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We consider minimal dynamical systems on

Cantor sets. Let

X = {0,1}N

be a Cantor set and let

φ : Zd → Homeo(X)

be an action of Zd on X by homeomorphisms.

φ is said to be free, if φn(x) ̸= x for any

n ∈ Zd \ {0} and x ∈ X.

φ is said to be minimal, if every φ-orbit is

dense in X.

When φ is free and minimal, we call (X, φ) a

Cantor minimal Zd-system.

Let C∗(X, φ) denote the crossed product C∗-
algebra arising from (X, φ).

C∗(X, φ) is a unital simple stably finite C∗-
algebra.
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Crossed product C∗-algebras

Theorem 1 (Putnam 1990). When d = 1,

C∗(X, φ) is a unital simple AT algebra with

real rank zero.

Problem 2. Let d ≥ 2. Does C∗(X, φ) have

tracial rank zero ?

The following result provides circumstantial

evidence for an affirmative answer to the prob-

lem above.

Theorem 3 (N. C. Phillips 2005). For any

d ≥ 1, C∗(X, φ) has the following properties.

(1) Real rank zero.

(2) Stable rank one.

(3) The order on the K0-group is determined

by traces.

Moreover, these properties also hold for the

C∗-algebras arising from tiling spaces.

The proof of the theorem above uses For-

rest’s construction of a ‘large’ AF subalgebra

of C∗(X, φ).
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Another evidence for tracial rank zero is the

AF embeddability.

Theorem 4 (M 2002). Let X be a compact

metrizable space and let φ : Z2 → Homeo(X)

be a free minimal action. If there exists n ∈
Z2 \ {0} satisfying

∀φn-invariant open subset U ̸= ∅

∃φn-invariant open subset V ̸= ∅

s.t. V ⊂ U,

then C∗(X, φ) is AF embeddable.

For example, we can apply this theorem to

any almost one-to-one extension of a product

system of two minimal Z-systems.

Problem 5. Let d ≥ 2 and let φ be a free

minimal action of Zd on a compact metriz-

able space X. Is the crossed product C∗(X, φ)

always AF embeddable ?
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Recently, H. Lin proved the following theo-

rem.

Theorem 6 (H. Lin). Let X be a compact

metrizable space and let φ : Z2 → Homeo(X)

be an action which is not necessarily mini-

mal. If there exists a φ-invariant probability

measure whose support is X, then C∗(X, φ) is

quasi-diagonal.

We note that if φ is minimal, then every φ-

invariant measure has full support.

Problem 7. Is it possible to extend the result

above to the case of Zd-actions ?

Problem 8. Let d = 2. What is the necessary

and sufficient condition so that C∗(X, φ) is

quasi-diagonal ?
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Examples from tiling spaces

Let P be a finite collection of non-empty poly-

hedra in Rd.

We call each element of P a prototile.

For p ∈ P and t ∈ Rd, p + t is called a tile.

A collection T of tiles is called a tiling, if the

elements of T cover Rd with pairwise disjoint

interiors.

We equip the set of tilings with a topology as

follows:

Two tilings T and T ′ are close, if there exist

a small ε ∈ Rd and a large R > 0 such that

T + ε and T ′ agree on B(0, R).

We obtain a topological space consisting of

tilings and an action of Rd on it by transla-

tion.
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Let T0 be an aperiodic and repetitive tiling

which satisfies the finite pattern condition.

Let Ω be the orbit closure of T0, namely

Ω = {T0 + t | t ∈ Rd}.
Then, it is known that Ω is compact and

metrizable.

In addition, the natural Rd action φ on Ω is

free and minimal.

Theorem 9 (Sadun-Williams 2003, etc). For

any (Ω, φ) as above, there exists a Cantor

minimal Zd-system (Y, ψ) such that C∗(Y, ψ)

is strong Morita equivalent to C(Ω) ×φ Rd.

We would like to describe (Y, ψ) of the theo-

rem above for the tiling space (Ω, φ) arising

from the Penrose tiling.

For n = 0,1, . . . ,9, we put

en =

(
cos

2πn

10
, sin

2πn

10

)
∈ R2.

Let Γ be the Z-span of e0, e1, . . . , e9.
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Γ = ⟨e0, e1, . . . , e9⟩
= ⟨e0, e2, e4, e6, e8⟩
= ⟨e0, e2, e4, e6⟩
∼= Z4
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Let Ren denote the line which is parallel to en

and passes through the origin. Then

C = {γ + Ren | γ ∈ Γ, n = 0,1, . . . ,9}
is a countable family of lines in R2.

By ‘cutting’ the plane along the lines ℓ in C, we

obtain a totally disconnected (non-compact)

space X. Γ acts on X naturally by translation.

Let Γ0 ⊂ Γ be a subgroup generated by e0, e2
and let Y be the quotient space of X by the

action of Γ0. We can identify Y with the

parallelogram spanned by e0, e2.
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Clearly Y is a (compact) Cantor set and the

translations by e4 and e6 induce a minimal Z2

action ψ on Y .

Then (Y, ψ) is ‘equivalent’ to the Penrose tiling

space.

It is easy to see

e4 = −e0 + λe2

and

e4 + e6 = −(1 + λ)e0,

where λ = (
√

5 − 1)/2.

Let Rλ be the irrational rotation on T = R/Z
defined by x 7→ x + λ.

It follows that there exists a factor map from

(Y, ψ) to the product of two copies of (T, Rλ).

In addition, this factor map is almost one-to-

one.

Consequently, by the AF embedding theorem,

we can conclude that C∗(Y, ψ) is AF embed-

dable.
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K-theory of C∗(X, φ)

Next, we would like to consider K-groups of

C∗(X, φ) for a Cantor minimal Zd-system and

relate it to a group cohomology.

Let Ω be the suspension space of (X, φ), that

is, Ω is the quotient space of X × Rd by the

equivalence relation

{((x, t), (φn(x), t+n)) | x ∈ X, t ∈ Rd, n ∈ Zd}.
There exists a natural Rd action on Ω induced

by the translation (x, t) 7→ (x, t+ s) in X ×Rd.

We denote this action by φ̃.

We have

K∗(C∗(X, φ))
∼= K∗(C(Ω) ×φ̃ Rd) (∵ strong Morita equiv.)
∼= K∗(C(Ω)) (∵ Thom Isomorphism)
∼= K∗(Ω)
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C(X, Z) is a Zd-module in an obvious way. Let

H∗(X, φ) be the group cohomology of Zd with

coefficients C(X, Z).

By definition,

H∗(X, φ) ∼= H∗(Ω;Z),

where the right hand side denotes the Čech

cohomology of Ω with coefficients in Z.

Consequently, we have⊕
n−d∈2Z

Hn(X, φ) ⊗ Q ∼= K0(C
∗(X, φ)) ⊗ Q

⊕
n−d/∈2Z

Hn(X, φ) ⊗ Q ∼= K1(C
∗(X, φ)) ⊗ Q

by the topological Chern character.

Conjecture 10. For any d ≥ 1, we have⊕
n−d∈2Z

Hn(X, φ) ∼= K0(C
∗(X, φ))

and ⊕
n−d/∈2Z

Hn(X, φ) ∼= K1(C
∗(X, φ)).
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If cohomology groups were torsion free, then

this conjecture would easily follow. But, in

general, cohomology groups and K-groups may

contain torsion.

When d = 1,2, we can check that this con-

jecture holds by direct computation.

Anderson-Putnam (1998) observed that tiling

spaces can be viewed as inverse limits and

computed the cohomology of several tiling

spaces. For example, the cohomology groups

of Penrose tilings are H0 = Z, H1 = Z5 and

H2 = Z8.

Since φ is minimal, H0(X, φ) is always isomor-

phic to Z.

The top-dimensional cohomology Hd(X, φ) is

isomorphic to

C(X, Z)/⟨f − f ◦ φn | f ∈ C(X, Z), n ∈ Zd⟩,
which is called the coinvariants.
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The following problem corresponds to the top-

dimensional part of the conjecture above.

Problem 11. Let j : C(X) → C∗(X, φ) be

the canonical inclusion and let j∗ : C(X, Z) →
K0(C

∗(X, φ)) be the induced homomorphism

on K-groups. Is the kernel of j∗ equal to

⟨f − f ◦ φn | f ∈ C(X, Z), n ∈ Zd⟩?

As for the values of projections by traces, it

is known that the Gap Labeling Conjecture

holds (Bellissard-Benedetti-Gambaudo (2006),

Benameur-Oyono-Oyono (2001), Kaminker-

Putnam (2003)).

Theorem 12.Let (X, φ) be a Cantor minimal

Zd-system. Let µ be a φ-invariant probability

measure on X and let τµ be the trace induced

by µ. Then one has

τµ(K0(C(X))) = τµ(K0(C
∗(X, φ))).
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F. Gähler (2004) found 5-torsion in the top-

dimensional cohomology of the Tübingen Tri-

angle Tiling.

We would like to construct torsion in coinvari-

ants in a much easier way.

Let G be a finite abelian group and let (Xi, φi)

be Cantor minimal Z-systems for i = 1,2.

Let ξi : Xi → G be a continuous map such

that the transformation

(x, g) 7→ (φi(x), g + ξi(x))

is a minimal homeomorphism on Xi × G for

each i = 1,2.

We define a Cantor minimal Z2-system (Y, ψ)

as follows:

Y = X1 × X2 × G

ψ1(x1, x2, g) = (φ1(x1), x2, g + ξ1(x1))

ψ2(x1, x2, g) = (x1, φ2(x2), g + ξ2(x2)).

It is easy to see that ψ1 and ψ2 are commut-

ing.
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Theorem 13 (M). The torsion part of the

top-dimensional cohomology H2(Y, ψ) is iso-

morphic to the wedge product G ∧ G.

For example, if G = Z/nZ ⊕ Z/nZ, then G ∧ G

is isomorphic to Z/nZ.

C∗(Y, ψ) is isomorphic to the crossed product

of C∗(X1, φ1)⊗C∗(X2, φ2) by an action of Ĝ.

By the result of Putnam, C∗(Xi, φi) has tracial

rank zero.

Corollary 14. There exists a Cantor minimal

Z2-system (Y, ψ) such that C∗(Y, ψ) is not an

AT algebra but does have tracial rank zero.

Proof. Let G be a finite non-cyclic abelian

group. Choose (Xi, φi) and ξi so that (Xi, φi)

and (Y, ψ) are uniquely ergodic. Then, we can

verify that the action of Ĝ on C∗(X1, φ1) ⊗
C∗(X2, φ2) has the tracial Rohlin property. It

follows from Phillips’s theorem that C∗(Y, ψ)

has tracial rank zero. From the theorem above,

C∗(Y, ψ) is not an AT algebra.
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Topological orbit equivalence

Let (X, φ) be a Cantor minimal Zd-system and

let

Rφ = {(x, φn(x)) | x ∈ X, n ∈ Zd}
be the associated equivalence relation on X.

Let (Y, ψ) be another Cantor minimal Zd′-system.

We say that (X, φ) and (Y, ψ) are orbit equiva-

lent, if there exists a homeomorphism h : X →
Y such that h × h(Rφ) = Rψ.

Let Mφ denote the set of all φ-invariant prob-

ability measures on X.

Conjecture 15.The following are equivalent.

(1) There exists a homeomorphism h : X → Y

such that h∗(Mφ) = Mψ.

(2) (X, φ) and (Y, ψ) are orbit equivalent.

Theorem 16 (Giordano-Putnam-Skau 1995).

When d = d′ = 1, the conjecture above is

true.
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Theorem 17 (Giordano-Matui-Putnam-Skau).

When 1 ≤ d, d′ ≤ 2, the conjecture above is

true.

Corollary 18.Let (X, φ) and (Y, ψ) be Cantor

minimal Z or Z2 systems. Suppose that Mφ =

{µ} and Mψ = {ν}. Then the two systems are

orbit equivalent if and only if

{µ(U) | U is clopen in X}
= {ν(V ) | V is clopen in Y }.

Our strategy for proving the conjecture is the

following.

(1) Classify minimal AF relations up to orbit

equivalence. (This step was already done

by Giordano-Putnam-Skau (1995).)

(2) Find a ‘large’ AF subrelation R in Rφ.

(3) Apply the absorption theorem d-times and

conclude that Rφ is orbit equivalent to the

AF relation R.
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We would like to describe the second step for

the case of d = 2. Let (X, φ) be a Cantor

minimal Z2-system.

For a clopen set U ⊂ X and x ∈ X, we put

P = {n ∈ Z2 | φn(x) ∈ U}.
P is called ‘hitting time’. As a subset of R2,

P has the following properties:

P is separated, i.e. there exists M0 > 0 such

that d(p, q) ≥ M0 for any p ̸= q ∈ P .

P is syndetic, i.e. there exists M1 > 0 such

that
⋃

p∈P B(p, M1) = R2.

Consider the Voronoi tessellation for P . Thus,

for p ∈ P , we let

T (p) = {x ∈ R2 | d(x, p) ≤ d(x, P )}.
Then

TP = {T (p) | p ∈ P}
is a tiling of R2 and called the Voronoi tessel-

lation.
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Generically,

Z2 =
⋃

p∈P

T (p) ∩ Z2

gives a partition of Z2 into finite subsets, and

so we obtain a finite subrelation of Rφ.

Let U1, U2, . . . be clopen subsets of X getting

smaller.

For each x ∈ X, we consider ‘hitting time’

P1, P2, . . . , which are separated and syndetic

subsets of R2 getting thinner.

For each x ∈ X, we get Voronoi tessellations

T1, T2, . . . , in which each tile is getting larger.

From this, we obtain an increasing sequence

of finite subrelations

R1 ⊂ R2 ⊂ R3 ⊂ · · · ⊂ Rφ.

Put R =
⋃

n∈N Rn. Then R is an AF subrela-

tion of Rφ.

This is the outline of Forrest’s construction

(which was used in the Phillips’s theorem).

To prove the orbit equivalence, we have to

control the difference between Rφ and R.
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Consider ‘Voronoi tessellations’ by ‘infinitely

large’ polygons.

We may expect that there are only three pos-

sibilities:

(1) R2 is covered by a single ‘infinitely large’

polygon.

(2) R2 is covered by two ‘infinitely large’ poly-

gons which share an edge.

(3) R2 is covered by three ‘infinitely large’

polygons which share a vertex.

If this is the case, we can apply the absorp-

tion theorem two times and conclude that Rφ

is orbit equivalent to R.

But, in general, we may find four distinct

Voronoi cells which are close to each other.

By some geometric argument in R2, we can

modify the Voronoi tessellations so that dis-

joint cells are separated in some controlled

manner. From these modified tessellations,

we can construct a nice AF subrelation R in

Rφ and complete the proof.
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Problem 19. Is it possible to extend this re-

sult to Cantor minimal Zd-systems for any

d ≥ 3 ?

Problem 20.Can we find some dynamical no-

tion which implies the isomorphism of coho-

mology or K-groups ?
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