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1. A∞-algebras

1.1 Based loop space (see MSS:book,p9∼)

X : a topological space

Y = ΩX : the space of based loops in X

x0 ∈ X : a base point

An element of Y is a map x : [0, 1]→ X

where x(0) = x(1) = x0 (Figure 1 (a)).

t = 0 t = 1

X

x0

0 1/4 1/2 1

0 1/2 13/4

K3

t =

t =

x

(• •) •

• (• •)

(b)(a)

Figure 1:

We have a product as a group-like space

M2 : Y × Y → Y .
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It is given by connecting two loops as

M2(x, x
′)(t) = x(2t) , 0 ≤ t ≤ 1/2

M2(x, x
′)(t) = x′(2(t− 1/2)) , 1/2 ≤ t ≤ 1 .

M2 is not associative but clearly there exists a
homotopy described by an interval K3 (Figure 1 (b))

M3 : K3 × Y × Y × Y −→ Y .

When we represent the product by a trivalent planar
tree, the relation above is characterized pictorially as
in Figure 2(a).

(• •) • • (• •)

(a) (b)

K3 K4

Figure 2:

Next, when considering possible operations of
(Y )×4 → Y constructed from M2, we have five tree
graphs Figure 2(b).
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Each edge corresponds to K3 andK4 bounded by these
edges is a pentagon. The corresponding homotopy

M4 : K4 × (Y )×4 → Y

is then defined. Repeating this procedure produces
higher homotopies

Mn : Kn × (Y )×n −→ Y .

Kn, n ≥ 2 is a polytope of dimension (n− 2),

where K2 is a point.

Generally, if a topological space Y can be equipped
with the structures {Mn, Kn}n≥2 as above,

(Y, {Mn, Kn}n≥2) is called an A∞-space

(J. Stasheff’63).

To capture the structure of the A∞–space,

the terminology of tree graphs is convinient.
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1.2 Tree graphs and A∞-operad

Planar tree graphs are obtained by grafting planar
corollas.

A l-corolla δl is a planar tree graph with one vertex
and l-leaves all attached directly to the root.

δl :=
· · ·

1 2 l

The composite δk •i δl is given by grafting the root of
δl to the i-th leaf of δk, reading from left to right

1 2 k

·· ··

i

•i
· · ·

1 2 l

=

· · ·· · · ··
i1 nj· · · · · · · · ·

,

where j = i+ l − 1 and n = k + l − 1.
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Let A∞(n), n ≥ 1 be a graded vector space spanned by
planar rooted trees of n leaves with identity e ∈ A∞(1).

For a planar rooted tree T ∈ A∞(n), its grading is
introduced by

|T | = int(T ) + (2− n) ,

where int(T ) is the number of the internal edges in T .

A tree T ∈ A∞(n), n ≥ 2, with int(T ) = 0 is the
corolla δn.

Any tree T with int(T ) = 1 is obtained by the grafting
of two corollas.

Grafting of any two trees is defined in a similar way.

Any tree T with v(T ) ≥ 2 can be obtained recursively
by grafting a corolla to a tree T ′ with int(T ′) =
int(T )− 1.
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One can define a differential d of degree one, which
acts on each corolla as

d (δn) =
∑

k,l≥2, k+l=n+1

k
∑

i=1

± δk •i δl

and extends to one on A∞ := ⊕n≥1A∞(n) by the
following rule:

d(T •i T
′) = d(T ) •i T

′ + (−1)|T |T •i d(T
′) .

If we introduce the contraction of internal edges, that
is, indicate by T ′ → T that T is obtained from T ′

by contracting an internal edge, the differential is
equivalently given by

d(T ) =
∑

T ′→T

±T ′

with an appropriate sign ±.

Thus, A∞ forms a dg operad, called the A∞-operad.
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• Back to the associahedra ...

{Kn}n≥2 forms a topological operad.

Each Kn is associated with a planar tree n-corolla δn.

Associated to the grafting of corollas, one can consider
the following inclusion map

Kk ◦iKl ↪→ Kk+l−1 .

By construction, for {Kn}n≥2 we have

∂Kn =
∑

k+l=n+1
k,l≥2

k
∑

i=1

± Kk ◦iKl

for the codimension one boundary of Kn.

Namely, the differential on the operad is given by the
boundary operator of the associahedra.

Thus, the cellular chain space {C∗(Kn)}n≥2 forms an
A∞-operad.

One can see that the grading of a tree T ∈ A∞(n),
int(T ) + 2−n, is equal to minus the dimension of the
corresponding boundary piece of Kn.
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• An algebra A over A∞ is given by a map

φ : A∞(k)→ Hom(A⊗k, A) , k ≥ 1 ,

for a complex (A,m1), compatible with respect to the
compositions and the differentials.

Here, the composition in ⊕kHom(A⊗k, A) is given

in a similar way to that in A∞,

and a differential on ⊕kHom(A⊗k, A) is given by

d(g) = m1g − (−1)|g|
k

∑

i=1

g ◦ (1⊗(i−1) ⊗m1 ⊗ 1
⊗(k−i)) .
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Denote φ(δn) =: mn, and the compatibility

φ(d(δn)) = d(φ(δn)) (= d(mn))

turns out to be

m1mn +
n

∑

i=1

mn(1
⊗i−1 ⊗m1 ⊗ 1

⊗n−i)

=
∑

k+l=n+1
k≥2,l≥2

k
∑

j=1

± mk(1
⊗j−1 ⊗ml ⊗ 1

⊗k−j)

This is the defining equation for

an A∞-algebra (A, {mn}n≥1).

Thus, an algebra over A∞ is an A∞-algebra.
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Compactification of moduli spaces of
disks with punctures on the boundary

It is known that Kn is obtained as the real
compactification of the configuration space of (n− 2)
distinct points in an interval.

It is equivalent to a real compactification M̄n+1 of the
moduli space Mn+1 of a disk with (n + 1) points on
the boundary (Figure 3 (a)).

The compactification is further described in terms of
the planar tree operads (Figure 3 (b)).

(b)(a)

'

∞

01

∞

Figure 3:
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Mn+1 is described as the configuration space of (n+
1)-punctures on S1 ∼ R ∪ {∞} divided by

x′(x) =
ax+ b

cx+ d
, x ∈ R ,

(

a b
c d

)

∈ SL(2,R) .

This degree of freedom can be killed by fixing three
points on the boundary. Usually we set the three points
at 0, 1 and ∞.

We take the point ∞ as the ‘root edge’.

(This distinction between the root and the leaves are
absorbed by imposing “cyclicity” as seen later. )

Then, the interval is identified with the arc between 0
and 1 as in Figure 3 (a). Thus, we obtain:

Mn+1 = {(t2, · · · , tn−1) | 0 < t2 < t3 < · · · < tn−1 < 1} .



16

Compactification

◦ M2+1 = {pt} → M̄2+1 ' K2 ,

◦ M3+1 ' {t2 | 0 < t2 < 1} → M̄3+1 ' K3 ,

◦ M4+1 = {(t2, t3) | 0 < t2 < t3 < 1}.

However, by SL(2,R) transformation (cyclicity !)

x′(x) =
1− t3
1− x

,

transforming (∞, 0, t2, t3, 1)→ (0, x′(0), x′(t2), 1,∞),

again {(x′(0), x′(t2)) |0 < x′(0) < x′(t2) < 1},

but, the dimension one boundary (t2, t3) = (t2, 1)

is transformed to a point (x′(0), x′(t2)) = (0, 0).

Similarly, for (t2, t3) = (1 − ε, 1 − aε) with a fixed
ε << 1, 0 < a < 1, the image is

(x′(0), x′(t1)) = (aε, a) .

Thus, M5 should be compactified as a pentagon
instead of a triangle.
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In such a way, we obtain

the associahedra with the cyclicity as M̄n+1.

(Tree open) string theory should be

an algebra A over the operad {M̄n+1}n≥2,

where the operad map φ : M̄n+1→ Hom(A⊗n, A) is

given by the string amplitudes (correlation functions):

∫

M̄n+1

Ω : A⊗(n+1)→ C ,

for an appropiate differential form Ω on M̄n+1,

with an appropriate non-degenerate inner product:

η : A⊗A→ C .

A succesful construction of M̄n is given by string field
theory (Witten, Zwiebach, etc...).
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1.4.A∞-algebras, A∞-categories

Def. A weak A∞-algebra (V,m) consists of a Z (or

Z2-)graded vector space V = ⊕kV
k (or = V even ⊕

V odd) with a collection of multilinear maps m := {mn :

V ⊗n → V }n≥0 of degree (2− n) satisfying

0 =
∑

k+l=n+1

k−1
∑

j=0

(−1)ε mk(v1, · · · , vj,ml(vj+1, · · · , vj+l)

, vj+l+1, · · · , vn) ,

where ε = (j + 1)(l + 1) + l(|v1|+ · · ·+ |vj|).

In particular, if m0 : C→ V 2 is absent,

(V,m) is called a (strict) A∞-algebra (J.Stasheff’63).

For m1 = d, m2 = ·, the first three relations :

i) d2 = 0 ,

ii) d(x · y) = d(x) · y + (−1)|x|x · d(y) ,

iii) (x · y) · z − x · (y · z) = d(m3)(x, y, z)

for x, y, z ∈ V .
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i) : d is nilpotent and (H, d) defines a complex.

ii) : d satisfies Leibniz rule for the product ·.

iii) : the product · is associative up to homotopy.

Rem 1 An A∞-algebra (V,m) with vanishing higher

products m3 = m4 = · · · = 0 is called a differential

graded algebra (DGA).

Def. We call an A∞-algebra (V,m) a cyclic A∞-

algebra if a cyclic structure is given by a nondegenerate

symmetric bilinear map η : V ⊗V → C of fixed degree

|η| ∈ Z satisfying

η(mn(v1, · · · , vn), vn+1)

= (−1)n+(|v2|+···+|vn+1|)|v1|η(mn(v2, · · · , vn+1), v1) ,

for each n ≥ 1. Here degree |η| indicates that η(v, v′)

is nonzero only if |v|+ |v′|+ |η| = 0.



20

A different definition in the degree

Def. [A∞-algebra (H,m := {mk}k≥1) ⇐⇒]

H = ⊕r∈ZHr : Z-graded vector space

{mk : (H)⊗k → H}k≥1, multi-linear, degree 1, s.t.

∑

k+l=n+1

k−1
∑

j=0

(−1)|o1|+···+|oj|mk(o1, · · · , oj,

ml(oj+1, · · · , oj+l), oj+l+1, · · · , on) = 0 (n ≥ 1)

Def 1 We call (H,m) above a cyclic A∞-algebra if it

has a nondegenerate skew-symmetric inner product

ω : H⊗H → C ,

of fixed degree |ω| ∈ Z satisfying the cyclicity :

ω(mn(e1, · · · , en), en+1)

= (−1)(|e2|+···+|en+1|)|e1|ω(mn(e2, · · · , en+1), e1) .

The sign can also be written as (−1)(|e2|+···+|en+1|)|e1| =

(−1)(−|ω|−1−|e1|)|e1| = (−1)|ω||e1|.
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Lem 1 For a graded vector space V = ⊕kV
k with k

the grading, let

s : V k → V k−1[1] =: Hk−1 ,

be a degree shifting operator called suspension.

Then two definitions of cyclic A∞-algebras are

compatible with each other through the suspension

s.

proof. Let us distinguish the A∞-structures in two
notations by mH and mV . A relation between the
multilinear maps is given by

mH
n = (−1)

Pn−1
i=1 (n−i)smV

n ((s−1)⊗n)

or more explicitly (Getzler-Jones’90)

mH
n (e1, · · · , en)

= (−1)
Pn−1
i=1 (n−i)|ei| smV

n (s−1(e1), · · · , s
−1(en))

A relation between the two cyclic structures is also
given by ω = η(s−1 , s−1 ), or

ω(e, e′) = (−1)eη(s−1(e), s−1(e′)) .
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Def. A weak A∞-category C consists of a set of

objects Ob(C) = {a, b, · · · }, Z-graded vector space

Vab := Hom(a, b) for each pair of objects a, b ∈ Ob(C),

and a collection of multilinear maps

m := {mn : Va1a2 ⊗ · · · ⊗ Vanan+1 → Va1an+1}n≥0

of degree (2− n) satisfying

0 =
∑

k+l=n+1

k−1
∑

j=0

± mk(v12, · · · , vj(j+1),

ml(v(j+1)(j+2), · · · , v(j+l)(j+l+1))

, v(j+l+1)(j+l+2), · · · , vn(n+1)) ,

where ± = (j + 1)(l + 1) + l(|v12|+ · · ·+ |vj(j+1)|).

In particular, if m0 = 0, it is called an A∞-category.

(Fukaya’93)
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Def 2 We call a weak A∞-category (V,m) a cyclic

weak A∞-category if a cyclic structure is given by

a nondegenerate symmetric bilinear map η : Vab ⊗

Vba → C of fixed degree |η| ∈ Z satisfying

η(mn(v12, · · · , vn(n+1)), v(n+1)1)

= (−1)n+(|v23|+···+|v(n+1)1|)|v12|η(mn(v23, · · · , v(n+1)1), v12) ,

for each n ≥ 0.

The suspended version of a cyclic weak A∞-category
can also be defined, where the degree of the multilinear
map mn is one for all n ≥ 0.
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1.5 Examples of A∞-algebras

• DGA

◦ DGA (Ω(X), d,∧) of differential forms Ω(X)

on a manifold X . This is a commutative DGA.

◦ DGA (V := End(E)⊗ Ω(X), d,∧)

for a vector bundle E → X with a connection

∇ : Γ(M)⊗ Ωk(X)→ Γ(M)⊗ Ωk+1(X) .

The differential d : V k → V k+1 is given by

d(v) = ∇ · v − (−1)kv · ∇ , v ∈ V k := Γ(M)⊗ Ωk(X) .

The product ∧ : V ⊗ V → V is given locally

by the matrix multiplication of End(E)

combined with the wedge product in Ω(X).
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• DG category

For a fixed manifold X , consider a category C such
that

Ob(C) is a set {a, b, · · · }, where a is a vector bundle
Ea → X with a connection ∇a,

and for each pair (a, b), Mor(a, b) =: Vab = ⊗k∈ZV
k
ab,

V kab = Hom(Ea, Eb)⊗ Ωk(X) .

Then C forms a DG category, where the differential d
is given by

d(vab) = ∇b · vab − (−1)kvab · ∇a , vab ∈ Vab .

The composition is defined in a natural way.

Rem. ◦ One can replace vector bundles on a manifold

with (projective) modules over a (NC) algebra A in

this set-up.

◦ Instead of the DeRham complexes of differential

form, one can consider a Dolbault complex. Then, we

can consider a DG category on a complex manifold.
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• A geometric example

Consider a collection {La, Lb, · · · }, where La is a line
in R2 defined by

La : y = tax+ ua , ta, ua ∈ R , (x, y) ∈ R2 ,

and we regard a = b iff (ta, ua) = (tb, ub).

For each pair (a, b), Vab := V 0
ab ⊕ V

1
ab is given by :

◦ if ta < tb, V 0
ab = C · vab, V 1

ab = 0,

◦ if ta > tb, V 0
ab = 0, V 1

ab = C · vab,

◦ if ta = tb, ua 6= ub, V 0
ab = V 1

ab = 0,

◦ if a = b, V 0
aa = C · 1a, V

1
aa = C · 1̄a,

Here, vab, 1a, 1̄a are the bases of the vector spaces.

vab is identified with the intersection point of (La, Lb).

The x-coordinate of vab is denoted by x(vab).

An A∞ structure mn of degree (2 − n) is defined by
m1 = 0 and, for n ≥ 2,

mn(va1a2, · · · , vanan+1) = ca1···an+1 · va1an+1 ,

ca1···an+1 = c(v) · exp (−A(v)) .
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Here A(v) is the area of the polygon surrounded by

v := (va1a2, · · · , vanan+1, van+1a1) ,

and c(v) = ±1 or 0 : if v forms a clockwise convex
polygon, c(v) = 1 for even n and

c(v) =
x(va1a2)− x(van+1a1)

|x(va1a2)− x(van+1a1)|
for odd n,

where we count 1̄a as a convex vertex and 1a as a
non-convex vertex vaiai+1

with ai = ai+1 = a.

In the case v does not form a clockwise convex polygon,

c(v) = 1 if n = 2 and

E

i s.t. ai = ai+1, and

c(v) = 0 otherwise.

A degree minus one nondegenerate symmetric inner
product η : Vab ⊗ Vba → C is given by

η(vab, vba) = 1 , ta 6= tb ,

η(1a, 1̄a) = η(1̄a,1a) = 1 , a = b .

Then (V, η,m) forms a cyclic A∞-category.
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The fact that the structure constant is non-zero only
when the corresponding polygon is a convex (n + 1)-
gon is equivalent to the fact that ca1···an+1 is nonzero

only when
∑n+1
i=1 deg(vaiai+1

) = −2 + (n+ 1).

0

1

1

1

1

1

0

1

1

Namely, if we go around a convex (n + 1)-gon in the
clockwise direction and assign the degree k (zero or
one) such that dim(V kaiai+1

) 6= 0 to each vertex vaiai+1
,

we always have two degree zero vertices and (n+1)−2
degree one vertices as in the above Figure. Thus, we
have

n+1
∑

i=1

deg(vaiai+1
) = (n+ 1)− 2

for any convex (n+ 1)-gon.
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The A∞-relation follows from a polygon which has one
nonconvex vertex.

There exist two ways to divide the polygon into two
convex polygons. The corresponding terms then appear
with opposite sign and cancel with each other in the
A∞-relation.

vbc

vab

vcd

vde

vfg

vgh

vhi

via

vef

X

Y

Z

vbf veh

e

f

For example, in this figure, we have the following
vertices with their degree assigned:

vab vbc vcd vde vef vfg vgh vhi
1 0 1 1 0 1 0 1

.
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According to the way of dividing the area X + Y + Z
into (i) X +(Y +Z) or (ii) (X +Y )+Z, we have the
following composition of multilinear maps:

(i)± vab(vbcvcdvdevef)vfgvghvhi

(ii)± vabvbcvcdvde(vefvfgvgh)vhi
,

where (vbcvcdvdevef) indicates m4(vbc, vcd, vde, vef)
and so on. Then one obtains:

m4(vbc, vcd, vde, vef) = −eXvbf ,

m5(vab, vbf , vfg, vgh, vhi) = −e(Y+Z)vai ,

m3(vef , vfg, vgh) = −eZveh ,

m6(vab, vbc, vcd, vde, veh, vhi) = −e(X+Y )vai .

Combining the first two equations leads to

+m5(vab,m4(vbc, vcd, vde, vef), vfg, vgh, vhi)

= eX+(Y+Z)vai ,

and combining the last two gives

−m6(vab, vbc, vcd, vde,m3(vef , vfg, vgh), vhi)

= −e(X+Y )+Zvai .
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Thus, we obtain

0 = +m5(vab,m4(vbc, vcd, vde, vef), vfg, vgh, vhi)

−m6(vab, vbc, vcd, vde,m3(vef , vfg, vgh), vhi) ,

which is just one of the A∞-relations.

Rem. If we consider lines in a T2 instead of

R2, one obtains a Fukaya’s A∞-category on a

(non)commutative two-torus

(see Polishchuk’00, H.K’04).

Rem. Lines are in general replaced by Lagrangian

submanifolds in a symplectic manifold.
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1.6 The coalgebra description

Def 3 (Coalgebra, coassociativity) Let C be a

(generally infinite dimensional) graded vector space.

(C,4) is called a coalgebra, if the coproduct

4 : C −→ C ⊗ C is coassociative, i.e.

(4⊗ 1)4 = (1⊗4)4 .

The coassociativity is expressed as

C

4
��

4
// C ⊗ C

4⊗1
��

C ⊗ C
1⊗4

// C ⊗ C ⊗ C .

Def 4 (Coderivation) A linear operator m : C → C

is called a coderivation when it satisfies

4m = (m⊗ 1 + 1⊗m)4

Here, for x, y ∈ C, the sign is defined as

(1⊗m)(x⊗ y) = (−1)|x||m|(x⊗m(y)) .
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The condition of a coderivation can be written as

C
m

//

4
��

C

4
��

C ⊗ C
1⊗m+m⊗1

// C ⊗ C

Def 5 (Coalgebra homomorphism) Given two coalgebras

C and C ′, a coalgebra homomorphism F : C → C ′

is a map of degree zero which satisfies the condition

4F = (F ⊗ F)4 .

The condition of a cohomomorphism is summarized as
the following commutative diagram:

C
F

//

4
��

C ′

4
��

C ⊗ C
F⊗F

// C ′ ⊗ C ′
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For a Z-graded vector space A, consider

T cA := ⊕k≥0(A)⊗k (the bar construction) .

◦ Coproduct 4 : T cA→ T cA⊗ T cA is given by

∆(o1⊗· · ·⊗on) =
n

∑

p=0

(o1⊗· · ·⊗op)⊗(op+1⊗· · ·⊗on) .

◦ Hom(T cA,A) ' Coder(T cA) holds :

for h ∈ Hom(A⊗k, A), h ∈ Coder(T cA) is given by

h(o1 ⊗ · · · ⊗ on) =
n−k
∑

j=0

(−1)(|o1|+···+|oj|)|h|

o1 ⊗ · · ⊗oj ⊗ h(oj+1, · · · , oj+k)⊗ oj+k+1 ⊗ · · ⊗on

for k ≤ n and zero otherwise.

(Coder(T cA), [ , ]) forms a Graded Lie Algebra,

where [ , ] is the commutator in Coder(T cA).

Then Hom(T cA,A) ' Coder(T cA)

as Graded Lie algebras.
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For a weak A∞-algebra (A, {mk}k≥0), |mk| = 1,

each mk ∈ Hom(A⊗k, A) is lift to mk ∈ Coder(T cA).

• (A,m) is a weak A∞-algebra ⇐⇒

m :=
∑

k

mk is a codifferential : (m)2 = 0 .

• For two weak A∞-algebras (A,m) and (A′,m′),

◦ {fk : (A)⊗k → A′}k≥0 : multi-linear, degree 0.

◦ {fk} is in one-to-one correspondence with

a coalgebra homomorphism f : T cA→ T cA′:

f(o1 ⊗ · · · ⊗ on) =
∑

i≥1

∑

1≤k1≤k2···≤ki=n

fk1(o1, · · · , ok1)⊗ fk2−k1(ok1+1, · · · , ok2)⊗ · · ·

· · · ⊗ fn−ki−1
(oki−1+1, · · · , on) .

Def. f : (A,m)→ (A′,m′) is a weak A∞-morphism

⇐⇒ m′ f = f m .

In particular, for two A∞-algebras (A,m) and (A′,m′),

a weak A∞-morphism f = {f0, f1, · · · } with f0 = 0 is

called an A∞-morphism.
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1.7 On some homotopy algebraic
properties

Def. An A∞-morphism F : (A,m)→ (A′,m′) is

• A∞-isom. ⇐⇒ f1 : A→ A′ is isom.

• A∞-quasi-isom. ⇐⇒ f1 : (A,m1)→ (A′,m′
1)

induces isom. on their cohomologies.

Def. An A∞-algebra (A,m) is

• minimal ⇔ m1 = 0 ,

• linear contractible ⇔ m2 = m3 = · · · = 0,

cohomology of (A,m1) is trivial.

Thm. [Minimal model theorem (Kadeishvili ’82 )]

(A,m) : given =⇒

E

A∞-quasi-isom. F :

E

(A,m)min → (A,m) .

Thm. [Decomposition theorem (cf. H.K’03)]

A

(A,m)
A∞−isom
' (A,m)min ⊕ (A,m)cont .
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2. L∞-algebra

2.1. L∞-algebras

Def. [weak L∞-algebra (L, {lk}k≥1) ⇐⇒]

L : Z-graded vector space

{lk : (L)⊗k → L}l≥0 : multi-linear, degree 1,

graded symmetric on (L)⊗k, s.t.

∑

k+l=n+1

∑

σ∈Sn

ε(σ)

l!(n− l)!

lk(ll(cσ(1), · · · , cσ(l)), cσ(l+1), · · · , cσ(n)) = 0 (n ≥ 1) ,

where ε(σ) is the sign associated to the permutation

(c1, · · · , cn)→ (cσ(1), · · · , cσ(n)) .

In particular, if l0 = 0, it is called an L∞-algebra.

(Lada-Stasheff’92)
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After the desuspension s−1 : Lk → (L[−1])k+1,

and for l1 = d, l2 = [ , ], the first three relations :

i) d2 = 0 ,

ii) d[x, y] = [d(x), y] + (−1)|x|[x, d(y)] ,

iii) [[x, y], z]± [[y, z], x]± [[z, x], y] = d(l3)(x, y, z)

for x, y, z ∈ L[−1].

i) : d is nilpotent and (L, d) defines a complex.

ii) : d satisfies Leibniz rule for the bracket [ , ].

iii) : the bracket [ , ] satisfies the Jacobi identity up

to homotopy.

Rem 2 An L∞-algebra (L, l) with vanishing higher

products l3 = l4 = · · · = 0 is called a differential

graded Lie algebra (DGLA).
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2.2 Tree graph description

The tree operad description of L∞-algebras uses non-
planar rooted trees, which can be expressed as a planar
rooted tree but with arbitrary ordered labels for the
leaves. In particular, corollas obtained by permuting
the labels are identified (Figure 4).

· · ·

1 2 3 k

=
· · ·

σ(1)σ(2)σ(3) σ(k)

Figure 4:

Let L∞(n), n ≥ 1 be a graded vector space generated
by those non-planar rooted trees of n leaves.

For a tree T ∈ L∞(n), a permutation σ ∈ Sn of the
labels for leaves generates a different tree in general,
but sometimes the same one because of the symmetry
of the corollas above.

The grafting, ◦i, to the i-th leaf is defined as in the
planar case.

Any non-planar rooted tree is obtained by grafting
corollas {lk}k≥2 recursively, as in the planar case,
together with the permutations of the labels for the
leaves.
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A degree one differential

d : L∞(n)→ L∞(n)

is given in a similar way; for T ′→ T indicating that T
is obtained from T ′ by the contraction of an internal
edge,

d(T ) =
∑

T ′→T

±T ′ .

In particular, for each corolla one gets

d





· · ·

1 2 3 n 

 = −
∑

σ∈S
k+l=n

· · · · · ·

σ(1) σ(k) σ(n)· · · · · ·

,

and

d(T ◦i T
′) = d(T ) ◦i T

′ + (−1)|T |T ◦i d(T
′)

again holds,

where |T | := int(T ) + (3− 2k) for T ∈ L∞(k).

Thus, L∞ := ⊕n≥1L∞(n) forms a dg operad, called
the L∞-operad.
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An algebra L over L∞ obtained by a map

φ : L∞(k)→ Hom(L⊗k, L)

then forms an L∞-algebra (L, l).

In the double desuspended notation L[−2], the degree
of a multi-linear map lk turns into 1−2(k−1) = 3−2k.

Thus, the grading of a tree T ∈ L∞(n),

int(T ) + 1 + (3− 2n) ,

is equal to minus the dimension of the corresponding
boundary piece of the compactified moduli space of a
sphere with k marked points.



42

2.3 Compactification of moduli spaces of
spheres with punctures

The compactification corresponding to an L∞-
structure is the real compactification M̄0,n of the
moduli spacesM0,n of spheres with n punctures

(Kimura-Stasheff-Voronov’93, see also Zwiebach’92).

M0,n is the configuration space of n points on

a sphere ' C ∪ {∞} modulo SL(2,C) action

w′(w) =
aw + b

cw + d
, w ∈ C ∪ {∞} ,

(

a b
c d

)

∈ SL(2,C) .

This SL(2,C) action can be killed by fixing

three points; usually 0, 1 and ∞.

• M0,2+1 ' {pt} ' M̄0,2+1 ↔ l2 = [ , ]

Corresponding to the relation ∂M̄0,2+1 = 0, we have

d(l2) = 0 , the Leibniz rule .
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• M0,4 ' (C ∪∞)− {0, 1,∞} ( ↔ l3),

which is the configuration space of four points
0, 1, w,∞ with the subtraction of the ‘diagonal’.

the real compactification ofM0,4 is ...

0 1

∞

B0 B1

B∞

'

B0 B1

B∞

M̄0,4 has codimR = 1 boundaries B0, B1, B∞.

If we associate points 0, 1, w to x, y, z ∈ L[−1] and

∞ to the root edge, we get the correspondence:

B0 ↔ ±[[x, z], y]

B1 ↔ ±[[y, z], x]

B∞ ↔ ±[[x, y], z] .
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Namely, a grafting of closed string edges

produces moduli S1:

x y

z

∞

↔ S1

x y

z

∞

Thus, M̄0,n is not contractible.

Corresponding to the relation

∂(M̄0,4) = B0 +B1 +B∞, we obtain :

d(l3)(x, y, z) = [[x, y], z]± [[y, z], x]± [[z, x], y] .

• In general, M̄0,n is a manifold with corners of real
dimension 2n− 6.
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2.4 The coalgebra description

Consider the graded symmetric coalgebra C(L) on a
graded vector space L .

One can define a coproduct ∆ : C(L)→ C(L)⊗C(L).

Then, for a weak L∞-algebra (L, l), {lk}k≥0 provides
a coderivation differential l : C(L)→ C(L), [l, l] = 0.

Also, a collection of degree preserving graded
symmetric multilinear maps

{fk : L⊗k → L′}k≥0

is again in one-to-one correspondence with a coalgebra
homomorphism

f : C(L)→ C(L′) .

Then, a weak L∞-morphism f : (L, l) → (L′, l′) is
defined by

f ◦ l = l′ ◦ f .

In particular, for (L, l) and (L′, l′) are two L∞-algebras,
a weak L∞-morphism f : (L, l) → (L′, l′) with f0 = 0
is called an L∞-morphism.
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3. Open-closed homotopy algebra

3.1 The definition (H.K-Stasheff’04)

Def. [Open-closed homotopy algebra (OCHA)]

◦ H = Ho ⊕Hc : a Z-graded vector space

◦ degree one multi-linear maps

{lk : (Hc)
⊗k → Hc}k≥0 ,

{np,q : (Hc)
⊗p ⊗ (Ho)

⊗q → Ho}p,q≥0

which are graded symmetric on (Hc)⊗p.

◦ T (H) : the bar construction of H = Hc ⊕Ho,

whose elements are expressed as

(c1 ⊗ · · · ⊗ cm)⊗ (o1 ⊗ · · · ⊗ on) .

◦ One can define a coproduct on it.

◦ lk and np,q are extended to coderivations on T (H),

which we denote by lk and np,q.
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◦ Let us define the total coderivation by

l + n =
∑

k≥0

lk +
∑

p≥0,q≥0

np,q .

• (H, l, n) is a weak open-closed homotopy algebra

⇐⇒ the total coderivation is a codifferential;

(l + n)2 = 0 . (∗∗)

In particular if l0 = n0,0 = 0, we call (H, l, n)

an open-closed homotopy algebra (OCHA).

Rem. [(H, l, n) includes L∞ & A∞]

• Restrict (the image of) eq.(∗∗) to T (Hc) ⊂ T (H)

⇒ one gets l2 = 0 i.e. (Hc, l) is an L∞-algebra.

• Evaluate eq.(∗∗) on T (Ho) ⊂ T (H)

⇒ one gets (m)2 = 0 with m :=
∑

q n0,q

i.e. (Ho,m) is an A∞-algebra.
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The defining equation is written down explicitly as the
L∞-condition for (Hc, l) and

0 =
∑

σ∈S

(−1)ε(σ)
∑

p+r=n

n1+r,m(lp(cσ(1), · · · , cσ(p)), cσ(p+1) · · · , cσ(n); o1, · · · , om)

+
∑

σ∈S

∑

p+r=n

∑

i+s+j=m

(−1)µp,i(σ)

np,i+1+j(cσ(1), ··, cσ(p); o1, ··, oi,

nr,s(cσ(p+1), ··, cσ(n); oi+1, ··, oi+s), oi+s+1, ··, om) ,

where ci ∈ Hc, oi ∈ Ho, and

µp,i(σ) = ε(σ) + (cσ(1) + · · ·+ cσ(p)) + (o1 + · · ·+ oi)

+ (o1 + · · ·+ oi)(cσ(p+1) + · · ·+ cσ(n)) ,

corresponding to the signs effected by the interchanges.
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3.2 The tree description of an OCHA

For a tree operad description of an OCHA (H, l, n), we
introduce mixed corolla nk,l :

nk,l ←→
· · · · · ·

k l1 1 · · ·· · ·

,

which is partially symmetric (non-planar), that is,

only symmetric with respect to the k leaves.

Let us consider such corollas for 2k+l+1 ≥ 3 together
with non-planar corollas {lk}k≥2.

Since we have two kinds of edges,

we have two kinds of grafting;

grafting ◦i for Hc (closed string edges),

and grafting •i for Ho (open string edges).
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We have three types of the composite;

in addition to l1+k ◦i ll in L∞,

a composite nk,m ◦i lp described by

· · · · · ·

k m1 1 · · ·· · ·

◦i
· · ·

1 2 3 p

=
· · · · · · · · ·

[ ] [ ] ( )· · · · · · · · ·

,

where in the right hand side the labels are given
by [i, · · · , i + p − 1][1, · · · , i − 1, i + p, · · · , p + k −
1](1, · · · ,m),

and the composite np,q •i nr,s

· · · · · ·

p q1 1 · · ·· · ·

•i
· · · · · ·

r s1 1 · · ·· · ·

=
···· ·· ····

[ ] ( ) [ ] ( ) ( )· · · · · · · · · · · · · · ·

with labels [1, · · · , p](1, · · · , i − 1)[p + 1, · · · , p +
r](i, · · · , i+ s− 1)(i+ s, · · · , q + s− 1).
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Let us consider tree graphs obtained by repeating these
grafting,

together with the action of permutations of the labels
for closed string leaves.

Each of them has a closed string root edge or an open
string root edge.

As explained previously, the tree graphs with closed
string root edge, generate L∞.

On the other hand, the tree graphs with open string
root edge are new; the graded vector space generated
by them with k closed string leaves and l open string
leaves we denote by N∞(k; l).

In particular, we formally add the identity eo generating
N∞(0; 1), and N∞(1; 0) is generated by a corolla n1,0.

For N∞ := ⊕k,lN∞(k; l), the tree operad relevant here
is

OC∞ := L∞ ⊕N∞ .

We introduce the grading of T ∈ Nk,l by

|T | = int(T ) + (2− 2k − l) .
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For trees in OC∞, let T ′ → T indicate that T is
obtained from T ′ by contracting a closed or an open
internal edge. A degree one differential d : OC∞ →
OC∞ is given by

d(T ) =
∑

T ′→T

±T ′ ,

so that the following compatibility holds:

d(T ◦i T
′) = d(T ) ◦i T

′ + (−1)|T |T ◦i d(T
′) ,

d(T •i T
′′) = d(T ) •i T

′′ + (−1)|T |T •i d(T
′′) .

Thus, OC∞ forms a dg operad. In particular, d(lk) is
that given previously, and d(nn,m) is:

−
∑

σ∈S
p+r=n

· · · · · · · · ·

[ ] [ ] ( )· · · · · · · · ·

−
∑

σ∈S
p+r=n
i+s+j=m

···· ·· ····

[ ] ( ) [ ] ( ) ( )· · · · · · · · · · · · · · ·

,

where the labels for the first and the second terms
are [σ(1), · · · , σ(p)][σ(p + 1), · · · , σ(n)](1, · · · ,m)
and [σ(1), · · · , σ(p)](1, · · · , i)[σ(p+1), · · · , σ(n)](i+
1, · · · , i+ s)(i+ s+ 1, · · · ,m), respectively.
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An algebra H := Hc ⊕Ho over OC∞ is obtained by a
representation

φ : L∞(k)→ Hom(H⊗k
c ,Hc) ,

φ : N∞(k; l)→ Hom((Hc)
⊗k ⊗ (Ho)

⊗l,Ho)

which is compatible with respect to the grafting ◦i, •i
and the differential d.

Here, regarding elements in both Hom(H⊗k
c ,Hc)

and Hom((Hc)⊗k ⊗ (Ho)⊗l,Ho) as those in
Coder(C(Hc)⊗T c(Ho)), the differential in the algebra
side is given by

d := [l1 + n0,1, ] .

Then, the comptibility of φ with the differentials turns
to the condition of an OCHA.
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In the notation Hc[−2] and Ho[−1],

the degree of lk is (3− 2k) as stated previously,

and the degree of nk,l turns to be

1 + (1− l)− 2k = 2− (2k + l) .

The grading of T ∈ N∞(k; l), int(T ) + (2 − 2k − l),
is equal to minus the dimension of the corresponding
boundary piece of the compactified moduli space of a
disk with k points interior and l points on the boundary.
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3.3 Examples of the moduli spaces

The moduli spaces associated to an OCHA are
generated by grafting

n0,2 = m2 ↔ , l2 ↔ , n1,0↔

.

• {mn = n0,n} : Associahedra {Kn}n≥2 is generated

by grafting planar trivalent trees m2.

• L∞ {ln} : by non-planar trivalent trees l2 = [ , ]

◦ d(l2) = 0

◦ d(l3)(x, y, z) = [[x, y], z]± [[y, z], x]± [[z, x], y]

◦ · · · · · ·
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• {n1,q} : generated by n1,0,m2 = n0,2.

The resulting moduli space is known as the Cyclohedra
{Wq+1}, which is obtained by the moduli space of
configuration space of points on S1 modulo rotation

(Bott - Taubes’94, see MSS:book,p241)).

◦ d(n1,0) = 0 ↔ W1 = {pt},

◦ d(n1,1)(c; o) = m2(n0,1(c), o)±m2(o, n0,1(c))

↔ W2 = an interval,

◦ d(n1,2)(c; o, o
′) = m2(n1,1(c; o), o

′)

±m2(o, n1,1(c; o
′))± n1,1(c;m2(0, 0

′))

∑3
i=1±(m3 •i n1,0)(c; o, o

′)

↔ W3 = a hexagon,

◦ · · · · · ·

In general {Wn} are contractible polytopes respecting
that l2 is not used and closed string edges are not
grafted.
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• n2,q : disk with two closed strings

: generated by m2, n1,0, l2

◦ d(n2,0)(c, c
′; ) = n1,0l2(c, c

′)

±n1,1(c;n1,0(c
′)) + n1,1(c

′;n1,0(c))

The Eye in Kontsevich’97

W2

W2

S1
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◦ d(n2,1)
′′ =′′ (the eye ×K2) (×2) + W3×W1 (×4)

+ rectangle W2×W2 (×2) + cylinder S1×W2

: topologically a solid torus

(picture made by

S.Devadoss)

◦ · · · · · ·

The moduli space associated with np,q is not simply
connected for p ≥ 2 because of the inclusion of l2.
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3.4 Some homotopy algebraic structures

Def. An OCHA (H, l, n) is

• minimal ⇔ l1 = 0 on Hc and n0,1 = 0 on Ho

• linear contractible ⇔ l2 = l3 = · · · = 0,

np,q = 0 except for (p, q) = (0, 1), and

cohomologies of (Hc, l1) and (Ho, n0,1) are trivial.

• An OCHA morphism is constructed by

degree zero multi-linear maps

fk : (Hc)
⊗k → Hc , fk,l : (Hc)

⊗k⊗(Ho)
⊗l → Ho .

OCHA-isom. and OCHA quasi-isom. are defined

in a similar way.

Thm. The decomposition theorem holds for OCHAs.

(H, l, n)
isom
' (H, l, n)min ⊕ (H, l, n)cont .

Thus, one can say OCHA is a homotopy algebra !!
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Def. [Cyclic open-closed homotopy algebra]

◦ (H, l,m): an open-closed homotopy algebra,

◦ ωo : Ho ⊗Ho → C , ωc : Hc ⊗Hc → C ;

non-deg. shew sym. inner products of deg = d ∈ Z

◦ Define two degree (d+ 1) multi-linear maps by

Vk+1 = ωc(lk ⊗ 1c) : (Hc)
⊗(k+1)→ C ,

Vp,q+1 = ωo(np,q ⊗ 1o) : (Hc)
⊗p ⊗ (Ho)

⊗(q+1) → C .

• (H, ω = ωc ⊕ ωo, l, n) is a cyclic OCHA.

⇐⇒ Vp,q+1 is cyclic symmetric ;

Vp,q+1(c1, · · · , cp; o1, · · · , oq+1)

= ±Vp,q+1(c1, · · · , cp; o2, · · · , oq+1, o1) ,

and Vk+1 satisfies the graded symmetry

Vk+1(c1, · · · , ck+1) = ±Vk+1(cσ(1), · · · , cσ(k+1)) .
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3.5 Dual supermanifold description

For Hc {ec,i} : basis ⇔ {ψi} : dual coord.

For Ho {eo,i} : basis ⇔ {φi} : dual coord.

Degree is set to be deg(ψi) = −deg(ec,i), etc.

• For the structure constants ;

lk(ec,i1, · · · , ec,ik) = ec,jc
j
i1···ik

,

np,q(ec,i1, · · · , ec,ip; eo,j1, · · · , eo,jq) = eo,jc
j
i1···ip;j1···jq

,

Define a degree one formal vect. field δ := δS+ δD,

δS =
∑

k≥1

1

k!

←−
∂

∂ψj
cji1···ikψ

ik · · ·ψi1 ,

δD =
∑

p+q≥1

1

l!

←−
∂

∂φj
cji1···ip;j1···jq(φ

jq · · ·φj1)(ψip · · ·ψi1) ,

acting on polynomials of ψ and φ. Then

(l + n)2 = 0 is equivalent to (δ)2 = 0
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Dual descriptoin of a cyclic OCHA

◦ For the component description of the symp. str. ;

ωo,ij := ωo(eo,i, eo,j) , ωc,ij := ωc(ec,i, ec,j) ,

define the corresponding Poisson brackets

on the spaces of polynomials of ψ and φ by

( , )o =

←−
∂

∂φi
ωijo

−→
∂

∂φj
, ( , )c =

←−
∂

∂φi
ωijc

−→
∂

∂φj
.

(ωijo , ωijc : the inverse matrices of ωo,ij, ωc,ij)

◦ For the component description of Vk and Vp,q ;

Vk(ec,i1, · · · , ec,ik) := Vi1···ik ∈ C ,

Vp,q(ec,i1, · · · , ec,ip; eo,j1, · · · , eo,jq) := Vi1···ip;j1···jq ∈ C

consider “action” S(φ, ψ) = SS(ψ) +SD(φ, ψ), where

SS =
∑

l

1

l!
Vi1···ilψ

il · · ·ψi1 ,

SD =
∑

p,q

1

p! q
Vi1···ip;j1···jq(φ

jq · · ·φj1)(ψip · · ·ψi1) .



63

• The differential δ = δS + δD is then given by

δS = ( , SS)c , δD = ( , SD)o .

• (δ)2 = 0 can also be expressed as

0 =
1

2
(SS, SS)c , 0 =

1

2
(SD, SD)o + (SD, SS)c ,

which are just sub-recursion relations of

Batalin-Vilkovisky master equation

for Zwiebach’s QUANTUM open-closed SFT !!

(Zwiebach’97)

(when d = −1 ⇔ degree of action S is zero. )
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4. Homotopy algebraic structures
in B-twisted topological Landau-
Ginzburg model

4.1 Weighted homogeneous polynomials
and matrix factorization

Def. For A = C[x1, · · · , xd], f ∈ A is a called a

weighted homogeneous polynomial iff

E

relatively

prime positive integer (weight) (a1, · · · , ad;h) s.t.

d
∑

i=1

aixi
∂

∂xi
f = h · f

holds.

For a weighted homogeneous polynomial f ∈ A with
weight (a1, · · · , ad;h), we define the charge (degree)
for x1, · · · , xd by qi := deg(xi) = 2ai/h.

By definition

Ef = 2 · f , E :=
∑

i

qixi
∂

∂xi

holds. E is called the Euler vector field.



65

Def 6 For a weighted homogeneous function f ∈ A,

a matrix factorization of f is a pair

M0

ψ
//

M1

ϕ
oo

of morphisms between free A-modules s.t.

ϕ ◦ ψ = f · 1M0 , ψ ◦ ϕ = f · 1M1 .

Namely, to find

Q =





0 ϕ

ψ 0



 , ϕ, ψ ∈ Matr×r(A) , s.t. ,

f · 12r×2r = (Q)2 for each r ∈ N.

We have

(Q)2 =





0 ϕ

ψ 0









0 ϕ

ψ 0



 =





ϕ · ψ

ψ · ϕ



 ,

so, ϕ · ψ (= ψ · ϕ) = f · 1r×r.

We regard M := M0⊕M1, M0 = M1 = (A)⊕r, as a
Z2-graded A-free module where M0 and M1 are even
and odd, respectively. (brane anti-brane system)
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Ex 1 (Trivial MF) For f ∈ A,

Q =







0 1

f 0






, or Q =







0 f

1 0







are trivial MFs. These trivial MFs will be ignored,

or play no role even if included.

Ex 2 (MF for An) For f = xn+1 ∈ C[x],

Q =







0 xk

xn+1−k 0






, k = 1, · · · , n

is MFs for f = xn+1.

Ex 3 (MF) For f = g1g
′
1 + g2g

′
2, one can construct

a MF of the form

Q =





















0 0 g1 g2

0 0 g′2 −g′1

g′1 g2 0 0

g′2 −g1 0 0





















.
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In fact,







g1 g2

g′2 −g′1













g′1 g2

g′2 −g1






=







f 0

0 f






.

Ex 4 (MFs for f = x2y + yn−1 (essentially Dn))

Factorize f to f = x · y2 + yk · yn−1−k. The

corresponding MF:





















0 0 x yk

0 0 yn−1−k −y2

y2 yk 0 0

yn−1−k −x 0 0




















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Def 7 (Charge matrix S) Suppose that a matrix

factorization (M,Q) satisfies the following identity

SQ−QS +EQ = 1 ·Q , E :=
d

∑

i=1

qixi
∂

∂xi

for a diagonal 2r × 2r matrix

S := diag(s+1 , · · · , s
+
r ; s−1 , · · · , s

−
r )

with entries in Q. We call S a charge matrix of Q.

Hereafter we consider only matrix factorizations
equipped with charge matrices.
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For two matrix factorizations a = (Ma, Qa) and
b = (Mb, Qb), denote by V (a, b) the space of
homomorphism from Ma to Mb.

(open string stretching between D-brane M and M ′)
Its elements are described as :

V (a, b) 3 Φ =





φ1 φ2

φ3 φ4



 ,

where φi for each i = 1, · · · , 4 is a rb× ra matrix with
entries A.

The diagonal part, φ1 and φ4, is regarded as an
even element in V (a, b) in the sense of Z2-grading.
We denote by V 0(a, b) the corresponding subspace.
Similarly, the off-diagonal matrices φ2 and φ3 defines
an odd element; the corresponding space is denoted by
V −(a, b).



70

One can define the charge for elements in V (a, b).

Def 8 (Charge for Hom) Given two matrix factorizations

a = (Ma, Qa, Sa), b = (Mb, Qb, Sb) of f , V (a, b) can

be decomposed into the direct sum

V (a, b) = ⊕q∈QVq(a, b)

such that each element Φ ∈ V (a, b) satisfies the

following identity

SbΦ− ΦSa +EΦ = qΦ .

Here q = deg(Φ) is called the charge of Φ.
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4.2 Charged weak A∞-algebras, categories

Def. [Charged weak A∞-algebra] Let (V = V 0 ⊕

V 1,m) be a Z2-graded weak A∞-algebra. (V,m) is

called charged if V 0, V 1 are decomposed into the

direct sum

V σ = ⊕q∈QV
σ
q , σ = 0 or 1 ,

where any element v ∈ V σq has its charge ||v|| = q,

and is compatible with the CDG algebra structure:

||mn(v1, · · · , vn)|| = ||mn||+ ||v1||+ · · ·+ ||vn|| ,

||mn|| := 2 − n, for homogeneous elements

v1, · · · , vn ∈ V .

(see Takahashi’05, preprint)
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Prop 1 Given a Z-graded weak A∞-algebra (V,m),

one obtains a charged weak A∞-algebra (V ′,m) by

ι : V 2k → (V ′)02k , ι : V 2k+1→ (V ′)12k+1.

On the other hand, given a charged weak A∞ algebra

(V ′,m′), let us consider a natural projection p : V ′ →

V given by

V 2k := (V ′)02k , V 2k+1 := (V ′)12k+1 ,

and zero otherwise.

Then, (V,m) forms a Z-graded weak A∞-algebra,

where mn = p ◦m′
n ◦ (ι)⊗n.
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We can define

a cyclic charged weak A∞-algebra,

a (cyclic) charged weak A∞-category

in a similar way,

and similar Proposition holds.



74

4.3 Category of matrix factorizations

Lem. Let f ∈ A be a weighted homogeneous

polynomial. Then, (A, f) forms a charged weak

A∞ algebra with m0 = f , m1 = 0, and m2 is the

multiplication in A.

Def. [A differential on V (a, b)] For two matrix

factorizations (Ma, Qa, Sa) and (Mb, Qb, Sb), a

differential D : V σ(a, b)→ V σ+1(a, b) is defined by

D







φ1 φ2

φ3 φ4






= Qb







φ1 φ2

φ3 φ4






−







φ1 −φ2

−φ3 φ4






Qa .

Lem. D2 = 0.

The corresponding cohomology is denoted by

Hσ(a, b) = KerD/ImD, or more precisely,

Hσ(a, b) :=

{Φ ∈ V σ(a, b)|DΦ = 0}/{DΦ|Φ ∈ V σ+1(a, b)} .
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Prop. [DG category of matrix factorizations C(MF )]

For a given f ∈ A,

◦ Ob : the set of all matrix factorizations {a, b, · · · }

with charge matrices S = diag(s+1 , · · · , s
+
d ; s−1 , · · · , s

−
d ),

s+ ∈ 2Z/h , s− ∈ 2Z/h+ 1 .

◦ V (a, b) = Mat2rb×2ra(A),

◦ m1 := D : Vab→ Vab, D(Φ) := QbΦ± ΦQa,

◦ m2 : the product of the matrices

forms a charged DG-category.

As we have seen previously, by projecting this charged

DG category onto a Z2-graded vector spaces, we get a

(Z-graded) DG-category CZ(MF ).

Def 9 We denote the cohomology of a DG category

C by H(C), which forms a graded category (additive

category).
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Thm 1 For a polynomial f ∈ A =

C[x, y, z] of A-D-E type, H(C(MF )) and

in particular H(CZ(MF )) form triangulated

categories, and the following equivalence of

triangulated categories holds :

H(CZ(MF )) ' Db(B −mod) ,

where Db(B −mod) is the derived category

of modules over the path algebra of the

corresponding (A-D-E) Dynkin quiver.

(H.K-Saito-Takahashi, in preparation)

Roughly speaking, this means that the objects and
morphisms in H(CZ(MF )) corresponds to the vertices
and the arrows of the coresponding Dynkin quivers.



77

4.4 Charged OCHA in LG-model

We can define a charged weak OCHA in a similar way.

Prop. For A = C[x1, · · · , xd],

f ∈ A a fixed weighted homogeneous polynomial,

R := A/( ∂f
∂x1

, · · · , ∂f
∂xd

) the Jacobi ring (fix a basis),

let us set Vc = R, Vo = A,

n0,0 = f ,

n1,0 : Vc → Vo the inclusion,

n0,2 : Vo ⊗ Vo → Vo the (commutative) pointwise

multiplication in Vo,

and np,q = 0 for others

and also lk = 0 for k = 0, 1, · · · .

Then, (V := Vc⊕Vo, l, n) forms a charged weak OCHA.

In a similar way, we can define a charged OC homotopy
category of matrix factorizations.
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