differential systems の characteristics と その応用

垣江 邦夫

Introduction

古典的例1.n変数 $x=(x_1,\ldots,x_n)$ の関数 u(x)の1階の偏導関数を $p_i=u_{x_i}$ で表す. uを未知関数とする次の1階偏微分方程式系を考える.

$$F_j(x_i, \dots, x_n, u, p_1, \dots, p_n) = 0 (j = 1, \dots, r).$$

(†)

$$[F_j, F_k] = \sum_{i=1}^n \left(\frac{dF_j}{dx_i} \frac{\partial F_k}{\partial p_i} - \frac{dF_k}{dx_i} \frac{\partial F_j}{\partial p_i}\right)$$

(ここに
$$\frac{d}{dx_i} = \frac{\partial}{\partial x_i} + p_i \frac{\partial}{\partial u}$$
) (bracket)を用いる.

Definition. (†) が包合系 (system in involution) $\iff [F_j, F_k] \equiv 0 \pmod{F_1, \dots, F_r}$.

・(†)が包合系ならば、常微分方程式に帰着して 解くことができる. (さまざまな方法が周知) そうであることの一つの説明: 接触要素の空間 $J_1 = \{(x_1, \dots, x_n, u, p_1, \dots, p_n)\}\$ における contact 1-form $\theta = du - \sum_{i=1}^{n} p_i dx_i$ を 多様体 $M = \{P \in J_1; F_j(P) = 0 (j = 1, ..., r)\}$ に制 限したものを θ_M で表す.

• θ_M Lauchy characteristic vectors

$$X_{F_j} = \sum_{i=1}^{n} \left(\frac{\partial F_j}{\partial p_i} \frac{d}{dx_i} - \frac{dF_j}{dx_i} \frac{\partial}{\partial p_i} \right)$$

 $(j=1,\ldots,r)$ を有する.

注.F's が $F_j = \sum_{i=1}^n a^{(j)}(x) p_i$ の形であるときは、この理論のdual は Frobeniusの理論に他ならない.

古典的例2.2変数x,yの関数z(x,y)の導関数を $p=z_x,q=z_y,r=z_{xx},s=z_{xy},t=z_{yy}$ で表す. zを未知関数とする2階の偏微分方程式を考える.

$$F(x, y, z, p, q, r, s, t) = 0.$$
 (‡)

この偏微分方程式は 一般に、例1のように常微分方程式に帰着させて解を求めることはできない. その解法と解の性質は方程式の構造(型)により異なる.

z=z(x,y)を(‡)の解とする.これに対し(x,y,z,p,q,r,s,t)-空間の 曲面S:

$$z = z(x, y), p = z_x(x, y), q = z_y(x, y),$$

 $r = z_{xx}(x, y), s = z_{xy}(x, y), t = z_{yy}(x, y).$

が対応する. S上に曲線Cをとる:

$$\mathcal{C}: x = x(\tau), y = y(\tau), z = z(\tau), p = p(\tau), q = q(\tau),$$

$$r = r(\tau), s = s(\tau), t = t(\tau)$$

問題: \mathcal{C} 上において, x, y, z, p, qの値からr, s, tが一意的に定まるか?

(Cauchy問題に由来. 一意に定まらないとき、 C を特性曲線と呼ぶ).

これは方程式系

$$F = 0, rdx + sdy = dp, sdx + tdy = dq$$

がただ一つの解r, s, tを有するかという問題となる.この方程式系のJacobian は

$$F_r(dy)^2 - F_s(dy)(dx) + F_t(dx)^2. \qquad (\sharp)$$

(以下この式を $\lambda = \frac{dy}{dx}$ に関する2次多項式とも見なす。)

従って \mathcal{C} 上(\sharp)が0とならないならば, r, s, tは一意的に定まる.

仮定:(\sharp)は \mathcal{C} 上相異なる2実根 λ , μ を有する,

 $F_r \neq 0$, $C \perp dy - \lambda dx = 0$ が成り立つ.

このとき 接触条件とdF=0のほかに \mathcal{C} 上成り立つもう一つの新しい関係式が導かれる:

$$dy - \lambda dx = 0,$$

$$dz - pdx - qdy = 0,$$

$$dp - rdx - sdy = 0, dq - sdx - tdy = 0,$$

$$dr + \mu ds + \frac{X}{F_r}dx = 0, ds + \mu dt + \frac{Y}{F_r}dx = 0.$$

 $ZZIC \quad X = F_x + pF_z + rF_p + sF_q, Y = \cdots.$

この系を(Monge) characteristic systemと呼ぶ.

上の状況において $dy - \lambda dx \ge dy - \mu dx$ は characteristic covector と呼ばれる.

2階偏微分方程式F=0は、 (\sharp) の2根の状況に応じて、実で相異なるとき双曲型(hyperbolic)、実根を有さないとき楕円型(elliptic)であるといわれる。

上の例に3種のcharacteristicsが現れた.

- ・characteristic covectors: 自然に一般の differential systems へ一般化される.
- ・Cauchy characteristics: Cartanが一般的な理論を確立している.
- ・Monge characteristics: Darboux達が"求積論"などにおいて利用.しかし自然で明確な定義がまだ与えられていなかった.例えば 一般のdifferential systemへ拡張する方法・手順は まだ与えられていなかった.

その後に発展したinvolutive differential systems の理論(E. Cartan, Kähler,etc., Kuranishi, Goldschmidt, Spencer, Matsuda,....)に基づく 議論を行うことにより 一般のdifferential system に対し一つの自然な定義を与えることが でき. それにより古典理論の一拡張ができる. ・・・この部分が講演の主要部分、

Terminologies, Notations, etc.

関数、多様体などは differentiable of class C^{∞} (or real analytic) であるとする .

 \clubsuit Σ : an exterior differential system (EDS) on a manifold M

 $\mathcal{F}(M)=\{ ext{the ring of all functions on } M \},$ $\wedge^k(M)=\{ ext{the set of all exterior differential forms of degree } k \}, \ \wedge^0(M)=\mathcal{F}(M).$ $\wedge(M)=\sum_{k=0}^{\infty}\wedge^k(M)$: a graded $\mathcal{F}(M)$ -module.

 $\land (M)$ is equipped with exterior product \land (ring), and exterior differentiation d.

<u>Definition</u>. An exterior differential system on M is a subset Σ of $\wedge(M)$ satisfying the conditions:

- (i) Σ is an ideal of $\wedge(M)$,
- (ii) Σ is generated by homogeneous elements,

(iii)
$$\phi \in \Sigma \Rightarrow d\phi \in \Sigma$$
.

(その性質に因み <u>a differential ideal</u> とも呼ばれる)

$$\Sigma^k \stackrel{def}{=} \Sigma \cap \wedge^k(M)$$
: Σ の k 次斉次部分 condition (ii) $\Leftrightarrow \Sigma = \sum_{k=0}^{\infty} \Sigma^k$.

 (y^1,\ldots,y^m) : a local coordinate system of M. $\phi \in \wedge^k(M)$ の局所座標表示:

$$\phi = \sum_{1 \le \alpha_1 < \dots < \alpha_k \le m} \phi_{\alpha_1, \dots, \alpha_k}(y) dy^{\alpha_1} \wedge \dots \wedge dy^{\alpha_k}$$

$$= \frac{1}{k!} \sum_{1 < \alpha_1, \dots, \alpha_k < m} \phi_{\alpha_1, \dots, \alpha_k}(y) dy^{\alpha_1} \wedge \dots \wedge dy^{\alpha_k}.$$

A submanifold $\iota: N \hookrightarrow M$ is an integral manifold of $\Sigma \Leftrightarrow \iota^* \phi = 0, \forall \phi \in \Sigma$. (この条件は、 非線形微分方程式系で表される)

 \mathcal{R}_l : a system of non-linear partial differential equations of order l (SPDE)

 \mathcal{E} : a fibered manifold with base manifold X and projection $\pi: \mathcal{E} \to X$. 即ち $\pi: \mathcal{E} \to X$ is a surjetive submersion.

 (x^1,\ldots,x^n) : a local coordinate system of X. $(x^1,\ldots,x^n,y^1,\ldots,y^m)$: a fibered chart of \mathcal{E} . $J_k(\mathcal{E})$: the space of k-jets of sections of \mathcal{E} . $\pi_l^k:J_k(\mathcal{E})\to J_l(\mathcal{E})(k\geq l)$: the canonical projection.

• The space $J_k(\mathcal{E})$ is a fibered manifold over X with projection $\pi_{-1}^k = \pi \circ \pi_0^k$, and

$$(x^{i}, y^{\alpha}, p_{i}^{\alpha}, p_{i_{1}i_{2}}^{\alpha}, \dots, p_{i_{1}\dots i_{k}}^{\alpha};$$

 $1 \le i \le n, 1 \le \alpha \le m, 1 \le i_{1} \le i_{2} \le \dots \le i_{k} \le n)$

is its fibered chart. Here the functions $p_{i_1...i_q}^{\alpha}$ are defined as follows: when u is described by

$$y^{\alpha} = u^{\alpha}(x)(1 \le \alpha \le m),$$

 $p_{i_1...i_q}^{\alpha}(j_l(u)(x)) = \partial^q u^{\alpha}/\partial x^{i_1}...\partial x^{i_q}(x).$

Usually PDE is defined by a system of equations

$$F_{\gamma}(x^{i}, y^{\alpha}, p_{i}^{\alpha}, p_{i_{1}i_{2}}^{\alpha}, \dots, p_{i_{1}\dots i_{l}}^{\alpha}) = 0 \ (\gamma = 1, \dots, r).$$

We adopt the following definition.

<u>Definition</u>. A <u>system of nonlinear partial</u> <u>differential equations of order l on \mathcal{E} is a fibered submanifold \mathcal{R}_l of $J_l(\mathcal{E})$; $\pi_{-1}^l:\mathcal{R}_l\to X$ is a surjective submersion.</u>

A <u>solution</u> of \mathcal{R}_l is a section u of \mathcal{E} such that its l-jet $j_l(u)(x)$ at x belongs to \mathcal{R}_l for each x.

involutiveneness of a symbol

T, V: real vector spaces, $\dim T = n, \dim V = m.$ By a symbol of order I we mean a subspace $G_l \subset S^l T^* \otimes V$. Giving a symbol G_l of order l is equivalent to giving a surjective linear mapping $\sigma_l: S^lT^*\otimes V\longrightarrow W,\ (W: \text{a vector space})$ such that $G_l = \ker \sigma_l$.

The k-th prolongation G_{l+k} of G_l :

$$G_{l+k} \stackrel{def}{=} (S^k T^* \otimes G_l) \cap (S^{l+k} T^* \otimes V).$$

The canonical injection

 $\delta_{1,l-1}: S^lT^* \to T^* \otimes S^{l-1}T^*$ を用いるとa symbol G_l of order l は, a symbol \hat{G}_1 of order 1 と見なせる:

$$\hat{G}_1 = G_l \subset T^* \otimes \overline{V}$$
, where $\overline{V} = S^{l-1}T^* \otimes V$.

・
$$\hat{G}_{1+k} = G_{l+k} (k = 0, 1, \ldots)$$
が成り立つ.

 G_l : a symbol of order l, Denote $G = G_l = \hat{G}_1$. $\{t_1, \ldots, t_n\}$: a basis of T, $\{t^1, \ldots, t^n\}$: its dual basis of T^* . $G_{(i)} \stackrel{def}{=} \{\zeta \in G; \zeta(t_i) = 0 (1 \le i \le k)\}$. $(i = 1, \ldots, n), \ G_{(0)} \stackrel{def}{=} G$. Lemma. For any basis $\{t_1, \ldots, t_n\}$ of T,

$$\dim \hat{G}_{1+1} = \dim G_{l+1} \le \sum_{i=0}^{n} \dim G_{(i)}.$$

<u>Definition</u>. $G_l \subset S^l T^* \otimes V$ is <u>involutive</u>

 $\Leftrightarrow \exists \{t_1,\ldots,t_n\}$: a basis of T such that

 $\dim G_{l+1} = \sum_{i=0}^{n} \dim G_{(i)}.$

A basis $\{t_1, \ldots, t_n\}$ satisfying this condition is called regular.

Assume that G_l is involutive.

The integers $g_i = \dim G_{(i)}$ (i = 0, 1, ..., n) are defined independently of the choice of regular basis $\{t_1, ..., t_n\}$. $g_0 \ge g_1 \ge ... \ge g_n = 0$.

<u>Definition</u>. <u>characters</u> of G_l :

$$s_i = g_{i-1} - g_i \ (i = 1, \dots, n).$$

Proposition. If G_l is involutive, then its prolongations G_{l+k} are involutive, and the last non-vanishing characters $s_p = s_p(G_{l+k})$ are equal to that of G_l .

Examples: $m = \dim V, n = \dim T, l = \text{order}$

- (1) \sim (4) are involutive symbols:
- (1) $G_l \subset S^l T^*$ with $\operatorname{codim} G_l = 1 (m = 1)$.

$$g_i = \binom{n+l-i-1}{l} - 1 (0 \le i < n), g_n = 0;$$

$$\dim G_{l+1} = \binom{n+l}{l+1} - n.$$

$$s_i = \binom{n+l-i-1}{l-1} (0 \le i < n), s_n = 0.$$

(2) $G_1 \subset T^* \otimes V$ defined by $(\{v_\alpha\}: a \text{ basis of } V)$ $G_1 = \{\sum_{1 \leq i \leq n, 1 \leq \alpha \leq m} \zeta_i^{\alpha} t^i \otimes v_{\alpha};$ $\sum_{1 \le i \le n, 1 < \alpha < m} \zeta_i^{\alpha} a_{\alpha}^{i\beta} = 0 (\beta = 1, \dots, m)$ $\{a_{\alpha}^{i\beta}\}$ with $\det(a_{\alpha}^{n\beta})\neq 0$ is given). $g_i = (n-1-i)m (0 \le i < n), g_n = 0, \dim G_{1+1} = 0$ $\sum_{i=1}^{n-1} mi$. $s_1 = \cdots = s_{n-1} = m, s_n = 0$ (3) $G_1 \subset T^* \otimes V = T^*, (m = 1, l = 1).$ Let dim $G_1 = n - r$. $g_i = n - r - i$ (1 < i < n - r), $g_i = r$ $0 (n - r < i \le n), \dim G_{1+1} = \binom{n-r+1}{2}.$ $s_1 = \cdots = s_{n-r} = 1, s_{n-r+1} = \cdots = s_n = 0.$

Put $T^* = (\operatorname{span}\{\xi, \eta\}); \dim T = 2.$ (4) $G_2 = \operatorname{span}\{\xi^2, \xi\eta\} \subset S^2T^*$ (m = 1, n = 2, l = 2).

$$g_0 = 1, g_i = 0 (i = 1, 2), \dim G_{1+1} = 1. \ s_1 = 1, s_2 = 0.$$

The following is not an involutive symbol:

- (5) $G_2 = \operatorname{span}\{\xi^2, \eta^2\} \subset S^2 T^*$ (m = 1, n = 2, l = 2). $g_0 = 1, g_i = 0 \ (i = 1, 2),$ $\dim G_{1+1} = 0.$
- $G_l\subset S^lT^*$ is involutive $\Leftrightarrow \exists H(\xi,\eta)$: a homogeneous polynomial of degree l+1-r s.t. $G_l=\operatorname{span}\{\xi^j\eta^kH(\xi,\eta)(j+k=r-1)\}.$

differential systems の involutiveness (包合性)

 $\mid 1^{\circ} \mid$ In the case of EDS Σ

A fundamental problem: To construct all integral manifolds of Σ .

換言すれば

For each dimension n, construct all n-dimensional integral manifolds of Σ .

 $\iota:N\hookrightarrow M$: an n-dimensional submanifold

• N: an integral manifold $\Leftrightarrow \iota^* \phi = 0, \forall \phi \in \Sigma^n$. (Proof. Σ is an ideal)

Nが $y^{\beta} = u^{\beta}(y^1, \dots, y^n) (n < \beta \leq m)$ と局所座標表示されるとする.

N が an integral manifold であることは 関数 $u^{\beta}(y') (y' = (y^1, \ldots, y^n))$ がある微分方程式系 $\Phi(n)$ の解であることと表現される.

Denote $q_i^{\alpha} = \frac{\partial u^{\beta}}{\partial x^i}$.

• N is an integral manifold \Leftrightarrow a system $\Phi(n)$ of differential equations consisting of F_{ϕ} ($\phi \in \Sigma^{n}$), where

$$F_{\phi} = \sum_{1 \leq \alpha_{1} < \dots < \alpha_{n} \leq m}$$

$$\phi_{\alpha_{1}, \dots, \alpha_{n}}(y^{1}, \dots, y^{n}, u^{n+1}, \dots, u^{m}) \frac{\partial(u^{\alpha_{1}, \dots, u^{\alpha_{n}}})}{\partial(y^{1}, \dots, y^{n})},$$

$$u^{i}(y') = y^{i} (1 \leq i \leq n)$$
 by convention,
 $\frac{\partial (u^{\alpha_{1}}, \dots, u^{\alpha_{n}})}{\partial (y^{1}, \dots, y^{n})} = \det(q_{i}^{\alpha}; \alpha = \alpha_{1}, \dots, \alpha_{n}; i = 1, \dots, n).$

• F_{ϕ} is a polynomial function of the variables

$$q_i^{\beta} (1 \le i \le n, n < \beta \le m).$$

- ・integral manifoldsの一つの構成手順: Construct a 0-dim IM N^0 ; construct a 1-dim IM N^1 s.t. $N^1 \supset N^0$; ...; construct an n-dim IM N^n s.t. $N^n \supset N^{n-1}$.
- ・construction of $N^k\Leftrightarrow \text{solution of a PDE }\Phi(k)$. 最終的に得られる $N=N^n$ が an integral manifold となることの証明が肝要! この手順が実行できるための条件
- "involuiveness(包合性)"が発見された: E.Cartan: Pfaffian systems に対して (1901)
- E,Kähler: 一般のEDSに対して (1934).

 $\mathcal{G}_k(M)$: the manifold of all k-dim contact elements on M; $E_k \in \mathcal{G}_k(M) \Leftrightarrow E_k \subset T_yM$ for some $y \in M$. Definition. An element $E_k \in \mathcal{G}_k(M)$ of origin y is an integral element of Σ

 $\iff \phi(y)|_{E_k} = 0, \ \forall \phi \in \Sigma \ (\text{equivalently})$ $\forall \phi \in \Sigma^k)$

 $I^k\Sigma$: the set of all k-dim integral elements of Σ ; $I^k\Sigma\subset \mathcal{G}_k(M)$, $I\Sigma=\cup_{k=0,1,2,...}I^k\Sigma$.

• N is an integral manifold of $\Sigma \Leftrightarrow \text{each}$ tangent space T_yN is an integral element of Σ .

 $E_k \in I_y^k \Sigma$ の極要素(polar element):

$$H(E_k) = \{v \in T_yM; \operatorname{span}\{v, E_k\} \in I\Sigma\}$$

• $H(E_k)$ contains E_k .

SPDE $\Phi(n)$ の階層化:

$$\Phi(0) \subset \Phi(1) \subset \cdots \subset \Phi(n-1) \subset \Phi(n)$$
 (座標系 $\{y^{\alpha}\}$ に依存) が構成される.

<u>Definition</u>(Kähler). $E_k \in I_y^k \Sigma$ is <u>regular</u>

$$\iff$$

(i) $\exists \{\phi_1, \ldots, \phi_r\} \subset \Phi(k)$ which gives a regular local equation of $I^k \Sigma$ around E_k in $\mathcal{G}_k(M)$. (ii) $\dim H(E_k)$ =constant on around E_k in $I^k \Sigma$. A chain $E_0 \subset E_1 \subset \ldots \subset E_n$ of integral elements of Σ is called a <u>regular chain</u> of Σ if each E_k with k < n is regular.

<u>Definition</u>. Σ is <u>involutive at</u> $E_n \in I^n \Sigma$

 $\Leftrightarrow \exists E_0 \subset E_1 \subset \ldots \subset E_n$: a regular chain.

以下この状況を仮定:

$$t(E_k) \stackrel{def}{=} \operatorname{codim} H(E_k) \text{ in } T_y M$$
 $t_k(E_n) \stackrel{def}{=} \max\{t(E_k); E_k \subset E_n\} \ _{(k = 0, 1, \dots, n)}.$
 $t_0(E_n) \ge t_1(E_n) \ge \dots \ge t_n(E_n).$

The integers $s_0(E_n), \ldots, s_n(E_n)$ defined by

$$s_0(E_n) = t_0(E_n), s_n(E_n) = m - n - t_{n-1}(E_n),$$

$$s_k(E_n) = t_k(E_n) - t_{k-1}(E_n) (1 \le k < n)$$

are called (Cartan) characters of Σ at E_n .

Cartan-Kähler Theorem. Assume that

M, Σ : real analytic, $E_n \in I^n \Sigma$.

 Σ is involutive at $E_n \Rightarrow \exists N$: an analytic n-dimensional integral manifold of Σ with $T_yN=E_n$. Parametrization of n-dim IM: the general integral manifold N with T_yN being near E_n depend on s_0 constants, s_1 functions of 1 variables, ..., s_n functions of n variables.

 \diamondsuit the symbol of Σ

Assume that Σ is involutive at $E_n \in I_y^n \Sigma$.

<u>Definition</u>. The <u>symbol</u> of Σ at E_n is the space $C(E_n) = T_{E_n}(I_u^n \Sigma)$

$$= \{ \zeta \in T_{E_n}(\mathcal{G}_n(M)_y); <\omega(y), \zeta> = 0, \forall \omega \in \Sigma_y^n \}.$$

considered as a subspace of $E_n^* \otimes (T_y M/E_n)$ in terms of the isomorphism

$$\chi: T_{E_n}(\mathcal{G}_n(M)_y) \to E_n^* \otimes (T_yM/E_n);$$

$$C(E_n) \subset E_n^* \otimes (T_y M/E_n).$$

Proposition. If Σ is involutive at E_n , then the symbol $C(E_n) \subset E_n^* \otimes (T_yM/E_n)$ is involutive.

 $\mid 2^{\circ} \mid$ In the case of SPDE \mathcal{R}_l

The k-th prolongation \mathcal{R}_{l+k} of \mathcal{R}_{l} :

$$\mathcal{R}_{l+k} = J_k(\mathcal{R}_l) \cap J_{l+k}(\mathcal{E})(\text{set!})(k=1,2,\ldots)$$

$$(\Box \Box \Box J_{l+k}(\mathcal{E}) \hookrightarrow J_k(J_l(\mathcal{E}))).$$

局所表示 $\mathcal{R}_l: F_{\gamma} = 0 (\gamma = 1, \dots, r)$ のとき

$$\mathcal{R}_{l+1}: F_{\gamma} = 0, \frac{dF_{\gamma}}{dx^i} = 0 (1 \le i \le n, 1 \le \gamma \le r)$$

 $\left(\frac{dF_{\gamma}}{dx^{i}}\right)$: total differentiation with respect to x^{i} (全微分))

- { C^{∞} solutions of \mathcal{R}_{l+k} }={ C^{∞} solutions of
- \mathcal{R}_l . (Provided \mathcal{R}_{l+k} is a fibered manifold, that is, a SPDE)

 $\Diamond \mathsf{The} \ \underline{\mathsf{symbol}} \ G_l = \{G_{l,P}; P \in \mathcal{R}_l\} \ \mathsf{of} \ \mathcal{R}_l$:

$$V(\mathcal{E}) \stackrel{def}{=} \ker \pi_* : T\mathcal{E} o TX$$
 (vertical bundle).

• an exact sequence of vector bundles over $J_l(\mathcal{E})$:

$$0 \to S^l T^* \otimes_{J_l} V(\mathcal{E}) \xrightarrow{\epsilon_l} V(J_l) \xrightarrow{(\pi_{l-1}^l)_*} (\pi_{l-1}^l)^{-1} V(J_{l-1}) \to 0$$

$$G_l \stackrel{def}{=} S^l T^* \otimes_{J_l} V(\mathcal{R}_l) \cap (\epsilon_l)^{-1} (V(\mathcal{R}_l)).$$

• $Ann(G_l)$ =span of

$$\sum_{i_1,\ldots,i_l,\alpha} F_{\gamma,p_{i_1,\ldots,i_l}^\alpha} \partial_{x^{i_1}} \cdots \partial_{x^{i_l}} \otimes dy^\alpha (1 \leq j \leq r).$$

<u>Definition</u>. \mathcal{R}_l is <u>involutive</u> \Leftrightarrow

- (i) G_{l+1} is a vector bundle over \mathcal{R}_l ,
- (ii) The symbol G_l is involutive,
- (iii) $\pi_l^{l+1}:\mathcal{R}_{l+1}\to\mathcal{R}_l$: surjective.

The (Cartan) characters $s_i = s_i(P) \ (1 \le i \le n)$ are defined to be the characters

$$s_i = s_i(G_{l,P}) (1 \le i \le n)$$
 of the symbol $G_{l,P}$.

•
$$s_1 \ge s_2 \ge ... \ge s_n$$
 (SPDEだから).

後の議論で特に(ii)が重要である.

解析解の存在定理:

The Cartan-Kähler theorem. If an analytic SPDE \mathcal{R}_l is involutive, the \mathcal{R}_l admits (local) analytic solutions. When l=1, the general solution depends on s_0 constants, s_1 functions of 1 variables, ..., s_n functions of n variables. When l>1, the same statement is valid with s_i 's being replaced by suitable ones.

補足: $s_n > 0 \Leftrightarrow$ underdetermined; $s_n = 0 \Leftrightarrow$ determined, overdetermined.

- Examples of involutive SPDE:
- (既述の examples of symbols (1)~(4)が対応)
- (1) a single eq. $F(x^{i}, y^{\alpha}, p_{I^{k}}^{\alpha}; 1 \leq k \leq l) = 0$
- (2) a system of order 1:

$$\sum_{1 < i < n; 1 < \alpha < m} a_{\alpha}^{i\beta}(x) \frac{\partial u^{\alpha}}{\partial x^{i}} - b_{\beta}(x) = 0$$

($\{a_{\alpha}^{i\beta}(x)\}$ with $\det(a_{\alpha}^{n\beta})(x) \neq 0$ is given).

(3) 1未知関数で1階の過剰決定系:

$$F_j(x_i, \dots, x_n, u, p_1, \dots, p_n) = 0 \quad (j = 1, \dots, r)$$

with $[F_j, F_k] \equiv 0 \pmod{F_1, \dots, F_r}$.

(4) 2変数関数z(x,y) に関する2階過剰決定系:

$$\begin{split} r-f(x,y,z,p,q) &= 0, s-g(x,y,z,p,q) = 0\\ \text{with } \frac{df}{dy} &= \frac{dg}{dx} \, (\text{mod} \, r-f,s-g). \end{split}$$

- An example of a non-involutive system:
- (5) z = z(x, y) に関する2階過剰決定系:

r=0, t=0. The symbol is not involutive.

 3° EDS $\Sigma(\mathcal{R}_l)$

SPDEに自然にEDSが付随する.

 \diamondsuit the contact system on the space $J_l(\mathcal{E})$ (Gardner-Shadwick):

 $P = j_l(u)(x) \in J_l(\mathcal{E})$. u defines a morphism $j_{l-1}(u): U = (\text{domain of } u) \to J_{l-1}(\mathcal{E})$.

Denote $\bar{P} = \pi_{l-1}^l(P)$.

 $\Theta \stackrel{def}{=} \{\Theta(P); P \in J_l(\mathcal{E})\}$ where

$$\Theta(P) = (\pi_{l-1}^l - j_{l-1}(u) \circ \pi_{-1}^l)^* T_{\bar{P}}^* J_{l-1}(\mathcal{E}).$$

• Θ is a vector subbundle of $T^*J_l(\mathcal{E})$ over $J_l(\mathcal{E})$. Θ^{\sharp} :the exterior differential system on $J_l(\mathcal{E})$ generated by all sections (1-forms) of Θ . The system Θ^{\sharp} or the Pfaffian system $\Theta = \Theta^{\sharp} \cap \wedge^1(J_l(\mathcal{E}))$ is called the contact system on $J_l(\mathcal{E})$, and 1-forms in Θ are called contact forms.

局所座標による表示: the contact system Θ is generated by the following 1-forms:

$$\theta_{\alpha}^{i_1 \dots i_k} = dp_{\alpha}^{i_1 \dots i_k} - \sum_{i=1}^n p_{\alpha}^{i_1 \dots i_k i} dx_i$$

$$(1 \le \alpha \le m, 1 \le i_1 \le \dots \le i_k \le n, 0 \le k < l).$$

<u>Definition</u>. $\Sigma(\mathcal{R}_l)$ is the differential ideal (EDS) generated by all contact forms on $J_l(\mathcal{E})$ and the functions F on $J_l(\mathcal{E})$ with $F|_{\mathcal{R}_l} = 0$.

$\Sigma(\mathcal{R}_l)$ の局所表示: $\Sigma(\mathcal{R}_l)$ is generated by

$$F_{\gamma}, dF_{\gamma}, \theta_{\alpha}^{i_{1}\dots i_{k}}, d\theta_{\alpha}^{i_{1}\dots i_{k}}$$

$$(1 \leq \gamma \leq r, 1 \leq \alpha \leq m, 1 \leq i_{1} \leq \dots \leq i_{k} \leq n, 0 \leq k < l$$

as an algebraic ideal in $\wedge (J_l(\mathcal{E}))$.

Given a section u of \mathcal{E} , we have a subset

$$\mathcal{N}_u = \{j_l(u)(x); x \in X\} \subset J_l(\mathcal{E}).$$

• \mathcal{N}_u is an n-dimensional manifold, and the mapping $\pi_{-1}^l: \mathcal{N}_u \to X$ is a diffeomorphism.

Proposition. (a) u is a solution of $\mathcal{R}_l \Rightarrow \overline{\mathcal{N}_u \subset J_l(\mathcal{E})}$ is an n-dimensional integral manifold of $\Sigma(\mathcal{R}_l)$.

(b) $\mathcal{N} \subset J_l(\mathcal{E})$ is an n-dimensional integral manifold of $\Sigma(\mathcal{R}_l)$ s.t. $\pi_{-1}^l: \mathcal{N} \to X$ is a diffeomorphism $\Rightarrow \exists$ a (unique) solution u of \mathcal{R}_l such that $\mathcal{N} = \mathcal{N}_u$.

Theorem. \mathcal{R}_l is involutive

 $\Rightarrow \Sigma(\mathcal{R}_l)$ is involutive at $E_n \in I^n(\mathcal{R}_l)$.

 $(I^n(\mathcal{R}_l)$ is the one defined at p.58)

 $\mid 4^{\circ} \mid$ SPDE associated with Σ

Given a contact element $E_n^{(0)}$ on M.

 (y^1, \ldots, y^m) : a local coordinate system of M around the origin y_0 of $E_n^{(0)}$ such that dy^1, \ldots, dy^n are linearly independent on $E_n^{(0)}$. Let V_0 be its coordinate neighborhood.

 $\pi: V_0 \to \mathbb{R}^n$, $\pi(y^1, \dots, y^m) \stackrel{def}{=} (y^1, \dots, y^n)$.

 $X_0 = \pi(V_0)$; an open subset of \mathbb{R}^n .

 $\mathcal{G}_n(V_0) = \{ E_n \in \mathcal{G}_n(V_0); \dim \pi_*(E_n) = n \}.$

 $\mathcal{E}_0 \stackrel{set}{=} V_0$: a fibered manifold with base space X_0 and projection $\pi: \mathcal{E}_0 \to X_0$. $((y^1, \dots, y^m)$ is its fibered chart).

$$\chi:J_1(\mathcal{E}_0) o \overset{\circ}{\mathcal{G}}_n(V_0)$$
 ,

 $\chi(j_1(u)(x)) \stackrel{def}{=} u_*(T_x X_0)$: a canonical diffeomorphism.

Definition.
$$S_1 = \chi^{-1}(I^n \Sigma \cap \overset{\circ}{\mathcal{G}}_n(V_0)).$$

If $I^n\Sigma \cap \overset{\circ}{\mathcal{G}}_n(V_0)$ is a manifold, then \mathcal{S}_1 defines SPDE of order 1 on \mathcal{E}_0 .

• \mathcal{S}_1 coincides with $\Phi(n)$ appeared in $\boxed{1^{\circ}}$.

Theorem. If Σ is involutive at $E_n^{(0)}$, then \mathcal{S}_1 is involutive at $P_0 = \chi^{-1}(E_n^{(0)})$. The symbol G_{1,P_0} is canonically isomorphic to $C(E_n^{(0)})$. Thus e.g. \mathcal{S}_1 is elliptic if and only if Σ is elliptic.

involutive symbols に付随する

modules

Notation:

$$R_0 = \mathbb{R}, \ R_q = S^q T (q = 1, 2, \ldots)$$

 $R = \sum_{q=0}^{\infty} R_q$: (isomorphic to) the polynomial ring in n variables.

$$L = R \otimes V^* = \sum_{q=0}^{\infty} L_q, L_q = S^q T \otimes V^*$$
:

a Noetherian graded R-module.

 \mathfrak{X} =the maximal ideal of R generated by R_1 .

 $G_l \subset S^l T^* \otimes V$: a symbol of order l.

 $D_l = {
m Ann} G_l \subset L_l = S^l T \otimes V^*$,

N= the (homogeneous) submodule of L generated by $D_l.$

<u>Definition</u>. The <u>characteristic module</u> $M = M(G_l)$ of a symbol G_l is the smallest (homogeneous) submodule M of L possessing the following two properties:

(i) $M \supset N$; (ii) $\mathfrak{X} z \subset M (z \in L) \Rightarrow z \in M$.

注. この定義は通常のもの (e.g. Goldschmidt) と異なる. 性質 (ii) が

後述の Monge characteristics の議論で重要(少なくとも便利)となる.

例えば 一つの利点は $M(G_{l+k}) = M(G_l)$ が成り立つ.

One can apply the elementary thory of Naetherian modules (cf. e.g. Zariski-Samuel) to the characteristic module M of a symbol G_l : M admits an irredundant primary decomposition in L

$$M = \bigcap_{j=1}^{\nu} Q_j$$
, Q_j being \mathfrak{P}_j -primary,

where \mathfrak{P}_j are homogeneous prime ideals in R.

 $\{\mathfrak{P}_1,\ldots,\mathfrak{P}_\nu\}=\{\text{the set of associated prime ideals of the quotient module }L/M\}.$

<u>Lemma</u>. Assume that G_l is an involutive symbol.

- (i) There exists no \mathfrak{X} -primary component in the irredundant primary decomposition of the characteristic module M.
- (ii) $M_q = N_q$ for any $q \ge l$.

<u>Definition</u>. A non-zero $\xi \in T^* \otimes \mathbb{C}$ is a <u>characteristic covector</u> for a symbol G_l

$$\Leftrightarrow G_l \otimes \mathbb{C} \cap (\xi^l \otimes V \otimes \mathbb{C}) \neq \{0\}$$

$$\Leftrightarrow \sigma_{l,\xi}: V\otimes \mathbb{C} \to W\otimes \mathbb{C}$$
 defined by

$$\sigma_{\xi}(v) = \sigma_{l}(\xi^{l} \otimes v)$$
 is not injective.

Otherwise ξ is non-characteristic for G_l .

$$\Xi(G_l) \stackrel{def}{=} \{ \text{all characteristic covectors for } G_l \}.$$

 $\Xi(G_l)$ is an algebraic variety in the complex projective space $\mathbb{P}(T^*)$. We shall call $\Xi(G_l)$ the characteristic variety of a symbol G_l .

Theorem. Assume that G_l is involutive. Let p be the non-negative integer determined by $s_p > 0, s_{p+1} = \ldots = s_n = 0$. Then the following are valid:

(i) $\operatorname{proj dim} \mathfrak{P}_j \leq p-1$ and $\exists \mathfrak{P}_j$ s.t. = holds.

(ii)
$$s_p = \sum_{\text{maxidim} \mathfrak{R}} \mu(Q_j)$$

 $\operatorname{proj dim} \mathfrak{P}_j = p-1$

 $(\mu(Q_j))$ = the multiplicity of the component Q_j).

(iii)
$$\Xi(G_l) = \bigcup_{j=1,...,\nu} \{ \text{the variety of } \mathfrak{P}_j \}.$$

(iv)
$$\Xi(G_{l+k}) = \Xi(G_l)$$
.

♦ involutive subsymbols

 $G_l \subset S^l T^* \otimes V$: an involutive symbol of order l.

$$D_l = \operatorname{Ann} G_l \subset L_l = S^l T \otimes V^*$$
.

Assume $s_1 > 0, s_2 = \cdots = s_n = 0$.

Consider the problem: construct involutive subsymbols $G'_l \subset G_l$.

既述の記号を用いる

Lemma. Let $z \in L_l$. $G'_l \stackrel{def}{=} \operatorname{Ann}(D_l, z)$ is involutive $\Leftrightarrow \exists \mathfrak{P}_j$ with the zero of \mathfrak{P}_j being real such that $\mathfrak{P}_j z \subset M$.

Define $\kappa_e: T^*\otimes S^lT^*\otimes V\to S^lT^*\otimes V$ by $\kappa_e(\zeta)=\zeta(e), \zeta\in \mathrm{Hom}(T,S^lT^*\otimes V).$ This induces a morphism $\kappa_e:G_{l+1,P}\to G_{l,P}.$ Introduce a subspace of G_l :

$$c(\mathfrak{P}_j) = T \cap \mathfrak{P}_j(1$$
次部分),

$$C(\mathfrak{P}_j) = \operatorname{span}\{\kappa_e(G_{l+1}); e \in c(\mathfrak{P}_j)\}.$$

Proposition. $G'_l \subset G_l$ is involutive \Leftrightarrow

 $\exists \mathfrak{P}_j$ with the zero of \mathfrak{P}_j being real such that $G'_l \supset C(\mathfrak{P}_j)$.

注. 上の議論は $s_1=\dots=s_p>0, s_{p+1}=\dots=s_n=0$ with $1\leq p< n$ の場合に一般化することができる.

The characteristic covectors of differential systems

 $\mid 1^{\circ} \mid$ The characteristic covectors of EDS Σ Fix an integer(dimension) $n \ge 2$. Let $E_{n-1} \in I^{n-1}\Sigma$. Assume $E_{n-1} \subset \exists E_n \in I^n\Sigma$. $\Rightarrow \dim H(E_{n-1}) \ge n$. <u>Definition</u>. E_{n-1} is a <u>characteristic</u> (resp. non-characteristic) element $\Leftrightarrow \dim H(E_{n-1}) > n \text{ (resp.} = n).$

Assume that Σ is involutive at $E_n \in I^n \Sigma$.

A characteristic element can be characterized by using the symbol $C(E_n)$ of Σ ;

$$C(E_n) \subset E_n^* \otimes (T_y M/E_n)$$
 ($y = \text{origin of } E_n$).

Lemma. Let $\xi \in E_n^*$ s.t. $E_{n-1} = <\xi>^{\perp}$. Then E_{n-1} is characteristic

$$\Leftrightarrow C(E_n) \cap \{\xi \otimes (T_y M/E_n)\} \neq \{0\}.$$

In other words, a non-zero $\xi \in E_n^*$ defines a characteristic element $E_{n-1} \subset E_n$ $\Leftrightarrow \xi$ is a real characteristic covector of $C(E_n)$.

Definition. The characteristic variety $\Xi(E_n)$ of Σ at E_n is the characteristic variety of $C(E_n)$. A covector $\xi \in \Xi(E_n)$ is a <u>characteristic</u> <u>covector</u> of Σ at E_n . $\Xi(E_n)$ is an algebraic variety in the projective space associated with the complexfication of E_n^* . Remark. If $s_n(E_n) > 0$, then $\forall \xi \in E_n^*$ is characteristic.

 2° | The characteristic covectors of SPDE \mathcal{R}_l We shall always assume that \mathcal{R}_l is involutive. Around $x_0 \in X$ we regard X as the Euclidean (x^1,\ldots,x^n) - space. $H \subset X$: a hyperplane with $x_0 \in H$. $\xi = \sum_{i=1}^n \xi_i dx^i$: a covector with $\langle \xi \rangle^{\perp} = T_{x_0} H$. $\frac{\partial}{\partial u^i}$ $(i=1,\ldots,n)$; a basis of $T_{x_0}X$ such that $\left\{ \frac{\partial}{\partial u^i}; 1 \leq i < n \right\} = T_{x_0} H \left(\frac{\partial}{\partial u^n} \right)$ is transversal to H). Let u be a section u of \mathcal{E} described by $y^{\alpha} = u^{\alpha}(x) (\alpha = 1, \dots, m).$

The l-jet $j_l(u)(x_0)$ is determined by the values:

$$\left(\frac{\partial}{\partial \nu^1}\right)^{\mu_1} \dots \left(\frac{\partial}{\partial \nu^n}\right)^{\mu_n} u^{\alpha}(x_0) \left(\mu_1 + \dots + \mu_n \leq l\right).$$

値 $(\frac{\partial}{\partial \nu^1})^{\mu_1} \dots (\frac{\partial}{\partial \nu^n})^{\mu_n} u^{\alpha}(x_0)$ with $\mu_1 + \dots + \mu_n \leq l, \mu_n < l$ と条件「(微分方程式系) $j_l(u)(x_0) \in \mathcal{R}_l$ 」から値 $(\frac{\partial}{\partial \nu^n})^l u(x_0)$ が一意に定まる 為のH 即ち ξ に対する条件を追求すると 次の条件へ導かれる:

$$G_{l,P_0} \cap (\xi^l \otimes V_{y_0} \mathcal{E}) \neq \{0\}.$$

(前述の条件は Cauchy問題に由来する条件である. l=1 の場合の説明: 関数 u(x) の H 上のデータと微分方程式系を満たすという条件から, H 上における u の all derivatives (including of higher orders) が一意的に定まるという条件となる)

Definition. Let $\xi \in T_{x_0}^* X \otimes \mathbb{C}$. ξ is characteristic (resp. non-characteristic) for \mathcal{R}_l at $P_0 \Leftrightarrow$

 $G_{l,P_0}\otimes\mathbb{C}\cap(\xi^l\otimes V_{y_0}\mathcal{E}\otimes\mathbb{C})\neq(\text{resp.}=)\{0\}.$

 $\Xi_P \stackrel{def}{=} \{ \text{all characteristic covectors for } \mathcal{R}_l \text{ at } P \}.$ $\Xi_P \subset \mathbb{P}(T_x^* \otimes \mathbb{C}): \text{ a complex algebraic variety.}$ The family $\Xi = \{\Xi_P; P \in \mathcal{R}_l\}$ is called the characteristic variety of \mathcal{R}_l .

上の条件からわかるように

•
$$\Xi_P = \Xi(G_{l,P})$$
.

 $\Diamond \mathcal{R}_l \, \succeq \Sigma(\mathcal{R}_l)$ のchar. covectorsの対応関係: $P \in \mathcal{R}_l, E_n \in I^n(\mathcal{R}_l)$ with origin P. Lemma. The canonical injection

$$\beta_*: S^{l+1}T_x^*X \otimes V_y(\mathcal{E}) \longrightarrow V_{E_n}(\overset{\circ}{\mathcal{G}}_n(M)),$$

induces an isomorphism

$$\beta_*: G_{l+1,P} \longrightarrow C(E_n).$$

$$\Xi(G_{l+1,P}) = \Xi(G_{l,P})$$
 だから次が導かれる:

Proposition. $\xi \in T_x^*X$: a char. covector of \mathcal{R}_l at $P \Leftrightarrow \hat{\xi} = (\pi_{-1}^l)^*\xi$: a char. covector of $\Sigma(\mathcal{R}_l)$ at E_n

♠ 応用例

SPDE \mathcal{R}_l is elliptic(楕円型) $\stackrel{def}{\Leftrightarrow} \mathcal{R}_l$ admits no real characteristic covector.

Theorem (A C^{∞} Cartan-Kähler theorem).

Assume $\dim X = 2$. If \mathcal{R}_l is involutive and elliptic, then \mathcal{R}_l admits C^{∞} (local) solutions.

この存在定理はもちろん elliptic involutive EDS Σ に適用できる; 2次元の C^{∞} 積分多様体の存在が導かれる.

注.楕円型で $\dim X \geq 3$ の場合の C^{∞} 解の存在問題は未解決.楕円型線形系の場合はSpencer予想と呼ばれる予想がある.線形系であっても極めて難しい!

D. Yang は $\Xi(\mathcal{R}_l)$ を介して, involutive hyperbolic systems (双曲型包合系) という概念を導入し A C^{∞} Cartan-Kähler theorem を得た: If \mathcal{R}_l is involutive hyperbolic, then \mathcal{R}_l admits C^{∞} (local) solutions.

Monge characteristics in differential systems

 $|1^{\circ}|$ 微分方程式系 \mathcal{R}_l の Monge characteristics $\Sigma(\mathcal{R}_l)$: \mathcal{R}_l に付随するEDS ($J_l(\mathcal{E})$ 上の系). \mathcal{R}_l に適合する integral elements は: $P \in \mathcal{R}_l$, $I_P^n(\mathcal{R}_l) = \{ E_n \in I_P^n(\Sigma(\mathcal{R}_l)); \dim(\pi_{-1}^l)_* E_n = n \}.$ $y = \pi_0^l(P) \in \mathcal{E}, x = \pi_{-1}^l(P) \in X$ と記す. $T_x = T_x X, T_x^* = T_x^* X$ **路記**.

$$E_n \in I_P^n(\mathcal{R}_l)$$
のとき, $(\pi_{-1}^l)_*: E_n \to T_x$ は同型.

$$v_e(E_n) \stackrel{def}{=} v \in E_n$$
, where $(\pi_{-1}^l)_*(v) = e$.

 $e \in T_x$ が与えられたとし、次の空間を導入する.

$$B(e) = \operatorname{span} \{ v_e(E_n); E_n \in I_P^n(\mathcal{R}_l) \} \subset T_P(J_l(\mathcal{E})),$$

$$D(e) = \operatorname{Ann}(B(e)) \subset T_P^*(J_l(\mathcal{E})).$$

・D(e)は自明に空間

$$\Sigma_{(P)}^1 = \{ \phi(P) \in T_P^*(J_l(\mathcal{E})); \phi \in \Sigma(\mathcal{R}_l)^1 \},$$

と空間
$$(\pi_{-1}^l)^*H_e$$
 $(H_e = \{\xi \in T_x^*; <\xi, e>=0\})$ を含む、 $(\dim H_e = n-1)$.

D(e)がこれらの和空間より真に大きくなるときがあるか?

これを論ずるために

$$\kappa(\zeta) = \zeta(e), \zeta \in \text{Hom}(T_x, S^l T_x^* \otimes V_y \mathcal{E})$$

で定義されるmorphism

$$\kappa_e: T_x^* \otimes S^l T_x^* \otimes V_y \mathcal{E} \longrightarrow S^l T_x^* \otimes V_y \mathcal{E}$$

を用いる. これはmorphism $\kappa_e:G_{l+1,P}\to G_{l,P}$ を誘導する. (symbol の項参照)

上述の問題の回答:

Lemma. Assume that \mathcal{R}_l is involutive. For each $P \in \mathcal{R}_l$, the following are valid:

(i) For any
$$e \in T_x$$
, $D(e) \supset \Sigma^1_{(P)} \oplus (\pi^l_{-1})^* H_e$.

(ii) dim
$$\frac{D(e)}{\Sigma_{(P)}^1 \oplus (\pi_{-1}^l)^* H_e} = \dim \frac{G_{l,P}}{\kappa_e(G_{l+1,P})}$$
.

(iii)
$$\exists e \in T_x \text{ s.t. } D(e) = \Sigma_{(P)}^1 \oplus (\pi_{-1}^l)^* H_e.$$

証明へのメモ:
$$B(e) = \{ \operatorname{span} v_e(E_n^0) \} \oplus \epsilon_l \kappa_e(G_{l+1,P})$$
,

$$E_n^0 \in I_P^n(\mathcal{R}_l)$$
 being fixed.

<u>Definition</u>. A vector $e \in T_x$ is a <u>characteritic vector</u> of \mathcal{R}_l at $P \in \mathcal{R}_l \Leftrightarrow$

$$\dim D(e) > \dim \{\Sigma_{(P)}^1 \oplus (\pi_{-1}^l)^* H_e\} = s_0(E_n) + n - 1$$

a characteristic vector e の意義:

 $\exists \text{ a covector } \omega \in D(e), \ \omega \notin \Sigma^1_{(P)} \oplus (\pi^l_{-1})^* H_e.$ Such a covector $\omega \in D(e)$ is not a covector in $(\pi^l_{-1})^* T^*_x$. We have a new covector ω not belonging to $\Sigma^1_{(P)} \oplus (\pi^l_{-1})^* T^*_x \text{ which has the property that } \omega$ annihilates all vectors $v_e(E_n)$ $(E_n \in I^n_P(\mathcal{R}_l)).$

Let $P \in \mathcal{R}_l$, and M_P be the characteristic module of the symbol $G_{l,P}$ (We call it the characteristic module of \mathcal{R}_l at P.); M_P is a submodule of the $R_P = \sum_{q=0}^{\infty} S^q T_x^*$ -module $L_P = \sum_{q=0}^{\infty} S^q T_x^* \otimes V_y(\mathcal{E})$. Let

$$M_P = \cap_{j=1}^{\nu(P)} Q_{j,P} \quad (Q_{j,P} : \mathfrak{P}_{j,P}\text{-primary modules})$$
(†)

be an irredundant primary decomposition in the R_P -module L_P .

The above Lemma implies "e is characteristic \Leftrightarrow $\kappa_e:G_{l+1,P}\to G_{l,P}$ is not surjective." The dual operator of κ_e is related the morphism in L_P/M_P defined to be the multiplication by e. Thus we obtain the following Theorem. Assume that \mathcal{R}_l is involutive. {The set of the characteristic vectors of \mathcal{R}_l at $P\} = \bigcup_{j=1,\ldots,\nu} c(\mathfrak{P}_j)$, where $c(\mathfrak{P}_j) = \mathfrak{P}_j \cap T_x$.

Remark. When n=2, If there is a real characteristic covector ξ of \mathcal{R}_l , then there is a characteristic vector v of \mathcal{R}_l such that $<\xi,v>=0$, and the converse is valid. In the case n>2, there is no such simple relations between characteristic covectors and characteristic vectors.

<u>Definition</u>. A vector $v \in T_P(J_l(\mathcal{E}))$ is a <u>Monge characteristic vector of \mathcal{R}_l at $P \Leftrightarrow v$ belongs to some element $E_n \in I_P^n(\mathcal{R}_l)$ and $(\pi_{-1}^l)_* v$ is a characteristic vector of \mathcal{R}_l at P.</u>

Monge characteristic systems Applications of Monge characteristics are made by using what is called Monge charactreristic systems, which are Pfaffian systems on (an open set of) $J_l(\mathcal{E})$ containing \mathcal{R}_l constructed from the primary decomposition (†) of the characteristic module $M_{67} = \{M_P; P \in \mathcal{R}_l\}.$

Corresponding to each $\mathfrak{P}_{j,P}$, define

$$B(\mathfrak{P}_{j,P}) =$$
 span $\{v_e(E_n); E_n \in I^n(\mathcal{R}_l), e \in c(\mathfrak{P}_{j,P})\}$ $\subset T_P J_l(\mathcal{E})$
$$D(\mathfrak{P}_{j,P}) = \operatorname{Ann}(B(\mathfrak{P}_{j,P})) \subset T_P^* J_l(\mathcal{E}).$$

Introduce:
$$x = \pi_{-1}^{l}(P), y = \pi_{0}^{l}(P)$$

$$C(\mathfrak{P}_{j,P}) = \operatorname{span}\{\kappa_e(G_{l+1,P}); e \in c(\mathfrak{P}_{j,P})\},$$

 $\operatorname{Ann} C(\mathfrak{P}_{j,P}) \subset S^l T_x X \otimes V_y^* \mathcal{E}.$

We have a direct sum decomposition:

$$B(\mathfrak{P}_{j,P}) = \{ E_n \cap (\pi_{-1}^l)^{-1}_* c(\mathfrak{P}_{j,P}) \} \oplus \epsilon_l (C(\mathfrak{P}_{j,P})),$$

where E_n is a fixed element in $I^n(\mathcal{R}_l)$.

$$\begin{array}{l} \underline{\operatorname{Lemma}}. \ (\mathrm{i}) \ D(\mathfrak{P}_{j,P}) \supset \Sigma_{(P)}^1 + (\pi_{-1}^l)^* c(\mathfrak{P}_{j,P})^\perp. \\ (\mathrm{ii}) \ \frac{D(\mathfrak{P}_{j,P})}{\Sigma_{(P)}^1 \oplus (\pi_{-1}^l)^* c(\mathfrak{P}_{j,P})^\perp} \cong \frac{\operatorname{Ann} C(\mathfrak{P}_{j,P})}{M_{l,P}}. \\ (\mathrm{iii}) \\ \operatorname{Ann} C(\mathfrak{P}_{j,P}) = \{z \in L_l; c(\mathfrak{P}_{j,P}) \ z \subset M_{l+1,P}\}. \\ (\mathrm{iv}) \ [\operatorname{Ann} C(\mathfrak{P}_{j,P})] \stackrel{set}{=} \{\operatorname{Ann} C(\mathfrak{P}_{j,P})\}/M_{l,P}. \ \text{If} \\ \operatorname{each} \ c(\mathfrak{P}_{j,P}) \ \text{is not contained any one of the} \\ \operatorname{other} \ c(\mathfrak{P}_{k,P}) \ (k \neq j), \ \text{then the sum} \\ [\operatorname{Ann} C(\mathfrak{P}_{1,P})] + \cdots + [\operatorname{Ann} C(\mathfrak{P}_{\nu,P})] \\ \operatorname{is a \ direct \ sum \ in \ the \ vector \ space} L_{l,P}/M_{l,P}. \end{array}$$

We assume that the following regularity conditions hold:

- (a) The number $\nu = \nu(P)$ is constant on $P \in \mathcal{R}_l$, (b) For each $j = 1, \ldots, \nu$, the family $\{c(\mathfrak{P}_{j,P}); P \in \mathcal{R}_l\}$ defines a smooth subbundle $\mathbf{c}(\mathfrak{P}_j)$ of $(\pi_{-1}^l|_{\mathcal{R}_l})^{-1}TX$, (c) $\dim C(\mathfrak{P}_{j,P})$ is constant on \mathcal{R}_l .
- the family $\{D(\mathfrak{P}_{j,P}); P \in \mathcal{R}_l\}$ is a smooth vector bundle $\mathbf{D}(\mathfrak{P}_j)$ over \mathcal{R}_l .

Definition. The Monge characteristic system $\Delta(\mathfrak{P}_j)$ of \mathcal{R}_l corresponding to \mathfrak{P}_j is the Pfaffian system on $J_l(\mathcal{E})$ generated by all (smooth) sections ω of the cotangent bundle $T^*J_l(\mathcal{E})$ which satisfy $\omega(P) \in \mathbf{D}(\mathfrak{P}_j)$ for any point $P \in \mathcal{R}_l$.

• Each MCS $\Delta(\mathfrak{P}_j)$ contains the contact 1-forms on $J_l(\mathcal{E})$ and 1-forms dF with F being any function vanishing on \mathcal{R}_l , it contains other linearly independent 1-forms of which number can be calculated by using above Lemma.

lacktriangle Application(応用例) MCS が最も自然に応用できる SPDE \mathcal{R}_l は条件 (H-1) \mathcal{R}_l is involutive, and

$$s_1 > 0, s_2 = \dots = s_n = 0$$

を満たすものである.具体的な結果を導くために は、 さらに次の(H-2) を仮定する必要がある: (H-2) (a) The number $\nu = \nu(P)$ is constant on $P \in \mathcal{R}_l$, (b) $\mathfrak{P}_{j,P}L_P \subset Q_{j,P}$ $(j = 1, \dots, \nu), P \in \mathcal{R}_l$, (c) For each $j=1,\ldots,\nu$, the family $\{c(\mathfrak{P}_{i,P}); P \in \mathcal{R}_l\}$ defines a smooth subbundle $\mathbf{c}(\mathfrak{P}_j)$ of $(\pi_{-1}^l|_{\mathcal{R}_l})^{-1}TX_{\mathbf{7}_3}$ with rank n-1.

Note. Ξ_P is consists of s_1 real distinct points $\Rightarrow \nu = s_1$, (H-2)-(i),(iii). (この条件は \mathcal{R}_l が 'strictly hyperbolic'であることを意味する) これらの条件が満たされる \mathcal{R}_l に対し次の定理を, Monge characteristicsを利用して証明することができる.

Theorem (Existence of smooth solutions). \mathcal{R}_l admits smooth local solutions.

The Proof consists of two steps:

- (1) Using the Monge characteristic systems $\Delta(\mathfrak{P}_j)$, we construct a determined SPDE Φ , which is (non-linear) symmetrizable hyperbolic. (ここに 定義を与える為に取り出したM.C.の性質が使われる)
- (2) To show that solutions of \mathcal{R}_l can be constructed by using solutions of Φ .

Application to the method of integration (Extention of Darboux's method): If $\nu-1$ Monge characteritic systems $\Delta(\mathfrak{P}_i)$ $(j=1,\ldots,\nu-1)$ admit sufficiently many functionally independent integrals, then solutions of \mathcal{R}_l can be obtained by solving ordinary differential equations. (Here Monge characteritic systems $\Delta(\mathfrak{P}_i)$ $(j=1,\ldots,\nu-1)$ are allowed to use those of prolongations \mathcal{R}_{l+k} . Darbuoux's method !)

This method is based on the following fact: For a set \mathcal{F} of function on $J_l(\mathcal{E})$, denote $\mathcal{R}_l[\mathcal{F}] = \{ P \in \mathcal{R}_l; F(P) = 0 \, (F \in \mathcal{F}) \}.$ Choose $k(\leq \nu)$ Monge characteristic systems, say, $\Delta(\mathfrak{P}_i)$ $(j=1,\ldots,k)$. Let \mathcal{F} be the union of {a set of integrals $F_1^{(j)}, \ldots, F_{\mu_i}^{(j)}$ of $\Delta(\mathfrak{P}_j)$ } $(j=1,\ldots,k)$. Then $\mathcal{R}'_l=\mathcal{R}_l[\mathcal{F}]$ is an involutive system.

If there exist sufficiently many integrals of the $\nu-1$ Monge characteristic systems, then for any initial condition (IC), we can consruct a SPDE \mathcal{R}_{l}^{\sharp} contained in \mathcal{R}_{l} , satisfying the IC, and admitting Cauchy characteristics of dimension n-1. Solving \mathcal{R}_{l}^{\sharp} gives a solution of \mathcal{R}_{l} satisfying the given IC. If there do not exist enough integrals so as to apply this process, one can try the same procedure to the 1-th prolongation \mathcal{R}_{l+1} ; and so on.

 2° | Monge characteristics of EDS Σ 残念ながら一般のEDS Σ に対し 1° におけると 同様の意味での Monge characteristics を導入する ことはできない. しかし 次元nを指定し Σ を prolongation した EDS $p\Sigma^n$ に対しては Monge characteristics が導入できる.実際 $p\Sigma^n$ は $\Sigma(\mathcal{R}_l)$ と同様の構造を持つからである.

Cauchy characteristics of EDS Σ

Set $I_y \Sigma = \bigcup_{k=0}^m I_y^k \Sigma$. <u>Definition</u>. A tangent vector $v \in T_uM$ is a C-characteristic vector (C- means Cauchy and Cartan) of $\Sigma \Leftrightarrow$ $y \in I^0\Sigma$ and ${}^{\Gamma}E \in I_y\Sigma \Rightarrow \mathrm{span}\ \{v,E\} \in I_y\Sigma$. In other words, $v \in T_yM$ is a C-characteristic vector if v belongs to all the spaces H(E) where E runs through $E \in I_u\Sigma$.

Let C_y be the set of all C-characteristic vectors of origin y;

$$\mathcal{C}_y = \cap_{E \in I_y \Sigma} H(E).$$

- (a) The space $C_y \subset T_yM$ is an integral element of Σ .
- (b) $E \in I_y\Sigma \implies \operatorname{span}\{\mathcal{C}_y, E\} \in I_y\Sigma$.
- (c) If $E' \in I_y\Sigma$ satisfies span $\{E', E\} \in I_y\Sigma$ for $\forall E \in I_y\Sigma$, then $E' \subset \mathcal{C}_y$.

♦ the notion of le systeme associe:

$$\Sigma_{(y)} = \{\phi(y); \phi \in \Sigma\} \subset \wedge^* T_y^* M \text{ (an ideal)}$$

 Definition. Let $y \in I^0 \Sigma$.

$$\mathcal{D}_y = \{ v \in T_y M; v \rfloor \phi \in \Sigma_{(y)} \text{ for all } \phi \in \Sigma_{(y)} \}.$$

Lemma. Let V^* be the smallest subspace of T_y^*M such that $\Sigma_{(y)}$ is generated by $\Sigma_{(y)} \cap \wedge^*(V^*)$. Then the annihilator of V^* in T_yM coincides with \mathcal{D}_y .

Theorem (E. Cartan). Assume that the family $\mathcal{D} = \{\mathcal{D}_y; y \in M\}$ forms a subbundle of TM, equvivalently, $\dim \mathcal{D}_y$ is constant on M. Then the distribution \mathcal{D} is completely integrable (in involution); that is, if X,Y are two (smooth) sections of \mathcal{D} , then so is the bracket [X,Y].

• The inclusion $\mathcal{C}_y \subset \mathcal{D}_y$ holds without any assumption.

Lemma. If $\Sigma_{(y)}$ be generated by homogeneous elements of degree ≤ 2 as an algebraic ideal, then $C_y = \mathcal{D}_y$

Theorem. Assume that $I^0\Sigma$ is a submanifold of M, and that, for any $y \in I^0\Sigma$, $\Sigma_{(y)}$ is generated by homogeneous elements of degree ≤ 2 , and if the family $\mathcal{C} = \{\mathcal{C}_y; y \in M\}$ forms a subbundle of TM, then the distribution \mathcal{C} is completely integrable.

84

 $\spadesuit \Sigma(\mathcal{R}_l)$ O C-characteristics

Assumption: \mathcal{R}_l is involutive. $P \in \mathcal{R}_l$.

 $M_P \subset L_P$: the characteristic module of \mathcal{R}_l .

Set $\mathfrak{m}_P = \{ f \in R_P; fL_P \subset M_P \}$ (ideal of R_P).

 \mathcal{C}_P =(the space of C-char. vectors of origin P).

Theorem. Assume that \mathcal{R}_l is involutive.

$$C_P = E_n \cap (\pi_{-1}^l)_*^{-1}(\mathfrak{m}_P \cap R_{1,x}) \ (E_n \in I^n(\mathcal{R}_l)).$$

Corollary. $M_P = \bigcap_{j=1}^{\nu} Q_j (Q_j : \mathfrak{P}_j - \text{primary})$:

an IPD. Then $\mathcal{C}_P \subset \cap_{i=1,\dots,\nu} c(\mathfrak{P}_i)$. If

exponent of $Q_j = 1 \, (\forall j)$, $C_P = \cap_{j=1,...,\nu} c(\mathfrak{P}_j)$.

Remark. $\Sigma(\mathcal{R}_l)$ に対し、v: C-char. $\Rightarrow v: Monge char.$

Examples:(1) (古典的例 1) 1未知関数 1階の包合系 \mathcal{R}_1 :

$$F_j(x_i,\ldots,x_n,u,p_1,\ldots,p_n)=0$$
 $(j=1,\ldots,r)$ (ここに F_j $(j=1,\ldots,r)$ は 関数的に独立)) に 付随する $\Sigma(\mathcal{R}_1)$ は、 r 次元の C -characteristics を有する. Cauchy characteristic vectors:

$$X_{F_j} = \sum_{i=1}^n \left(\frac{\partial F_j}{\partial p_i} \frac{d}{dx_i} - \frac{dF_j}{dx_i} \frac{\partial}{\partial p_i}\right) (j = 1, \dots, r).$$

(2) 2変数の1未知関数に関する2階の包合系 $\mathcal{R}_2: r=0, s=0$ に付随する $\Sigma(\mathcal{R}_1)$ は 1次元の C-characteristicsを有する.

References

- Clasical theory of partial differential equations:
- [1] Forsyth, A.R.; Theory of Diffferential Equations, Part IV, Vol. VI, Cambridge Univ. Press, London, 1906.
- [2] Goursat, E.; Leons sur l'intégrations des équations aux dérivées partielles du scond ordre *a* deux variables indépendentes, Tom.II, Hermann, Paris, 1898.
- ♠ The thory of involutive differential systems:
- [3] Bryant, R.L., Chern, S.S., Gardner, R.B., Goldschmidt, H., and Griffiths, P.A.; Exterior Differential Systems, Springer, New York, 1991.
- [4] Cartan, É.; Sur l'intégration des syst*e*mes d'équations aux différentielles totale, Ann. Sci. École Norm. Sup¿, 3^e série, 18(1901), 241-311.
- [5] Cartan, É.; Les syst*e*mes différentiels extérieurs et leurs applications géométrique, Hermann, Paris, 1945.

- [6] Goldschmidt, H.; Existence theorems for analytic linear partial differential equations, Ann. of Math., (2) 86 (1967), 246-270.
- [7] Goldschmidt, H.; Integrability criteria for systems of nonlinear partial differential equations, J. Differential Geom., 1(1967), 269-307.
- [8] Kähler, E.; Einführung in die Theorie der Systeme von Differentialgleichungen, Teubner, Leipzig, 1934.
- [9] Kuranishi, M.; Lectures on involutive systems of partial differential equations, Publ. Soc. Mat. São Paulo, 1967.
- [10] Matsuda, M.; The theory of exterior differential systems (in Japanese), Iwanami, Tokyo, 1976.
- [11] Pommaret, J.F.; Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, New York, 1978.
- [12] Spencer, D.C.; Overdetermined systems of linear partial differential equations, Bull. of AMS, 75 (1969), 179-239.

- ♠ The contact system:
- [13] Gardner R.B. and Shadwick W.F.; A simple characterization of the contact system on $J_k(E)$, Rocky Mount. J. Math., 17(1987), 19-21.
- Monge characteristics and their applications:
- [14] Kakié, K.; On involutive systems of partial differential equations in two independent variables, J. Fac. Sci. Univ. Tokyo, Sect.IA, 21(1974), 405-433.
- [15] Kakié, K.; The Cauchy problem for an involutive system of partial dfferential equations in two independent variables, J. Math. Soc. Japan, 27 (1975), 517-532.
- [16] Kakié, K.; A fundamental property of Monge characteristics in involutive systems of non-linear partial differential equations and its application, Math. Ann., 273 (1985), 89-114.
- [17] Kakié, K.; The Monge characteristics in involutive Pfaffian systems and its application to the Cauchy problem, Japanese J. of Math., 13 (1987), 127-162.

- [18] Kakié, K.; On the integration of involutive systems of non-linear partial differential equations, J. Fac. Sci. Univ. Tokyo, Sect.IA, 36(1989), 537-569.
- \spadesuit Cauchy characteristics of $\Sigma(\mathcal{R}_L)$:
- [19] Kakié, K.; Cauchy's characteristics of involutive systems of non-linear partial differential equations, Comm. Math. Univ. St. Pauli, 28(1979), 87-92.
- \spadesuit Existence of C^{∞} solutions; [15],[16],[17], and
- [20] Kakié, K.; Existence of smooth solutions of overdetermined elliptic differential equations in two independent variables, Comm. Math. Univ. St. Pauli, 48(1999), 181-210.
- [21] Kakié, K.; Overdetermined elliptic systems of nonlinear differential equations in two independent variables, Comm. Math. Univ. St. Pauli, 57(2008), 91-136.

- [22] MacKichan, B.; A generalization to overdetermined systems of the notion of diagonal operators, I. Elliptic operators, Acta Math., 126 (1971), 83-119; II. Hyperbolic operators, Acta Math., 134 (1975), 239-274.
- [23] Yang, D.; Involutive Hyperbolic Differential Systems, Mem. of AMS, Vol.68, No.370, 1987.