$Homological \ perturbation\ theory \ and$

Homological

mirror symmetry:

the \mathbb{R}^2 case

Hiroshige Kajiura

Research Institute for Mathematical Sciences, Kyoto University

Higher Structures in Geometry and Physics

 \sim In honor of Murray Gerstenhaber's 80th and Jim Stasheff's 70th birthday! \sim January 18, 2007 @ IHP-Paris

Motivation: To construct an explicit example of A_{∞} -structures associated to geometry (Fukaya category of Lagrangian submanifolds)

(resolving the transversality problem)

Another motivation: Homological mirror symmetry (Kontsevich'94) of tori (mention at the end of this talk).

Plan of talk:

- \bullet Def. of A_{∞} -algebras, A_{∞} -categories, etc.
- ullet A Fukaya category $Fuk(\mathbb{R}^2)$ on \mathbb{R}^2 and the deRham model $\mathcal{C}_{DR}(\mathbb{R})$
- Main theorem on the homotopy equivalence between $Fuk(\mathbb{R}^2)$ and $\mathcal{C}_{DR}(\mathbb{R})$
- Idea of the proof.

Def. $[A_{\infty}$ -algebra (Stasheff'63)]

 $(V,\mathfrak{m}:=\{m_n\}_{n\geq 1})$ is an A_{∞} -algebra \Leftrightarrow

 $V = \bigoplus_{r \in \mathbb{Z}} V^r$: \mathbb{Z} -graded vector space,

 $\mathfrak{m}:=\{m_n:V^{\otimes n}\to V\}_{n\geq 1}: a \ collection \ of \ degree\ (2-n) \ multilinear \ maps\ s.t.$

$$0 = \sum_{k+l=n+1}^{k-1} \sum_{j=0}^{k-1} \pm m_k(v_1, \dots, v_j, \dots, v_{j+l+1}, \dots, v_{j+l+1}, \dots, v_n),$$

for n=1,2,..., where $v_i\in V^{|v_i|}$, i=1,...,n, and $|m_n|=(2-n)$ implies

$$|m_n(v_1,...,v_n)| = (2-n) + |v_1| + \cdots + |v_n|.$$

The A_{∞} -relations for n=1,2,3 :

for $m_1 = d$, $m_2 = \cdot$, $x, y, z \in V$:

$$i) \quad d^2 = 0 ,$$

$$d(x \cdot y) = d(x) \cdot y + (-1)^{|x|} x \cdot d(y)$$
,

$$(x \cdot y) \cdot z - x \cdot (y \cdot z) = d(m_3)(x, y, z).$$

- $i) \Leftrightarrow (V, d)$ forms a complex.
- $ii) \Leftrightarrow \text{Leibniz rule of } d \text{ w.r.t. to product } \cdot .$
- iii) · is associative **up to homotopy**.

In particular, if $m_3=0$, the product \cdot is strictly associative. An A_{∞} -algebra (V,\mathfrak{m}) with $m_3=m_4=\cdots=0$ is called a differential graded (DG) algebra.

Def. $[A_{\infty}$ -morphism]

Given two A_{∞} -algebras (V,\mathfrak{m}) and (V',\mathfrak{m}') , an A_{∞} -morphism $\mathfrak{f}:(V,\mathfrak{m})\to (V',\mathfrak{m}')$ is a collection of degree (1-k) multilinear maps $\mathfrak{f}:=\{f_k:V^{\otimes k}\to V'\}_{k\geq 1}$ s.t.

$$\sum_{i\geq 1} \sum_{k_1+\cdots+k_n=n} \pm m_i'(f_{k_1}\otimes\cdots\otimes f_{k_i})(v_1,\ldots,v_n)$$

$$= \sum_{\substack{i+1+j=k\\i+l+j=n}} \pm f_k(\mathbf{1}^{\otimes i} \otimes m_l \otimes \mathbf{1}^{\otimes j})(v_1, ..., v_n)$$

for n = 1, 2,

Note: the above relation for n=1 implies $f_1:V\to V'$ forms a chain map

$$f_1:(V,\mathfrak{m})\to (V',\mathfrak{m}').$$

Def. An A_{∞} -morphism $\mathfrak{f}:(V,\mathfrak{m})\to (V',\mathfrak{m}')$ is called an A_{∞} -quasi-isomorphism iff $f_1:(V,m_1)\to (V',m_1')$ induces an isom. on the cohomologies of the two complexes.

Rem. For a given A_{∞} -quasi-isomorphism $\mathfrak{f}:$ $(V,\mathfrak{m}) \to (V',\mathfrak{m}')$, there always exists an inverse A_{∞} -quasi-isomorphism

$$f': (V', \mathfrak{m}') \to (V, \mathfrak{m}).$$

Thus, A_{∞} -quasi-isomorphisms define (homotopy) equivalence between A_{∞} -algebras.

We need a categorical version of these terminologies.

Def. $[A_{\infty}$ -category (Fukaya'93)]

An A_{∞} -category $\mathcal{C} \Leftrightarrow$

$$Ob(C) = \{a, b, \cdots\}$$
: a set of objects

$$V_{ab} := \operatorname{Hom}_{\mathcal{C}}(a,b)$$
 : \mathbb{Z} -graded vector space for $\forall a,b \in \operatorname{Ob}(\mathcal{C})$

a collection of multilinear maps

$$\mathfrak{m} := \{ m_n : V_{a_1 a_2} \otimes \cdots \otimes V_{a_n a_{n+1}} \to V_{a_1 a_{n+1}} \}_{n \ge 1}$$

degree (2-n) defining an A_{∞} -structure.

In particular, C with $m_3 = m_4 = \cdots = 0$ is called a **DG-category**.

Def. Given two A_{∞} -categories \mathcal{C} and \mathcal{C}' , $\mathfrak{f}:=\{f,f_1,f_2,...\}:\mathcal{C}\to\mathcal{C}' \text{ is an } A_{\infty}\text{-functor} \Leftrightarrow$

 $f: \mathrm{O}b(\mathcal{C}) \to \mathrm{O}b(\mathcal{C}')$ a map of objects;

a collection of multilinear maps

$$f_k : \operatorname{Hom}_{\mathcal{C}}(a_1, a_2) \otimes \cdots \otimes \operatorname{Hom}_{\mathcal{C}}(a_k, a_{k+1})$$

$$\to \operatorname{Hom}_{\mathcal{C}'}(f(a_1), f(a_{k+1})), \quad k = 1, 2, \dots$$

degree (1-k) satisfying the defining equation of an A_{∞} -morphism.

We call \mathfrak{f} homotopy equivalence iff f: $\mathrm{O}b(\mathcal{C}) \to \mathrm{O}b(\mathcal{C}')$ is bijection and $f_1:$ $\mathrm{Hom}_{\mathcal{C}}(a,b) \to \mathrm{Hom}_{\mathcal{C}'}(f(a),f(b))$ induces an isom. on the cohomologies for $\forall a,b \in \mathrm{O}b(\mathcal{C})$.

Fukaya category and its deRham model

Fukaya category $Fuk(\mathbb{R}^2,\mathfrak{F}_N)$ for \mathbb{R}^2

Let $Fuk(\mathbb{R}^2, \mathfrak{F}_N)$ be an A_{∞} -category satisfying the following two conditions:

For a fixed integer $N \geq 2$, let $\{f_1, ..., f_N\}$ be a collection of functions on \mathbb{R} s.t.

$$L_a: y = \frac{df_a}{dx} = t_a x + s_a , \qquad t_a, s_a \in \mathbb{R}$$

is a line in \mathbb{R}^2 with coordinates (x,y) (a=1,...,N).

Denote by $\mathfrak{F}_N := \{f_1, ..., f_N\} = \{1, ..., N\}$ such a collection satisfying:

- $t_a \neq t_b$ for $\forall a, b \in \mathfrak{F}_N$.
- Not more than three lines intersect at the same point in \mathbb{R}^2 .

Condition 1 $\forall a \neq b \in \mathfrak{F}_N$,

$$V_{ab}^{0} = \mathbb{R} \cdot [v_{ab}], \quad V_{ab}^{1} = 0, \quad (t_a < t_b),$$

$$V_{ab}^{0} = 0, \quad V_{ab}^{1} = \mathbb{R} \cdot [v_{ab}], \quad (t_a > t_b).$$

Here, $[v_{ab}]$ is the base of V_{ab} labeled by the intersection point $v_{ab} (= v_{ba})$ of L_a and L_b .

Condition 2 (Transversal A_{∞} -products)

For a fixed $n \geq 2$ and $a_1, ..., a_{n+1} \in \mathfrak{F}_N$ s.t.

$$a_j \neq a_k \text{ for } j \neq k = 1, ..., n + 1,$$

$$m_n: V_{a_1 a_2} \otimes \cdots \otimes V_{a_n a_{n+1}} \to V_{a_1 a_{n+1}}$$
 is

$$m_n([v_{a_1 a_2}], ..., [v_{a_n a_{n+1}}]) = c_{a_1 ... a_{n+1}}[v_{a_1 a_{n+1}}]$$

where, if $\vec{v} := (v_{a_1 a_2}, ..., v_{a_n a_{n+1}}, v_{a_{n+1} a_1})$ forms a clockwise convex (n+1)-gon,

$$c_{a_1 \cdots a_k} = \pm e^{-Area(v)}$$

for $Area(\vec{v})$ the area of the (n+1)-gon and $c_{a_1\cdots a_{n+1}}=0$ otherwise.

 $m_1: V_{ab} \to V_{ab}$ is set to be $m_1 = 0 \ \forall a \neq b$.

For transversal A_{∞} -products, the A_{∞} -relation follows from a polygon which has one nonconvex vertex.

There exist two ways to divide such a polygon into two convex polygons.

In this figure, the ways of dividing the area X+Y+Z into two are

(i)
$$X + (Y + Z)$$
 or (ii) $(X + Y) + Z$.

Corresponding to (i) and (ii) one has

$$(i): + m_5(v_{ab}, m_4(v_{bc}, v_{cd}, v_{de}, v_{ef}), v_{fg}, v_{gh}, v_{hi})$$
$$= e^{-X - (Y + Z)} v_{ai} ,$$

$$(ii): -m_6(v_{ab}, v_{bc}, v_{cd}, v_{de}, m_3(v_{ef}, v_{fg}, v_{gh}), v_{hi})$$
$$= -e^{-(X+Y)-Z}v_{ai}.$$

Thus, we obtain

$$0 = +m_5(v_{ab}, m_4(v_{bc}, v_{cd}, v_{de}, v_{ef}), v_{fg}, v_{gh}, v_{hi})$$
$$-m_6(v_{ab}, v_{bc}, v_{cd}, v_{de}, m_3(v_{ef}, v_{fg}, v_{gh}), v_{hi}),$$

which is just one of the A_{∞} -relations.

On the other hand, we define a DG-category $\mathcal{C}_{DR}(\mathbb{R},\mathfrak{F}_N)$ as follows:

Def. $[\mathcal{C}_{DR}(\mathbb{R},\mathfrak{F}_N)]$

- $\circ \operatorname{Ob}(\mathcal{C}_{DR}(\mathbb{R},\mathfrak{F}_N)) = \mathfrak{F}_N ;$
- $\circ \ \forall a,b \in \mathfrak{F}_N, \ \operatorname{Hom}(a,b) = \oplus_{r=0,1} \Omega^r_{ab}(\mathbb{R}),$ $\Omega^0_{ab} := \mathcal{S}(\mathbb{R}), \ \Omega^1_{ab} := \mathcal{S}(\mathbb{R}) \cdot dx,$ where, $\mathcal{S}(\mathbb{R})$ is the Schwartz space,
 and dx is the base of one-form on \mathbb{R} ;
- \circ a differential $d_{ab}:\Omega^0_{ab}\to\Omega^1_{ab}$ by

$$d_{ab} := d - df_{ab} \wedge,$$

where $f_{ab} := f_a - f_b$;

 \circ a product $\Omega_{ab}^{r_{ab}}\otimes\Omega_{bc}^{r_{bc}}\to\Omega_{ac}^{r_{ab}+r_{bc}}$ by the usual wedge product \wedge .

Thm. \exists an A_{∞} -category $Fuk(\mathbb{R}^2,\mathfrak{F}_N)$ s.t.

- $\circ \operatorname{Ob}(Fuk(\mathbb{R}^2,\mathfrak{F}_N))=\mathfrak{F}_N;$
- $\circ \operatorname{Hom}_{Fuk(\mathbb{R}^2,\mathfrak{F}_N)}(a,b)$ satisfies the condition $1 \ \forall a \neq b \in \mathfrak{F}_N;$
- the A_{∞} -structure $\{m_k\}_{k\geq 1}$ of $Fuk(\mathbb{R}^2,\mathfrak{F}_N)$ satisfies the condition 2;
- $\circ Fuk(\mathbb{R}^2,\mathfrak{F}_N)$ is homotopic to $\mathcal{C}_{DR}(\mathbb{R},\mathfrak{F}_N)$ as A_∞ -categories.

We can prove this by constructing such an A_{∞} -category $Fuk(\mathbb{R}^2,\mathfrak{F}_N)=:\mathcal{C}(\mathfrak{F}_N)$ explicitly based on Kontsevich-Soibelman'00's proposal combining homological perturbation theory (HPT) and Harvey-Lawson'01's argument on Morse theory.

Idea of the proof

The construction of the A_{∞} -category $\mathcal{C}(\mathfrak{F}_N)$ is divided into 2 steps.

- I. Apply HPT to $\mathcal{C}_{DR}(\mathbb{R},\mathfrak{F}_N)=\mathcal{C}_{DR}(\mathfrak{F}_N)$ and construct a one parameter family of A_{∞} -categories $\widetilde{\mathcal{C}}_{\epsilon}(\mathfrak{F}_N)$ which are homotopic to $\mathcal{C}_{DR}(\mathfrak{F}_N)$.
- II. Consider the $\underline{\liminf}\, \tilde{\mathcal{C}}(\mathfrak{F}_N) := \underline{\lim}_{\epsilon \to 0} \tilde{\mathcal{C}}_{\epsilon}(\mathfrak{F}_N)$ and find the minimum subcategory $\mathcal{C}(\mathfrak{F}_N) \subset \tilde{\mathcal{C}}(\mathfrak{F}_N)$ with the same objects \mathfrak{F}_N .

I. HPT and the A_{∞} -category $\widetilde{\mathcal{C}}_{\epsilon}(\mathfrak{F}_N)$

A version of homological perturbation theory (developed by Gugenheim, Lambe, Stasheff, Huebschmann, Kadeishvili, ...) we shall employ is as follows.

Thm. Given an A_{∞} -algebra (V,\mathfrak{m}) , suppose we have linear maps $h:V^r\to V^{r-1}$ and $P:V^r\to V^r$ satisfying

$$dh + hd = Id_V - P$$
, $P^2 = P$, $(d := m_1)$.

Then, \exists a canonical way to construct an A_{∞} -structure \mathfrak{m}' on P(V) s.t. $(P(V),\mathfrak{m}')$ is homotopy equivalent to (V,\mathfrak{m}) .

Note that h gives a Hodge decomposition of (V,d) if dP=0, where P(V)=H(V).

 \star Apply this HPT to $\mathcal{C}_{DR}(\mathfrak{F}_N)$.

Construct h_{ab} on $\operatorname{Hom}_{\mathcal{C}_{DR}(\mathfrak{F}_N)}(a,b) = \Omega_{ab}$.

- For any $a \in \mathfrak{F}_N$, we set $h_{aa} = 0$.
- $\circ\quad \text{For } \frac{a\neq b\in \mathfrak{F}_N}{a\neq b}, \text{ fix } \epsilon\in (0,1] \text{ and define } d^\dagger_{\epsilon;ab}:\Omega^r_{ab}\to \Omega^{r-1}_{ab} \text{ by }$

$$d_{\epsilon;ab}^{\dagger} = \epsilon d^{\dagger} - \iota_{\operatorname{grad}(f_{ab})}.$$

Can show that $H_{\epsilon}:=d_{ab}d_{\epsilon;ab}^{\dagger}+d_{\epsilon;ab}^{\dagger}d_{ab}$ has only non-negative real eigenvalues.

In particular,

[for $\epsilon=1$], H_1 is the Hamiltonian of a harmonic oscillator,

[for
$$\epsilon=`0`$$
], $H_0=e^{f_{ab}}\mathcal{L}_{\mathrm{grad}(f_{ab})}e^{-f_{ab}}.$
$$(\mathbf{cf.}\ d_{ab}:=d-df_{ab}\wedge\ =e^{f_{ab}}\cdot d\cdot e^{-f_{ab}}.\)$$

Let $\psi_t:\Omega^r_{ab}\to\Omega^r_{ab}$, $t\in[0,\infty)$, be a linear map satisfying $\psi_0=Id$ and

$$\frac{d\psi_t}{dt} = -H_{\epsilon}\psi_t.$$

Then, we obtain

$$d_{ab}h_{\epsilon;ab} + h_{\epsilon;ab}d_{ab} = Id_{\Omega_{ab}} - P_{\epsilon;ab},$$

$$h_{\epsilon;ab} := \int_0^\infty dt \ d_{\epsilon;ab}^{\dagger} \psi_t, \quad P_{\epsilon;ab} := \lim_{t \to \infty} \ \psi_t.$$

Here $P_{\epsilon;ab}$ defines a projection;

$$P_{\epsilon;ab}\Omega_{ab}^{0} = \operatorname{Ker}(d_{ab} : \Omega_{ab}^{0} \to \Omega_{ab}^{1}),$$

$$P_{\epsilon;ab}\Omega_{ab}^{1} = \operatorname{Ker}(d_{\epsilon;ab}^{\dagger} : \Omega_{ab}^{1} \to \Omega_{ab}^{0}).$$

Choose bases $\mathbf{e}_{\epsilon;ab}$ of $P_{\epsilon;ab}\Omega^r_{ab}$, r=0,1, by

$$\mathbf{e}_{\epsilon;ab} = const \cdot e^{f_{ab}}, \qquad t_a < t_b$$

(Gaussian normalize so that $\mathbf{e}_{\epsilon;ab}(x_{ab}) = 1$)

$$\mathbf{e}_{\epsilon;ab} = const \cdot e^{-\frac{1}{\epsilon}(f_{ab})} dx, \quad t_a > t_b.$$

(Gaussian normalize so that $\int_{-\infty}^{\infty} \mathbf{e}_{\epsilon;ab} = 1$)

In the limit $\epsilon \to 0$, the degree one base $\mathbf{e}_{\epsilon;ab}$ $(t_a > t_b)$ becomes the **delta function** localized at the point x_{ab} $(= x(v_{ab}))$.

In the limit $\epsilon \to 0$, $h_{ab} := \lim_{\epsilon \to 0} h_{\epsilon;ab}$ and $P_{ab} := \lim_{\epsilon \to 0} P_{\epsilon;ab}$ turn out to be

$$h_{ab} = \int_0^\infty dt e^{f_{ab}} \varphi_t^* (e^{-f_{ab}} \iota_{\operatorname{grad}(f_{ab})}),$$

$$P_{ab} = \lim_{t \to \infty} e^{f_{ab}} \varphi_t^* e^{-f_{ab}},$$

where $\varphi_t: \mathbb{R} \to \mathbb{R}$ is the flow defined by

$$\frac{d\varphi_t}{dt} = \operatorname{grad}(f_{ab}), \qquad \varphi_0 = Id.$$

Let us consider the following case:

$$h_{ab}(\delta(x-p)dx)$$

$$= \int_0^\infty dt e^{f_{ab}} \varphi_t^* e^{-f_{ab}} \delta(x-p) \frac{df_{ab}}{dx}(x)$$

$$= e^{f_{ab}} (\varphi_t^* e^{-f_{ab}})|_{\varphi_t(x)=p}(x).$$

$$h_{ab}(\delta(x-p)dx)$$
 for $t_a < t_b$ and $x_{ab} < p$

(step function twisted by $e^{f_{ab}}$)

 \star Now, let us derive the A_{∞} -products $\{m'_n\}$ of $\tilde{\mathcal{C}}(\mathfrak{F}_N)$ with the identifications

$$\lim_{\epsilon \to 0} P_{\epsilon;ab} \Omega_{ab} =: \operatorname{Hom}_{\tilde{\mathcal{C}}(\mathfrak{F}_N)}(a,b) \simeq V_{ab},$$

$$\lim_{\epsilon \to 0} \mathbf{e}_{\epsilon;ab} = \mathbf{e}_{ab} \longleftrightarrow [v_{ab}]$$
for $a \neq b$.

ullet Example for $m_3'(\mathbf{e}_{ab},\mathbf{e}_{bc},\mathbf{e}_{cd})$

HPT implies $m_3'(\mathbf{e}_{ab}, \mathbf{e}_{bc}, \mathbf{e}_{cd}) =$

$$= -e^{-(X+Y+Z)} \cdot \mathbf{e}_{ad}.$$

• An example of non-transversal product:

$$m_3'(\mathbf{e}_{ab},\mathbf{e}_{bc},\mathbf{e}_{cd},\mathbf{e}_{da})$$

$$= e^{-(X+Y+Z)} \cdot (\vartheta_{ab} - \vartheta_{da}).$$

By observations as above, we will define

$$V_{aa} = \operatorname{Hom}_{\mathcal{C}(\mathfrak{F}_N)}(a, a) \subset \operatorname{Hom}_{\tilde{\mathcal{C}}(\mathfrak{F}_N)}(a, a)$$

by introducing $\vartheta_{ab}=\vartheta_{v_{ab}}$ (step function), etc., as its generators.

II. Subcategory of $\widetilde{\mathcal{C}}(\mathfrak{F}_N) := \lim_{\epsilon \to 0} \widetilde{\mathcal{C}}_{\epsilon}(\mathfrak{F}_N)$

Consider the minimum subcategory $C(\mathfrak{F}_N) \subset \tilde{C}(\mathfrak{F}_N)$ with the same set of objects \mathfrak{F}_N and

$$\operatorname{Hom}_{\mathcal{C}(\mathfrak{F}_N)}(a,b) = \operatorname{Hom}_{\tilde{\mathcal{C}}(\mathfrak{F}_N)}(a,b) = V_{ab}$$

for $a \neq b$.

Then, for any $a \in \mathfrak{F}_N$, V_{aa} (with comm. DGA structure) is defined purely algebraically by the following idea.

For any $v \in \mathfrak{F}_N - \{a\}$,

 \circ introduce degree zero generator ϑ_v and degree one generator δ_v which are supposed to be

$$\delta_{v_{ab}} = \lim_{\epsilon \to 0} (\mathbf{e}_{\epsilon;ab} \wedge \mathbf{e}_{\epsilon;ba}),$$

$$\vartheta_{v_{ab}}(x) = \int_{-\infty}^{x} dx' \delta_{v_{ab}}(x').$$

o appropriate relations

$$\vartheta_v \cdot \vartheta_{v'} = \vartheta_{v'}$$
 for $x(v) < x(v')$, etc.,

- \circ V_{aa}^0 and V_{aa}^1 are the degree zero and one vector space of elements generated by ϑ_v , δ_v s.t. they are zero at $x=\pm\infty$.
- o differential $d:V^0_{aa}\to V^1_{aa}$ by extending $d(\vartheta_v)=\delta_v$ by the Leibniz rule.

Note. $(\vartheta_v)^2 \neq \vartheta_v$, etc.,

ullet More examples of non-transversal A_{∞} -products of $\mathcal{C}(\mathfrak{F}_N)$

For $t_a < t_b$,

$$m_2'((\vartheta_{v_{ab}})^n, [v_{ab}]) = m_2'([v_{ab}], (\vartheta_{v_{ab}})^n) = \frac{1}{2^n}[v_{ab}],$$

$$m_3'([v_{ba}], (\vartheta_{v_{ab}})^n, [v_{ab}]) = \frac{1}{n+1} \vartheta_{v_{ab}} (1 - (\vartheta_{v_{ab}})^n),$$
 for $n \ge 1$,

. . .

k elements at v_{bc}

$$m'_{2+k}([v_{ab}], \delta_{v_{bc}}, ..., \delta_{v_{bc}}, [v_{bc}], \delta_{v_{bc}}, ..., \delta_{v_{bc}}, [v_{cd}])$$

$$= \frac{(-1)^k}{k!} e^{-(X+Y+Z)} \cdot [v_{ad}].$$

* The precise proof of the main theorem is given by **defining** $\mathcal{C}'_{DR}(\mathfrak{F}_N)$ and $\tilde{\mathcal{C}}_{DR}(\mathfrak{F}_N)$ s.t.

Applying HPT for $\mathcal{C}'_{DR}(\mathfrak{F}_N)$ gives $\mathcal{C}(\mathfrak{F}_N)$.

Future directions

- Generalization to higher dimensional case (though not so straightforward)
- ullet The \mathbb{R}^{2n} case can be applied to the T^{2n} case.

(**Note.** In this case, each object has identity morphism.)

- ⇒ ∘ application to homological mirror symmetry for tori;
- \Rightarrow o can produce geometric examples of finite dim. A_{∞} -algebra
- \circ (Noncommutative, etc.,) deformation of these A_{∞} -categories ??
- o building block to more general mfds?