fg-型特異点のミルナー束と両立する 接触構造について

Masaharu ISHIKAWA

Tohoku University

24 January, 2011

PLAN OF THIS TALK

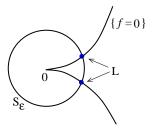
- $\S1$. Milnor fibrations and contact structures
- §2. Milnor fibrations of type $f\bar{g}$
- §3. Fibered, Seifert multilinks in homology 3-spheres
- §4. PT graph links in S^3

$\S1$. Milnor fibrations and contact structures

$$egin{aligned} f:(\mathbb{C}^{n+1},0)&
ightarrow(\mathbb{C},0): ext{ polynomial map}\ S_arepsilon:&=\{z\in\mathbb{C}^{n+1}\mid\|z\|=arepsilon\}\ \ 0$$

Milnor fibration Theorem ('68)

$$rac{f}{|f|}:S^{2n+1}_arepsilon\setminus\{f=0\} o S^1$$
 is a locally trivial fibration.



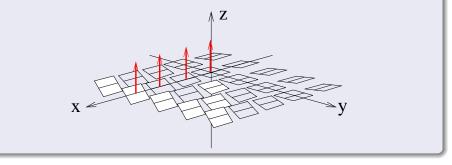
M: an oriented, closed, smooth 3-manifold

- lpha : 1-form on M s.t. $lpha \wedge d lpha > 0$
- $\xi = \ker \alpha$: positive contact structure

 R_lpha : Reeb vector field of lpha ($\Leftrightarrow dlpha(R_lpha,\cdot)=0$, $lpha(R_lpha)=1$)

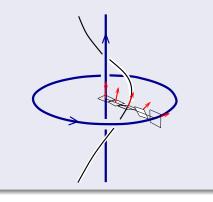
The standard contact structure on \mathbf{R}^{3}

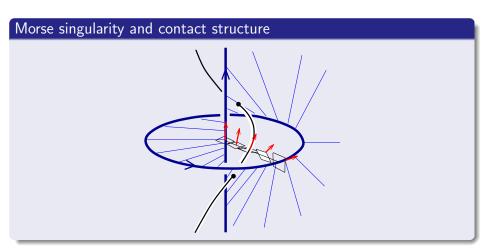
 $lpha = dz + x dy. \ lpha \wedge dlpha = dx \wedge dy \wedge dz. \ {m R}_{lpha} = {\partial \over \partial z}$



The standard contact structure on S^3

$$lpha=rac{1}{2}\sum_{i=1,2}(x_idy_i-y_idx_i)$$
 on $S^3\subset \mathbb{R}^4=\mathbb{C}^2$



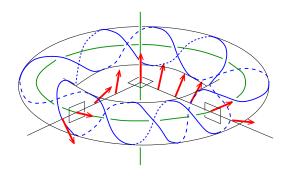


We will say that the Milnor fibration of the Morse singularity is **compatible** with the standard contact structure.

To define the notion of "compatible" for, for example, the Milnor fibration of $f(z, w) = z^p + w^q$, we need to allow a perturbation of the 2-plane field.

Definition

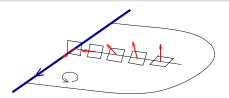
Two contact manifolds (M, ξ) and (M', ξ') are said to be contactomorphic if there exists a diffeomorphism $\varphi : M \to M'$ such that $d\varphi(\xi) = \xi'$.



Definition [Giroux '00]

A contact structure ξ is called compatible with a fibered link L in a 3-manifold M if there exist a contactomorphism $(M,\xi) \to (M,\xi')$ and a contact form α with $\xi' = \ker \alpha$ such that

- R_{lpha} is tangent to L in the same direction, and
- R_{α} is positively transverse to the interiors of the fiber surfaces of *L*.



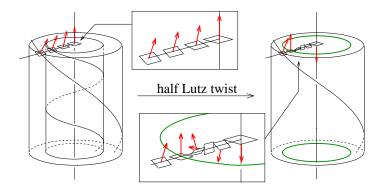
Theorem [Thurston-Winkelnkemper ('75)]

Any fibered link in a 3-manifold admits a compatible contact

structure.

Masaharu ISHIKAWA (Tohoku University)

- A disk D such that T_xD is tangent to ξ_x at each point $x \in \partial D$ is called an overtwisted disk.
- A contact structure is called overtwisted if it has an overtwisted disk.
- A contact structure is called tight if it has no overtwisted disk.



Contact structures on S^3

Theorem [Eliashberg, etc...]

 S^3 admits

- an overtwisted contact structure for each homotopy class of
 - 2-plane fields, and
- a unique tight contact structure, called the standard contact structure.

Remark

The Milnor fibrations are always compatible with the standard contact structure on S^3 .

Therefore, we cannot expect any contribution of "contact structures" to the study of the Milnor fibrations in low-dimensional topology. There are several generalizations:

• Plane curves in \mathbb{C}^2 [Rudolph]

• Real singularities of $(\mathbb{R}^4, 0) \rightarrow (\mathbb{R}^2, 0)$ [Milnor, Perron, Rudolph, Seade, Pichon, Oka, etc...]

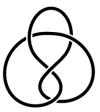
Milnor fibrations of higher-dimension
 [Ustilovsky, van Koert, Caubel-Némethi-PopescuPampu, etc...]

Theorem [Milnor ('68)]

If $f: (\mathbb{R}^{2n+2}, 0) \to (\mathbb{R}^2, 0)$ has an isolated singularity at the origin then there exists a locally trivial fibration $S_{\varepsilon} \setminus \{f = 0\} \to S^1$.

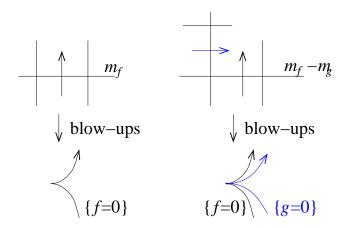
Theorem [Perron ('81)]

There exists a polynomial map $f: (\mathbb{R}^4, 0) \to (\mathbb{R}^2, 0)$ with an isolated singularity at the origin such that $L = \{f = 0\} \cap S_{\varepsilon}$ is the "figure eight knot".

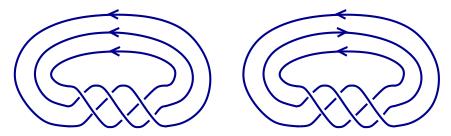


Theorem [Pichon-Seade (2008)]

Let $f,g: (\mathbb{C}^2,0) \to (\mathbb{C},0)$ be polynomial maps. Then $\frac{f\bar{g}}{|f\bar{g}|}: S_{\varepsilon} \setminus \{f\bar{g}=0\} \to S^1$ is a locally trivial fibration in most cases.



The link of $(f\bar{g}, 0)$:



Remark that $(\bar{g},0) \underset{\rm ori. \ pres.}{\cong} (g,0)$, hence its compatible contact structure is standard.

Theorem [I. (2010)]

 $rac{far{g}}{|far{g}|}:S_arepsilon\setminus\{far{g}=0\} o S^1$ is compatible with an overtwisted contact structure.

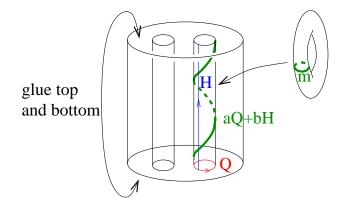
Outline of the proof:

- (1) Prove the assertion for torus links with reversed orientation.
- (2) Extend the proof for cablings.

Note: In Step (2), we need the notion of multilinks.

§3. Fibered, Seifert multilinks in homology 3-spheres

$$egin{aligned} \mathcal{S} &= S^2 \setminus igsquartup{k}{i=1} ext{int} \, D_i^2 \ \Sigma &= (\mathcal{S} imes S^1) \cup igcup_{i=1}^k (D^2 imes S^1)_i ext{ with } \mathfrak{m}_i \mapsto a_i Q_i + b_i H. \end{aligned}$$



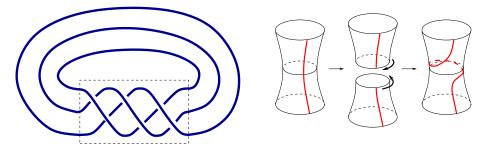
We assume that $\sum_{i=1}^{k} b_i a_1 \cdots a_{i-1} a_{i+1} \cdots a_k = 1$ s.t. Σ is a homology 3-sphere.

Definition

A link in Σ consisting of a union of orbits in Σ is called a Seifert link in Σ .

Definition

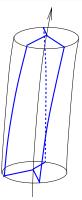
We say a Seifert link is positively-twisted (PT for short) if $a_1a_2\cdots a_n>0.$



 $L=L_1\cup\cdots\cup L_k$, where L_i is a connected component. $\underline{m}=(m_1,\cdots,m_k)$, where $m_i\in\mathbb{Z}.$

Definition

The link $L(\underline{m}) = m_1 L_1 \cup \cdots \cup m_k L_k$ is called a multilink.



The figure is an example with multiplicity = 3

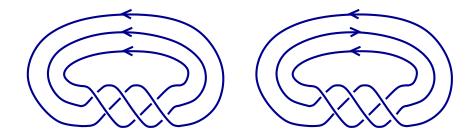
The multiplicities are used when you consider the fiber surface.

Such a fiber surface appears when you study a fiber surface with JSJ-decomposition.

Remark. "Rational open book" in [Baker-Etnyre-HornMorris])

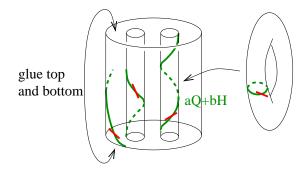
Theorem 1

Let L be a fibered PT Seifert multilink in a homology S^3 . Then, the contact structure compatible with $L(\underline{m})$ is tight if and only if either $m_1, \dots, m_k > 0$ or $m_1, \dots, m_k < 0$.



We may say that the orientatoin of $L(\underline{m})$ is canonical if either $m_1, \dots, m_k > 0$ or $m_1, \dots, m_k < 0$.

Sketch of the proof (1/3).



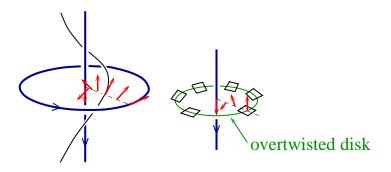
• Not canonical \Rightarrow OT

(1) There exists a 1-form β on the holed sphere with $d\beta > 0$ such that ker $\alpha = \ker(\beta + dt)$ has suitable slopes on $\partial (D^2 \times S^1)_i$

$$\Leftrightarrow \sum_{i=1}^k rac{b_i}{a_i} = rac{1}{a_1 \cdots a_k} > 0.$$

Sketch of the proof (2/3).

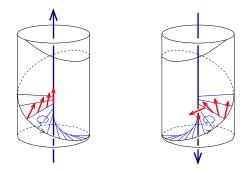
(2) Extend α into $(D^2 \times S^1)_i$ canonically if the orientation is the same as H and do it as shown in the figure if the orientation is reversed.



Thus, we can detect an overtwisted disk.

Sketch of the proof (3/3).

(3) To complete the proof, we need to check that the contact structure is actually compatible, and this is done as shown in the figures below.



- Canonical \Rightarrow tight
- ξ is symplectically fillable (cf. [Lisca-Matić]).

- §4. PT graph links in S^3
- Σ_1, Σ_2 : homology S^3 's.
- L_i : a Seifert link in Σ_i .
- S_i ; a link component of L_i .

 $(\mathfrak{m}_i,\mathfrak{l}_i)$: a preferred meridian-longitude pair of $\Sigma_i\setminus \operatorname{int} N(S_i).$

Definition

Glue $\Sigma_1 \setminus \operatorname{int} N(S_1)$ and $\Sigma_2 \setminus \operatorname{int} N(S_2)$ by the map

 $(\mathfrak{m}_1,\mathfrak{l}_1)\mapsto (\mathfrak{l}_2,\mathfrak{m}_2).$

The obtained link $(L_1 \setminus S_1) \cup (L_2 \setminus S_2)$ is called a splice of L_1 and L_2 along S_1 and S_2 .

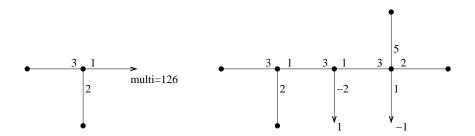
Remark. The ambient space of the splice is again a homology S^3 .

Definition

A link obtained by iterating splicing of Seifert links is called a graph link

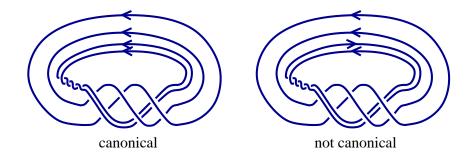
Definition

A link obtained by iterating splicing of PT Seifert links is called a PT graph link.



Theorem 2

Let L be a fibered PT graph link in S^3 . Then, the contact structure compatible with L is tight if and only if the multiplicities are either all positive or all negative.



Remark. The theorem about $f\bar{g}$ follows from Theorem 2.

Sketch of the proof.

We prepare two contact forms compatible with L.

- α_1 : obtained by Thurston-Winkelnkemper's construction.
- α_2 : obtained by splicing Seifert multilinks.
- Canonical \Rightarrow tight

Canonical \Rightarrow each splice is like a positive cabling \Rightarrow tight.

- Not canonical \Rightarrow OT
 - (1) Choose α_1 and let $N(S_i)$ be a solid torus for splicing. Then $(N(S_i), \ker \alpha_1)$ does not contain a half Lutz tube.
 - (2) Choose α_2 then \exists a half Lutz tube N' with OT disk D.
 - (3) \exists contactom. $\phi : (S^3, \ker \alpha_2) \to (S^3, \ker \alpha_1)$
 - s.t. $N(S_i) \subset \phi(N')$ and $\phi(\partial D) \subset \phi(N') \setminus N(S_i)$.
 - (4) $\phi(D)$ remains in $(S^3, \ker \alpha_1)$ as an OT disk after the splicings.

Conjecture

Let L be a fibered link in S^3 , with several components, compatible with tight contact structure. Let L' be a link obtained from L by reversing the orientations of some, but not all, link components. If L' is fibered then its compatible contact structure is overtwisted.

Further studies

- ? Contact structures of other real singularities (e.g. mixed singularities of [Oka])
- ? Higher-dimensional quasipositive surfaces
- ? Contact structures and Seifert fibrations in higher-dimension.

Thank you for your attention!