 'cutting' the plane along the lines ℓ in \mathcal{C} , we obtain a totally disconnected (non-compact) space X. Γ acts on X naturally by translation.

Let $\Gamma_0 \subset \Gamma$ be a subgroup generated by e_0, e_2 and let Y be the quotient space of X by the action of Γ_0 . We can identify Y with the parallelogram spanned by e_0, e_2 .



Clearly Y is a (compact) Cantor set and the translations by e_4 and e_6 induce a minimal \mathbb{Z}^2 action ψ on Y.

Then (Y, ψ) is 'equivalent' to the Penrose tiling space.

It is easy to see

 $e_4 = -e_0 + \lambda e_2$

and

 $e_4 + e_6 = -(1 + \lambda)e_0,$

where $\lambda = (\sqrt{5} - 1)/2$.

Let R_{λ} be the irrational rotation on $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ defined by $x \mapsto x + \lambda$.

It follows that there exists a factor map from (Y, ψ) to the product of two copies of $(\mathbb{T}, R_{\lambda})$. In addition, this factor map is almost one-to-one.

Consequently, by the AF embedding theorem, we can conclude that $C^*(Y, \psi)$ is AF embeddable.

K-theory of $C^*(X,\varphi)$

Next, we would like to consider K-groups of $C^*(X, \varphi)$ for a Cantor minimal \mathbb{Z}^d -system and relate it to a group cohomology.

Let Ω be the suspension space of (X, φ) , that is, Ω is the quotient space of $X \times \mathbb{R}^d$ by the equivalence relation

 $\{((x,t), (\varphi^n(x), t+n)) \mid x \in X, t \in \mathbb{R}^d, n \in \mathbb{Z}^d\}.$ There exists a natural \mathbb{R}^d action on Ω induced by the translation $(x,t) \mapsto (x,t+s)$ in $X \times \mathbb{R}^d$. We denote this action by $\tilde{\varphi}$.

We have

$$K_*(C^*(X,\varphi)) \cong K_*(C(\Omega) \times_{\widetilde{\varphi}} \mathbb{R}^d) (\because \text{ strong Morita equiv.}) \cong K_*(C(\Omega)) (\because \text{ Thom Isomorphism}) \cong K^*(\Omega)$$

 $C(X,\mathbb{Z})$ is a \mathbb{Z}^d -module in an obvious way. Let $H^*(X,\varphi)$ be the group cohomology of \mathbb{Z}^d with coefficients $C(X,\mathbb{Z})$.

By definition,

 $H^*(X,\varphi) \cong H^*(\Omega;\mathbb{Z}),$

where the right hand side denotes the Čech cohomology of Ω with coefficients in \mathbb{Z} .

Consequently, we have

 $\bigoplus_{n-d\in 2\mathbb{Z}} H^n(X,\varphi)\otimes \mathbb{Q}\cong K_0(C^*(X,\varphi))\otimes \mathbb{Q}$

 $\bigoplus_{n-d\notin 2\mathbb{Z}} H^n(X,\varphi) \otimes \mathbb{Q} \cong K_1(C^*(X,\varphi)) \otimes \mathbb{Q}$

by the topological Chern character.

Conjecture 10. For any $d \ge 1$, we have $\bigoplus_{n-d \in 2\mathbb{Z}} H^n(X,\varphi) \cong K_0(C^*(X,\varphi))$

and

$$\bigoplus_{n-d\notin 2\mathbb{Z}} H^n(X,\varphi) \cong K_1(C^*(X,\varphi)).$$

If cohomology groups were torsion free, then this conjecture would easily follow. But, in general, cohomology groups and *K*-groups may contain torsion.

When d = 1, 2, we can check that this conjecture holds by direct computation.

Anderson-Putnam (1998) observed that tiling spaces can be viewed as inverse limits and computed the cohomology of several tiling spaces. For example, the cohomology groups of Penrose tilings are $H^0 = \mathbb{Z}$, $H^1 = \mathbb{Z}^5$ and $H^2 = \mathbb{Z}^8$.

Since φ is minimal, $H^0(X, \varphi)$ is always isomorphic to \mathbb{Z} .

The top-dimensional cohomology $H^d(X, \varphi)$ is isomorphic to

 $C(X,\mathbb{Z})/\langle f-f\circ\varphi^n\mid f\in C(X,\mathbb{Z}), n\in\mathbb{Z}^d\rangle,$ which is called the coinvariants. The following problem corresponds to the topdimensional part of the conjecture above.

Problem 11. Let $j : C(X) \to C^*(X,\varphi)$ be the canonical inclusion and let $j_* : C(X,\mathbb{Z}) \to K_0(C^*(X,\varphi))$ be the induced homomorphism on *K*-groups. Is the kernel of j_* equal to

 $\langle f - f \circ \varphi^n \mid f \in C(X, \mathbb{Z}), n \in \mathbb{Z}^d \rangle$?

As for the values of projections by traces, it is known that the Gap Labeling Conjecture holds (Bellissard-Benedetti-Gambaudo (2006), Benameur-Oyono-Oyono (2001), Kaminker-Putnam (2003)).

Theorem 12. Let (X, φ) be a Cantor minimal \mathbb{Z}^d -system. Let μ be a φ -invariant probability measure on X and let τ_{μ} be the trace induced by μ . Then one has

 $\tau_{\mu}(K_0(C(X))) = \tau_{\mu}(K_0(C^*(X,\varphi))).$

F. Gähler (2004) found 5-torsion in the topdimensional cohomology of the Tübingen Triangle Tiling.

We would like to construct torsion in coinvariants in a much easier way.

Let G be a finite abelian group and let (X_i, φ_i) be Cantor minimal \mathbb{Z} -systems for i = 1, 2. Let $\xi_i : X_i \to G$ be a continuous map such that the transformation

 $(x,g) \mapsto (\varphi_i(x), g + \xi_i(x))$

is a minimal homeomorphism on $X_i \times G$ for each i = 1, 2.

We define a Cantor minimal \mathbb{Z}^2 -system (Y, ψ) as follows:

 $Y = X_1 \times X_2 \times G$

 $\psi_1(x_1, x_2, g) = (\varphi_1(x_1), x_2, g + \xi_1(x_1))$

 $\psi_2(x_1, x_2, g) = (x_1, \varphi_2(x_2), g + \xi_2(x_2)).$

It is easy to see that ψ_1 and ψ_2 are commuting.

Theorem 13 (M). The torsion part of the top-dimensional cohomology $H^2(Y, \psi)$ is isomorphic to the wedge product $G \wedge G$.

For example, if $G = \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}$, then $G \wedge G$ is isomorphic to $\mathbb{Z}/n\mathbb{Z}$.

 $C^*(Y,\psi)$ is isomorphic to the crossed product of $C^*(X_1,\varphi_1) \otimes C^*(X_2,\varphi_2)$ by an action of \widehat{G} . By the result of Putnam, $C^*(X_i,\varphi_i)$ has tracial rank zero.

Corollary 14. There exists a Cantor minimal \mathbb{Z}^2 -system (Y, ψ) such that $C^*(Y, \psi)$ is not an *AT* algebra but does have tracial rank zero. *Proof.* Let *G* be a finite non-cyclic abelian group. Choose (X_i, φ_i) and ξ_i so that (X_i, φ_i) and (Y, ψ) are uniquely ergodic. Then, we can verify that the action of \hat{G} on $C^*(X_1, \varphi_1) \otimes C^*(X_2, \varphi_2)$ has the tracial Rohlin property. It follows from Phillips's theorem that $C^*(Y, \psi)$ has tracial rank zero. From the theorem above, $C^*(Y, \psi)$ is not an AT algebra. Let (X, φ) be a Cantor minimal \mathbb{Z}^d -system and let

 $R_{\varphi} = \{ (x, \varphi^n(x)) \mid x \in X, n \in \mathbb{Z}^d \}$

be the associated equivalence relation on X. Let (Y, ψ) be another Cantor minimal $\mathbb{Z}^{d'}$ -system. We say that (X, φ) and (Y, ψ) are orbit equivalent, if there exists a homeomorphism $h : X \to$ Y such that $h \times h(R_{\varphi}) = R_{\psi}$.

Let M_{φ} denote the set of all φ -invariant probability measures on X.

Conjecture 15. The following are equivalent. (1) There exists a homeomorphism $h : X \to Y$ such that $h_*(M_{\varphi}) = M_{\psi}$.

(2) (X, φ) and (Y, ψ) are orbit equivalent.

Theorem 16 (Giordano-Putnam-Skau 1995). When d = d' = 1, the conjecture above is true. **Theorem 17** (Giordano-Matui-Putnam-Skau). When $1 \le d, d' \le 2$, the conjecture above is true.

Corollary 18. Let (X, φ) and (Y, ψ) be Cantor minimal \mathbb{Z} or \mathbb{Z}^2 systems. Suppose that $M_{\varphi} = \{\mu\}$ and $M_{\psi} = \{\nu\}$. Then the two systems are orbit equivalent if and only if

 $\{\mu(U) \mid U \text{ is clopen in } X\}$ = $\{\nu(V) \mid V \text{ is clopen in } Y\}.$

Our strategy for proving the conjecture is the following.

- (1) Classify minimal AF relations up to orbit equivalence. (This step was already done by Giordano-Putnam-Skau (1995).)
- (2) Find a 'large' AF subrelation R in R_{φ} .
- (3) Apply the absorption theorem *d*-times and conclude that R_{φ} is orbit equivalent to the AF relation *R*.

We would like to describe the second step for the case of d = 2. Let (X, φ) be a Cantor minimal \mathbb{Z}^2 -system.

For a clopen set $U \subset X$ and $x \in X$, we put

 $P = \{ n \in \mathbb{Z}^2 \mid \varphi^n(x) \in U \}.$

P is called 'hitting time'. As a subset of \mathbb{R}^2 , *P* has the following properties:

P is separated, i.e. there exists $M_0 > 0$ such that $d(p,q) \ge M_0$ for any $p \ne q \in P$.

P is syndetic, i.e. there exists $M_1 > 0$ such that $\bigcup_{p \in P} B(p, M_1) = \mathbb{R}^2$.

Consider the Voronoi tessellation for P. Thus, for $p \in P$, we let

 $T(p) = \{x \in \mathbb{R}^2 \mid d(x, p) \le d(x, P)\}.$

Then

 $\mathcal{T}_P = \{T(p) \mid p \in P\}$

is a tiling of \mathbb{R}^2 and called the Voronoi tessellation.

Generically,

$$\mathbb{Z}^2 = \bigcup_{p \in P} T(p) \cap \mathbb{Z}^2$$

gives a partition of \mathbb{Z}^2 into finite subsets, and so we obtain a finite subrelation of R_{φ} .

Let U_1, U_2, \ldots be clopen subsets of X getting smaller.

For each $x \in X$, we consider 'hitting time' P_1, P_2, \ldots , which are separated and syndetic subsets of \mathbb{R}^2 getting thinner.

For each $x \in X$, we get Voronoi tessellations $\mathcal{T}_1, \mathcal{T}_2, \ldots$, in which each tile is getting larger.

From this, we obtain an increasing sequence of finite subrelations

 $R_1 \subset R_2 \subset R_3 \subset \cdots \subset R_{\varphi}.$

Put $R = \bigcup_{n \in \mathbb{N}} R_n$. Then R is an AF subrelation of R_{φ} .

This is the outline of Forrest's construction (which was used in the Phillips's theorem). To prove the orbit equivalence, we have to control the difference between R_{φ} and R.

Consider 'Voronoi tessellations' by 'infinitely large' polygons.

We may expect that there are only three possibilities:

- (1) \mathbb{R}^2 is covered by a single 'infinitely large' polygon.
- (2) \mathbb{R}^2 is covered by two 'infinitely large' polygons which share an edge.
- (3) \mathbb{R}^2 is covered by three 'infinitely large' polygons which share a vertex.

If this is the case, we can apply the absorption theorem two times and conclude that R_{φ} is orbit equivalent to R.

But, in general, we may find four distinct Voronoi cells which are close to each other.

By some geometric argument in \mathbb{R}^2 , we can modify the Voronoi tessellations so that disjoint cells are separated in some controlled manner. From these modified tessellations, we can construct a nice AF subrelation R in R_{φ} and complete the proof. **Problem 19.** Is it possible to extend this result to Cantor minimal \mathbb{Z}^d -systems for any $d \geq 3$?

Problem 20. Can we find some dynamical notion which implies the isomorphism of cohomology or K-groups ?