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3 characteristics

characteristic covectors:

differential systems

Cauchy characteristics: Cartan

Monge characteristics: Darboux

differential system

1X



involutive differential systems
(E. Cartan, Kahler,etc., Kuranishi,

Goldschmidt, Spencer, Matsuda,.... )
differentia

system




Terminologies, Notations, etc.

differentiable of class

C'* (or real analytic)

& | >: an exterior differential system (EDS) on
a manifold M

F (M) ={the ring of all functions on M},

AR (M) ={the set of all exterior differential
forms of degree k}, AY(M) = F(M).

ANM) =>7" g A®(M): a graded F(m)-module.
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A(M) is equipped with exterior product A
(ring), and exterior differentiation d.
Definition. An exterior differential system on M
is a subset > of A(M) satisfying the conditions:
(i) X is an ideal of A(M),

(ii) > is generated by homogeneous elements,
(iii) p e X=dop € X

(00000000 a differential ideal 00000 O)

vk S A ARM): S Ok
condition (i) & X =57 2"
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(y',...,y™): a local coordinate system of M.
¢ € N*(M)

¢ = > Doy ..o, (W)AY™L A LA dy™F
1<a1 <...<ap<m

1
- k! Z Pay,..., o (y)dy™t N ... ANdy™k.
"1

A submanifold ¢ : N — M is an
integral manifold of X < ¢ =0, Vo € X..

( , )




& | R;: a system of non-linear partial
differential equations of order [ (SPDE

E: a fibered manifold with base manifold X and
projection m: £ — X. m:& — X is a

surjetive submersion.
(z1,...,2™): a local coordinate system of X.
(xt, ..., 2™yt ..., y™): a fibered chart of £.
Ji(E): the space of k-jets of sections of £.
s J(E) — J(E)(k > 1): the canonical
projection.
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[he space Ji (&) is a fibered manifold over X

with projection Wﬁl = e 7775, and

(wia yo‘,pf‘,p?‘liQ, e 7p7?i...ik3
I1<i1<n,1<a<m1<i; <ig<...<i <n)j

is its fibered chart. Here the functions p7| ;.

are defined as follows: when w is described by

y* = uo(z)(1 < a < m)

pe o Gi(u)(@)) = 9% [0 ... daa ().




Usually PDE is defined by a system of equations
F,y(xi, (TR Ve VI ,p,?‘lmil) =0(y=1,...,r).

We adopt the following definition.
Definition. A system of nonlinear partial
differential equations of order [ on & is a fibered
submanifold R; of J;(€); 7, : R; — X is a
surjective submersion.

A solution of R; is a section u of £ such that
its [-jet j;(u)(xz) at = belongs to R; for each z.
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involutiveneness of a symbol

T,V real vector spaces,

dim7 = n,dimV = m.

By a symbol of order | we mean a subspace

G; C S'T* @ V. Giving a symbol G; of order [ is
equivalent to giving a surjective linear mapping
o, : S'T*®@V — W, (W : a vector space)
such that G; = ker o7.




The k-th prolongation G of Gjy:

Gl—l—k d;f (SkT* &) Gl) M (Sl+kT* X V)

The canonical injection
6171 :S'T* — T* @ ST+ a
symbol (G; of order [ O, a symbol G4 of order 1

Gi=G, CT"QV, whereV = S 1T* o V.

GA1_|_k — GH_k (]‘C — O,é, . )



(;: a symbol of order [, Denote G = G| = él.
{t1,...,tn}: a basis of T,

{t1, ..., t"}: its dual basis of T™*.

Gy {Ceqct) =001 <i<k)}

: de f
(t=1,...,n), Gy =

Lemma. For any basis {t1,...,t,} of T,

dim GAl_|_1 — dim Gl_|_1 S Zdlm G(z)
1=0



Definition. G; C S'T* ® V is involutive

< H{tq,...,t,}: a basis of T such that

dim Gl_|_1 — Z?:O dim G(i).

A basis {t1,...,t,} satisfying this condition is
called regular.

Assume that G is involutive.

The integers g; = dim G ;) (1 = 0,1,...,n) are
defined independently of the choice of regular
basis {t1,...,tn}. g0 > g1 > ... > g, = 0.
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Definition. characters of Gjy:

Si — (;—1 — (g (Z: 1,...,72,).

Proposition. If GG; is involutive, then its
prolongations (G;. ;. are involutive, and the last
non-vanishing characters s, = s, (G1x) are
equal to that of G;.
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Examples: m =dim V., n =dim1, [ = order

(1) O (4) are involutive symbols:
(1) G; C S'T* with codim G; = 1(m = 1).
gi= (""" -1(0<i<n)g,=0;
: n—+I1
dim Gy = (ljl) —n.

S; = (”+ll:f_1) (0<71<n),s, =0.
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(2) Gy C T* ® V defined by ({va}: a basis of V)

Gi1=1{D1<i<ni<a<m (it @ Va
Z1§i§n,1ga§m Cféarﬁxﬁ =0(B8=1,...,m)}

({a’P} with det(a”’) # 0 is given).

gi=(n—1—1m(0<i<n),g, =0dmGi41 =

n—1 .
Z'L:]_ ™T1. 81:‘°°:Sn_1:m73n20

)G, CT @V =T" (m=1,1=1).
let dim Gy =n—r.gi=n—r—3i(1<i<n-—r),g; =
O(n—r<i§n), dim G141 = (n—;—l—l)_

31:"‘:5n—r:175n—r—|—1:"':Sn:O-
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Put T* = (span{&,n});dimT = 2.

(4) Go =span{&?,&n} C S%T™
(m=1,n=2,1=2).
go=1,g:=0(i=1,2),dimGi11 =1. sy = 1,55 = 0.
The following is not an involutive symbol:
(5) Gy =span{&?,n*} C S*T*
(m=1n=2,1=2). go=1,9. =03 =1,2),
dim G141 = 0.

G; C S'T* is involutive < JH(£,n): a
nomogeneous polynomial of degree [ +1 — r s.t.

Gr = span{&} H(E m(j +k=r—1)}




differential systems

involutiveness ( )

1° | In the case of EDS X

A fundamental problem: To construct all
integral manifolds of X..

For each dimension n, construct all
n-dimensional integral manifolds of ..

15



L : N — M: an n-dimensional submanifold

N: an integral manifold < *¢ = 0,V € X",
(Proof. X is an ideal)

NOy? =uf(y',...,y") (n < 3 <m)

N O an integral manifold
u?(y) (v = (', y"))

¢(n)
Denote ¢} = %@f.

16



N is an integral manifold
< a system ®(n) of differential equations

consisting of Fy, (¢ € ™), where

1<a1<...<anp<m
O(u™l, , u N )
gbOé]_,...,Oén(yla"'7yn7un+17'°'7um) 1
o(y+, , y™)
u'(y") = y* (1 < i < n) by convention,
o e’ .
Ou"l,..nu ™) =det(q; 5 =a1,....an;2=1,...,n)

(yl,...,y™)
O Fg is a polynomial function of the variables

¢?(1<i<n,n<pB<m).
17



integral manifolds
Construct a O-dim IM NO: construct a 1-dim IM
Nl st. N1 5 NO .. .: construct an n-dim |IM
N™st. N*» D N* 1,

construction of N* < solution of a PDE ®(k).

N = N™0 an integral
manifold
" involuiveness( )’
E.Cartan: Pfaffian systems (1901
E,Kahler: EDS (1934).

1



Gi(M): the manifold of all k-dim contact
elements on M; E, € 6, (M) & B, C TyM forsome y € M.
Definition. An element Ey € Gi(M) of origin y
is an integral element of X

<~ o(y)|g, =0, V¢ € X (equivalently

Vo € TF)

IFY: the set of all k-dim integral elements of 3;
> C Qk(M), 1> = Uk:(),lyzw.]kz.

N is an integral manifold of > < each
tangent space 1, IV is an integral element of X..

19



Ep e I'Y (polar element):
H(Ey) ={v e T,M;span{v, By} € I%}
H(FE}) contains F.
SPDE ®(n) :
B(0) C D(1) C---C ®(n—1)C ®(n) (000 {y*}00
) .
Definition(Kahler). Ej € IS is regular

<

(i) Hb1,...,0-} C ®(k) which gives a regular
local equation of I*Y around Ej, in G, (M).
(i) dim H (Fy) :constarat on around Ej, in I*Y].




A chain £y C B4 C ... C E,, of integral
elements of X is called a regular chain of X if
each £, with k < n is regular.

Definition. . is involutive at F,, € I™).

& dBEg C B C ... C By a regular chain.

(Ek) — COdlmH(Ek;) In T M

t(Ey) < max{t(Ey): By € By} =01

to(Ep) > t1(Ey) > ... > t,(E,).

21
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The integers so(En),...,sn(FEy) defined by

SO(En) — tO(En)a Sn(En) — m —n — tn—l(En)a
Sk(En) — tk(En) — tk—l(En) (1 < k< TL)

are called (Cartan) characters of X at F,.

22



Cartan-Kahler Theorem. Assume that

M, >3 real analytic, E,, € I™>..

>, Is Involutive at E,, = d N: an analytic
n-dimensional integral manifold of > with

Ty,N = E,,. Parametrization of n-dim IM: the
general integral manifold N with T, N being
near F,, depend on sy constants, s; functions of
1 variables, ..., s, functions of n variables.

& the symbol of X

Assume that X is involutive at F,, € T 0

23



Definition. The symbol of > at E,, is the space
C(En) =Tg, (1))

={C € TE,(Gn(M)y); < w(y),{ >=0,Yw € X7 }.
considered as a subspace of E' & (T,,M/E,,)
in terms of the isomorphism

X : Tk, (Gn(M)y) — E;, @ (TyM/E,);

C(E,) CE®(T,M/E,).

Proposition. If > is involutive at E,,, then the
symbol C'(E,,) C E @ (T,,M/E,) is involutive.

24



2° | In the case of SPDE R;

The k-th prolongation R of R;:
Ritr = Jk(Rl) M Jl+k(5)(set!)(k =1,2,.. )
( Ji4k(E) = Jp(Ji(£))).
Ri:F,=0~=1,...,r)

Riy1:F, =0 ety _ (1<i<n1<~y<r)

 dot
( T -total differentiation with respect to z* (00 0))

{ C* solutions of R; }={ C'° solutions of
Rl}. (Provided R4 is a fibered manifold, that is, a SPDE)

25



<>The symbol G = {Gl,p; P € Rl} of R;:

d
V(g) ] ker 7, : T —-TX (vertical bundle).
an exact sequence of vector bundles over

Jl(g):

(7 )«
= ? (Wll—1>_1v(t]l—1) — 0

0— S'T*®,,V(E) - V()

(00007 =T*X,Js = Ji(&) ).
de
G, Y S'T 2, VIR) N (a) YV (R)).
Ann(G;) =span of
Zil ..... zlaF’Ypl -laxn'“@mn®dyo‘(1§j§fr').
26




Definition. R; is involutive <

(i) G411 is a vector bundle over R;,
(ii)) The symbol G is involutive,
(iii) 77" : Ryp1 — Ry: surjective.

The (Cartan) characters s; = s;(P) (1 < i < n)
are defined to be the characters

si = s;(Gi; p) (1 <i<n) of the symbol G; p.
S1 >80 > ...> 5, (SPDE ).

(ii)

21



The Cartan-Kahler theorem. If an analytic
SPDE R; is involutive, the R; admits (local)

analytic solutions. When [ = 1, the general solution

depends on sg constants, s1 functions of 1 variables, ..., s,
functions of n variables. When [ > 1, the same statement is
valid with s;’s being replaced by suitable ones.

s, > 0 < underdetermined;

s, = 0 < determined,overdetermined.

23



Exam

les of involutive SPDE:

examples of symbols (1)0 (4
(1) a single eq. F'(z",y*, p%:1 <

v

E<1)=0

(2) a system of order 1

Zlgign;lgagm 4

1

7 () Gar — bs(z) =0

84

ox?

({a®’(x)} with det(a™”)(x) # 0 is given).

(3) 1

1

Fj(ibi, .

. ,len,u,pl,.

,pn)=0 (J=1,...,7)

with [Fj,Fk] = O(modFl, . .,Fr).

29



(4) 2 z(z,y) 2
r— f(z,y,2,p,9) = 0,5 — g(x,y,2,p,q) =0
with j—i = Z—i (modr — f,s —g).

An example of a non-involutive system:

(5) z = z(z,y) 2
r=0,t =0. The symbol is not involutive.

30



3° | EDS 3 (R;)
SPDE EDS
{> the contact system on the space J;(£)
(Gardner-Shadwick):

P = ji(u)(x) € J;(E). u defines a morphism
Ji—1(u) : U = (domain ofu) — J;_1(&).
Denote P = 7}_,(P).

0 “ 10(P); P € J,(£)} where

O(P) = (mj_1 — ji—1(u) o 1) " TpJ1—1(E):
31



O is a vector subbundle of T*J;(&€) over J;(&).
OF:the exterior differential system on J;(&)
generated by all sections (1-forms) of ©.

The system ©F or the Pfaffian system

O = ' NAL(J;(€)) is called the contact system

on J;(£), and 1-forms in © are called
contact forms.

32



the contact system O is
generated by the following 1-forms:

(9@1 zk_dpzl Ak szl Zkzd.??z

(1§a§m,1§21<...§ik§n,0§k<l).

Definition. 3(R;) is the differential ideal (EDS)
generated by all contact forms on J;(£) and the

functions F' on J;(&) with F|r, = 0.
33




¥(R;) >(R;) is generated by

F%dF%931...ik,d921...ik
1<y<rnlI<as<m 1< <...<i<n,0< k<

as an algebraic ideal in A(J;(E)).

Given a section u of £, we have a subset
No ={ji(u)(z);x € X} C J(E).

N, is an n-dimensional manifold, and the

mapping 7t : NV, — X is a diffeomorphism.

34



Proposition. (a) w is a solution of R; =

N, C Ji(E) is an n-dimensional integral
manifold of X(R;).

(b) N C J;(€) is an n-dimensional integral
manifold of X(R;) s.t. #°, : N — X is a
diffeomorphism = 3 a (unique) solution u of R;
such that N = N,

Theorem. R; is involutive

— Z(Rl) Is involutive at £, € In(Rl).
(I™(R;) is the one defined at p.58)

35



4° | SPDE associated with X

Given a contact element Ef,(lo) on M.

(y',...,y™): a local coordinate system of M
around the origin g of Eq(lo) such that
dy',....dy" are linearly independent on E..

Let V) be its coordinate neighborhood.
n my def n
Vo — R w(yl ™) ).

Xo = mw(Vpy); an open subset of R™.
gn(V()) — {En - gn(V()), lel?T*(En) — n}

36



set : :
80 — VQZ a fibered manifold with base space X and
projection 7 : £g — Xo. ((y*, ..., y''") is its fibered chart).
O
X : J1(E) — Gn(Vo),

x(J1(u)(z)) = us (T Xo): a canonical

diffeomorphism.
Definition. S; = x 1(I"X NG, (V).

If 173N én(Vo) Is @ manifold, then &; defines
SPDE of order 1 on &.

S1 coincides with ®(n) appeared in|1° |

37



Theorem. If X is involutive at Ef,(,,O), then &7 is

involutive at Py = v~ L(EY). The symbol
(0))

(G1 p, is canonically isomorphic to C'(F
Thus e.g. &7 is elliptic if and only if X is elliptic.

38



involutive symbols

modules

Notation:

Ry=R, R,=85T (¢q=1,2,...)

R =73 "4 Ry (isomorphic to) the polynomial
ring in n variables.

L=R®V™* = Z;iOLq, L,=5TT®V":

a Noetherian graded R-module.

X =the maximal ideal of R generated by R;.

G, CS'T*®V: a symggl of order {.



Dy =AmG, C L;=S'"TeV*,

N =the (homogeneous) submodule of L generated
by Dl.

Definition. The characteristic module

M = M (G;) of a symbol G is the smallest
(homogeneous) submodule M of L possessing
the following two properties:

(i) M DN; (i) Xz2CM(zeL)=z2¢€ M.

0.0000000000 (e.g. Goldschmidt)D OO O. 00O (i) O

000 Monge characteristics 000000 (0D 000O0O00)00O0.
0000 000000 M(GlJrk)l():M(Gl)DDDDD.



One can apply the elementary thory of
Naetherian modules (cf. e.g. Zariski-Samuel) to
the characteristic module M of a symbol Gj:

M admits an irredundant primary decomposition
in L

M =n;_, Qj;, (;beingP;-primary,

where ‘3, are homogeneous prime ideals in R.
{B1,...,B,} = {the set of associated prime
ideals of the quotient module L/M}.

41




Lemma. Assume that G is an involutive symbol.
(i) There exists no X-primary component in the
irredundant primary decomposition of the

characteristic module M.
(i) M, = N, for any q > [.

42



Definition. A non-zero £ € T* ® C is a
characteristic covector for a symbol G}
S GRCNE eV ®C) £ {0}

& 06:VRC—W®C defined by
oe(v) = 0(£' @ v) is not injective.

Otherwise ¢ is non-characteristic for (.

— d .
=(Gh) if{all characteristic covectors for GG; }.

=(G,) is an algebraic variety in the complex
projective space P(T™). We shall call Z(G)) the

characteristic variety of a symbol G;.

43




Theorem. Assume that G is involutive. Let p
be the non-negative integer determined by

Sp >0,8,41=... =5, =0. Then the
following are valid:

(i) projdim*B; < p—1 and P, s.t. = holds.

(i) sp = D, Q)

projdim P ,;=p—1
(1(Q;) =the multiplicity of the component Q).

( 1) 2(G1) = Uj=1,..., {the variety of [, }.
=(Grir) = E(Gy)

44




> involutive subsymbols

G; C S'T* ® V: an involutive symbol of order I.
D;=AmnnG,C L;=S'"ToV*

Assume s1 > 0,89 =--- =35, = 0.

Consider the problem: construct involutive
subsymbols G C Gj.

Lemma. Let z € L;. G = Ann (D, z) is

involutive < 3P with the zero of 3, being real
such that °}3, 2 C M.

45



Define ke : T* @ S'T* @V — S'T* @V by
ke(C) = C(e),¢ € Hom(T, S'T* @ V). This
induces a morphism k. : Gi41.p — Gy p.
Introduce a subspace of Gj:

c(PB;) =T NP,( ),
C(F;) = span{re(Grir)ie € c(B;)}
Proposition. G; C G| is involutive <

33, with the zero of 3, being real such that
G, 2 C(B;).

O.00000 sy =---=8p, >0,8p41 =+-+- =38, =0 with

1§p<nDDDDDDDDD%%DDDDD



The characteristic covectors of

differential systems

1° | The characteristic covectors of EDS X
Fix an integer(dimension) n > 2. Let
E,_1 € 1"~ 1. Assume E,_1CdE, € I™].
= dim H(E,_1) > n.

Definition. F,,_1 is a characteristic (resp.

non-characteristic) element
< dim H(E,_1) > n(resp. = n).

47




Assume that > iIs involutive at E,, € 1™>..

A characteristic element can be characterized by
using the symbol C'(E,,) of X;

C(E,) CE®(T,M/E,) (y= origin of E,).
Lemma. Let £ € EF sit. E,,_1 =< & >+. Then
FE,,_1 1s characteristic

= C(E,) N (TyM/E,)} # 10}

In other words, a non-zero £ € E defines a
characteristic element E£,,_1 C E,,
& € is a real characterijgic covector of C'(F,,).



Definition. The characteristic variety Z(F,,) of
Y. at FE,, is the characteristic variety of C(FE,,).
A covector &£ € Z(FE,,) is a characteristic
covector of ¥ at F,,. Z(FE,,) is an algebraic
variety in the projective space associated with
the complexfication of E.

Remark. If s, (Fy,) > 0, then V&€ € E is
characteristic.

49



2° | The characteristic covectors of SPDE R,
We shall always assume that R; is involutive.
Around g € X we regard X as the Euclidean
(xt,...,2™)- space.

H C X: a hyperplane with xg € H.

f > & dx': a covector with < & >= T, H.
2 (i=1,...,n); a basis of T,y X such that
{8 1 <1< n} 1., H (—n is transversal to H).
Let u be a section u of £ described by
y* =u*(z)(a=1,...,m).

50




The I-jet j;(u)(xg) is determined by the values:

(%)‘” - (ﬂ)“"uo‘(wo) (1 -+ pn < 1),

(8%1)“1 .. (%)“”uo‘(azo) with

pr ey <y < (
)71(u)(T0) € Ry (g2 ) u(zo)
H q

Gl,Po a (fl & Vyog) a {O}
51



Cauchy

=1 w(x)O H

H w0 all derivatives (including of

nigher orders)

)
Definition. Let £ € T X ® C.

¢ is characteristic (resp. non-characteristic) for
R; at By &

Gip, ®CN ('@ V,,E®C) # (resp. =){0}.
52



— d
= p if{all characteristic covectors for R; at P}.

=p C P(T} ® C): a complex algebraic variety.

The family =2 ={=p; P € R;} is called the
characteristic variety of R;.
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& R0 X(R;) 0O char. covectors
P e Ry, E, € I"(R;) with origin P.
Lemma. The canonical injection

O

Dy SHlT;X QVy(€) — Vi, (Gn(M)),
iInduces an iIsomorphism

B, : Gryrp — C(E,).

2(Gi4+1,p) = E(Gi,p)

54



Proposition. £ € T7 X: a char. covector of R;
at P &
¢ = (wl)*¢&: a char. covector of X(R;) at E,

b5



A
SPDE R; is elliptic(

real characteristic covector.
Theorem(A C* Cartan-Kahler theorem).

Assume dim X = 2. If R; is involutive and
elliptic, then R; admits C'*° (local) solutions.

elliptic invo

utive E

d .
) 2y R; admits no

DS

OOO
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dim X > 3 O

Spencer

D. Yang =(R;) , involutive
nyperbolic systems( )
A C*° Cartan-Kahler theorem
If R; is involutive hyperbolic, then R; admits
C'* (local) solutions.
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Monge characteristics In

differential systems

1° R; 0 Monge characteristics
(RO R, EDS 0O J; (&) ).
R integral elements P e R,

I3(R) ={E, € IN(2(R})); dim (7" ). E,, = n}.

y=my(P)e&,x=7,(P)eX
T, = T,X,T; = T; X




E, € I (R;) (7)) By — T,

ve(En) “ v € B, where (' ). (v) = e.

eel,

B(e) = span {Ue(En);En S~ ]12(72[)} C TP(JZ(E)),
D(e) = Ann(B(e)) C Tr(J;(£)).
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D(e)

Sipy = {o(P) € TH(Ji(€)); ¢ € B(Ry)'},

(721)"He (He = {§ € T}; < §,e >=0})

(dimH., =n —1).
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k(C) = ((e),( € Hom(Tm,SlT;,k ® V,E)

morphism

ke : T @ S'TF @ V,E — S'TF @ V,E

morphism k. : Gi11.p — G| p

. (symbol )

01



Lemma. Assume that R; is involutive. For each
P € Ry, the following are valid:

(i) For any e € T}, D(e) D Z%P) o (rt )*H,.
ST D(el) = dim Gi.p .
(P) O (m_q)*He “e(GlJrl,P)

(iii) Je € Ty s.t. D(e) =X (p) @ (71)" He.
0000000 B(e) ={spanve(EY)} & e1ke(Gri1.p),
EY € I3(R;) 0 being fixed.

(ii) dim
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Definition. A vector e € T, Is a
characteritic vectorof R; at P e R; &

dim D(e) > dlm{Z(P)@( ) He} = so(E,)+n—1

a characteristic vector e

3 a covector w € D(e), w & X(py @ (71)" He.

Such a covector w € D(e) is not a covector in (w! | )*T*. We

have a new covector w not belonging to

Z%P) @ (7t )*T* which has the property that w

annihilates all vectors v.(FE,) (F, € I3(R;)).
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Let P € R;, and M p be the characteristic
module of the symbol G; p (We call it the
characteristic module of R; at P.); Mp is a
submodule of the Rp =}~ SIT-module

Lp=7>,_,8T; @V,(E). Let

Mp — V(P)Q] P (Qj,p . ‘Bj,p-primary modules)
()

be an irredundant primary decomposition in the
Rp—module Lp.

04



The above Lemma implies " e is characteristic <
ke : Gi+1.p — G p Is not surjective.” The dual
operator of k. Is related the morphism in
Lp/Mp defined to be the multiplication by e.
Thus we obtain the following

Theorem. Assume that R; Is involutive.

{The set of the characteristic vectors of R; at

P} =Uj=1,..0 c(B;), where ¢(B;) = P; NT5.
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Remark. When n = 2, If there is a real
characteristic covector & of R;, then there is a
characteristic vector v of R; such that

< &,v >= 0, and the converse is valid.

In the case n > 2, there is no such simple
relations between characteristic covectors and

characteristic vectors.

66



Definition. A vector v € Tp(J;(£)) is a

Monge characteristic vector of R; at P < v
belongs to some element E,, € I3(R;) and
(7' ). v is a characteristic vector of R; at P.
& Monge characteristic systems

Applications of Monge characteristics are made
by using what i1s called Monge charactreristic
systems, which are Pfaffian systems on (an open
set of) J;(£) containing R; constructed from

the primary decomposition ({) of the
characteristic module Z\g7: {Mp; P € R;}.




Corresponding to each ‘B, p, define

B(B;,p) =
span {ve(Ey); Bn € I"(Ry),e € c(B.p)}
C TpJi(€)

D(B;j p) = Ann(B(B; p)) C THJi(E).

ole



Introduce: x = 7t (P),y = w}(P)

C(%j)P) — Span{/’{e<Gl—|—1,P>; € C C(S:]:;jap)}v
Anmm C (P, p) C S'T, X ® V,/E.

We have a direct sum decomposition:

B(B,,p) = {E.N(11); " e(Bj.p) e (C(By,p)),

where F,, is a fixed element in I"(R;).
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Lemma. (i) DB, p) D Z%P) + (7" ) *e(Bsp)*.
(i) D(%;.p) ~ AmCCB;p)
Sipy ® (mlq)*c(Pj,p)* M p

(iii)
AnnC(‘Bj,p) — {Z c Ly; C(‘ﬁj,p) z C Ml_|_1’p}.
(iv) [Amn C(F;,p)] = {Ann C(F;p)} /M p. If
each c(*B, p) is not contained any one of the
other c(*Bx.p) (k # j), then the sum

A C(Pyrp)| + -+ [Amn C(B,,p)]

is a direct sum in the vector spacel; p/M; p.
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We assume that the following regularity
conditions hold:

(a) The number v = v(P) is constant on

P € R;, (b) Foreach j =1,...,v, the family
{c(B,; p); P € R;} defines a smooth subbundle
() of (711 |=,) 1T, (<) dim C(;,p) s
constant on ‘R;.

the family {D(B, p); P € R;} is a smooth
vector bundle D(*I3;) over R;.
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Definition. The Monge characteristic system
A(B;) of R; corresponding to ‘B, is the
Pfaffian system on J;(&) generated by all
(smooth) sections w of the cotangent bundle
T*J;(€) which satisfy w(P) € D(*B;) for any
boint P € 'R;.

Each MCS A(*B;) contains the contact
1-forms on J;(€) and 1-forms dF' with F' being
any function vanishing on R;, it contains other
linearly independent 1-forms of which number
can be calculated by usiﬁg above Lemma.




& Application( )
MCS SPDER,
(H-1) R; is involutive, anc

s1>0,89=:--=35, =0

, (H-2) .
(H-2) (a) The number v = v(P) is constant on
P e R, (b) ’Bj)prCQj,p (7=1,..., v), P € Ry,
(c) For each j =1,...,v, the family

{c(B,; p); P € R;} defines a smooth subbundle

c(P,) of (7Tl_1|73l)_1T%<3 with rank n — 1.




[ |

Note. =p is consists of s; real distinct points =

v = s1, (H-2)-(0),(iii). ( R

strictly hyperbolic )
R ,

Monge characteristics

Theorem(Existence of smooth solutions). R;
admits smooth local solutions.

74



The

Proof consists of two steps:

(1) Using the Monge characteristic systems

A(B;), we construct a determined SPDE @,

whic

n is (non-linear) symmetrizable hyperbo

M.C.

)

(2) To show that solutions of R; can be
constructed by using solutions of .

75
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Application to the method of integration
(Extention of Darboux’'s method):

If v — 1 Monge characteritic systems

ACB;) (G =1,...,v—1) admit sufficiently
many functionally independent integrals, then
solutions of R; can be obtained by solving
ordinary differential equations. (Here Monge
characteritic systems A(PB,) (j=1,...,v —1)
are allowed to use those of prolongations R; k.
Darbuoux’s method !)
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This method is based on the following fact:
For a set F of function on J;(&), denote
Ri|F|={PeR;F(P)=0(F € F)}.
Choose k(< v) Monge characteristic systems,
say, A(B,) ( =1,...,k). Let F be the union
of {a set of integrals Fl(j), . ,F,S‘g) of A(P,)}
(j=1,...,k). Then R} = R;[F] is an
involutive system.

(f



If there exist sufficiently many integrals of the

v — 1 Monge characteristic systems, then for any
initial condition (1C), we can consruct a SPDE
Rlﬁ contained in R, satisfying the IC, and
admitting Cauchy characteristics of dimension

n — 1. Solving Rlﬁ gives a solution of R;
satisfying the given IC. If there do not exist
enough Integrals so as to apply this process, one
can try the same procedure to the 1-th
prolongation R;,1; and so on.
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2° | Monge characteristics of EDS X

EDS X

Monge characteristics

10

prolongation

EDS pX"

characteristics

n

Monge

px"

Y(Ri)
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Cauchy characteristics of EDS X

Set I,> = U" Iy,

Defintion. A tangent vector v € T,,M is a
C-characteristic vector (C- means Cauchy and
Cartan) of ¥ <

y € I and0 E € 1,2 = span {v, E}e [,%
In other words, v € T, M is a C-characteristic
vector if v belongs to all the spaces H(E) where
E runs through E € 1,2,
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Let C,, be the set of all C-characteristic vectors
of origin y;

Cy — mEeij H(E)

(a) The space C, C T),M is an integral
element of ..

(b) £ € I,X0 = span{C,, E'} € I, .

(c) If E' € I,X satisfies span {E', E'} € I, for
VE € I,%, then B/ C C,,.
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& the notion of le systeme associe:
M) = 190W); ¢ € X} C A*T;M (an ideal)
Definition. Let y € I'%.

Dy = {U S~ TyM;v_uqb c Z(y) for all € E(y)}

Lemma. Let V* be the smallest subspace of
I, M such that >, Is generated by

Yy NA*(V*). Then the annihilator of V* in
1, M coincides with D,,.
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Theorem(E. Cartan). Assume that the family

D ={D,;y € M} forms a subbundle of T'M,

equvivalently, dim D, is constant on M. Then
the distribution D is completely integrable (in
involution); that is, if X,Y are two (smooth)

sections of D, then so is the bracket [ X, Y].
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['he inclusion C,, C D, holds without any
assumption.

Lemma. If X, be generated by homogeneous
elements of degree < 2 as an algebraic ideal,
then C, =D,

Theorem. Assume that I°% is a submanifold of
M, and that, for any y € I’%, X, is generated
by homogeneous elements of degree < 2, and if
the family C = {Cy;y € M} forms a subbundle
of T'M ,[ then the distribution C is completely
integrable.
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# >(R;)O C-characteristics

Assumption: R; is involutive. P € R;.

Mp C Lp: the characteristic module of R;.

Set mp = {f c Rp; fLp C Mp} (ideal of Rp)
Cp=(the space of C-char. vectors of origin P).
Theorem. Assume that R; Is involutive.
Cp=E,N(7 )7 (mpNRy,) (B, € I"(Ry)).
Corollary. Mp =N%_;Q; (Q; : B;—primary):
an IPD. Then Cp C Nj=1 . ,c(B,).0If
exponent of Q; = 1(Vj), Cp = Nj=1... ,c(B;).

Remark. »(R;)000O, vé5C—char. =- v:Monge char.




Examples:(1) ( 1 1

Rli

Fi(xiy...,Tn,UyP1,...,0n) =00 =1,...,7)
( Fy(G=1,....r) )
Y(Ry)O,0r C-characteristics

. Cauchy characteristic vectors:

" OF; d dF: O
Xp = J J =1.....7).

1=1
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(2) 2 1

RQIT:O,SZO

C-characteristics

8/
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