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FOLIATIONS ON THE OPEN 3-BALL BY COMPLETE SURFACES

BY

TAKASHI INABA (Chiba) and KAZUO MASUDA (Tokyo)

Abstract. When is a manifold a leaf of a complete closed foliation on the open unit
ball? We give some answers to this question.

1. Introduction and statement of results. This paper is concerned
with the topology of leaves of foliations. The concept of foliation appeared in
the 1940’s as a geometric approach to solutions of differential equations, and
is now widespread in various areas such as complex analysis, exterior differen-
tial systems and contact topology (see e.g. [6, 11]). Recall that a codimension
q Cr foliation F on an n-dimensional smooth manifold M is a decomposi-
tion {Lλ}λ∈Λ of M into a disjoint union of injectively immersed connected
(n− q)-dimensional submanifolds Lλ satisfying the following local triviality:
each point of M has a neighborhood U such that F restricted to U is Cr
diffeomorphic to the family {Rn−q×{y}}y∈Rq of parallel (n− q)-dimensional
planes in Rn. Each Lλ is called a leaf of F . Note that, by collecting all the
vectors tangent to leaves, the foliation can alternatively be defined as an
integrable subbundle of TM .

In 1975, Sondow [16] posed a basic question: when is a manifold a leaf?
This question is natural (because it generalizes the classical embedding
problem in differential topology) and important (because it may be re-
lated to the study of the topology of integral manifolds of differential equa-
tions). Thus, it has been investigated extensively in various settings (see e.g.
[7, 8, 9, 10, 12, 13]).

The purpose of this paper is to consider this question in an interesting
new setting. Let F be a foliation on a Riemannian manifold (M, g). A leaf L
of F is called closed if it is a closed subset of M (this is equivalent to saying
that L is properly embedded), and complete if L is complete with respect to
the induced Riemannian metric g|L. A foliation F is said to be closed (resp.
complete) if all leaves of F are closed (resp. complete). Now, our setting is
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as follows: We fix, as the manifold which supports foliations, the open unit
ball Bn of the Euclidean space Rn with the induced Euclidean metric—the
simplest incomplete open manifold. And foliations we try to construct on Bn
should be complete and closed. The novelty of this setting is to treat complete
closed foliations on incomplete open manifolds. As one can imagine, in order
to construct such foliations, one must “turbulize” all the leaves along the
(ideal) boundary of Bn.

The motivation of this work comes from recent deep works of Alarcón,
Globevnik and Forstnerič [1, 2, 3]. They consider holomorphic foliations on
the open ball of Cn. Our work is, in a sense, a real smooth (C∞) version of
theirs. Since holomorphic objects are very “rigid”, constructions of complete
holomorphic foliations are much harder than those of real ones. The advan-
tage of our approach is that, by forgetting holomorphic rigidity, one can
concentrate on overcoming purely topological difficulties. In fact, on some
topic we have thus succeeded in constructing infinitely many examples of
foliations that are new in the literature (see Theorem 1.2 below).

Now, the first result of this paper is the following; its holomorphic version
has been obtained by Alarcón and Globevnik [1, 3]. (Note that our result
is independent of theirs, because of the difference of codimension. The codi-
mension of our foliation is 1 (the most cramped codimension, see §6), while
the real codimension of their foliations is at least 2.)

Theorem 1.1. For any connected open orientable smooth surface Σ,
there is a codimension 1 complete closed smooth foliation on B3 with a leaf
diffeomorphic to Σ.

Remark. In [9], Hector and Bouma showed the same statement on R3.
In [10], Hector and Peralta-Salas generalized it in higher dimensions.

Remark. The corresponding result to Theorem 1.1 for Sondow’s original
question (i.e. the realization of manifolds as leaves of foliations on compact
manifolds) was first obtained by Cantwell and Conlon [7]. For recent devel-
opments in this area, see e.g. [4, 13].

Remark. A non-orientable surface cannot be a leaf of a foliation on B3.
In fact, if it can, the foliation must be transversely non-orientable. The ex-
istence of such a foliation contradicts the simple connectedness of B3.

Our next concern is a uni-leaf foliation. Here, we call a foliation F uni-leaf
if all the leaves of F are mutually diffeomorphic.

Example. A complete closed uni-leaf foliation on B2 = {(x, y) ∈ R2 |
x2 + y2 < 1} can easily be constructed as follows. Begin with the standard
foliation H on B2 defined by dy = 0. Then, obviously, all leaves of H are
diffeomorphic to the real line and closed in B2. Let h be a diffeomorphism
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of B2 defined by

h(r, θ) =

(
r, θ + tan

πr2

2

)
,

where (r, θ) are the polar coordinates. Then h sends any leaf ` of H to a
complete curve h(`) in B2, because each end of h(`) spirals asymptotically
on ∂B2. Hence, h(H) is a foliation we have desired. Note that, since h is
real-analytic (Cω), so is h(H).

So, let us consider uni-leaf foliations on B3. For a connected open ori-
entable surface Σ, let E be the set of ends of Σ with the usual topology, and
E∗ the closed subset of E consisting of non-planar ends. It is known [15] that
the pair (E , E∗) and the genus determine the homeomorphism type of Σ. It
is also known that two smooth surfaces are diffeomorphic if and only if they
are homeomorphic.

Now, we will introduce a new concept. We assume that the genus g of
Σ is either 0 or ∞. Let e be a point of E . Let Z be empty if g = 0 and
a countably infinite subset of E − E∗ − {e} if g = ∞. Suppose further that
every point of Z is an isolated point of E and that the derived set of Z
in E is E∗. In this situation we say that the 4-tuple (E , E∗, Z, e) satisfies the
self-similarity property if the following condition holds: there exist two copies
(E+, E+∗, Z+, e+), (E−, E−∗, Z−, e−) of (E , E∗, Z, e) and a homeomorphism
h : E+ ∨e+=e− E− → E such that h(e±) = e and h(Z+ t Z−) = Z (hence,
h(E+∗ ∨e+=e− E−∗) = E∗), where ∨ is the wedge sum.

Remark. This concept is not the same as the usual self-similarity in
fractal geometry. Ours is a kind of pointed self-similarity, meaning that we
fix a basepoint once and for all and then only consider subspaces containing
the basepoint and mappings preserving the basepoint.

Example. (1) Let C be a Cantor set embedded in S2. Then all ends of
the surface ΣC = S2 − C are planar, and the endset E of ΣC is identified
with C and hence has the self-similarity property. In fact, E can be expressed
as E = E+ ∨e E−, where E+ and E− are subsets of E both homeomorphic to
C such that E+ ∩ E− = {e} for some e ∈ E . In this case, Z is empty.

(2) Let J be the orientable open surface with one end and infinite genus
(the so-called Jacob’s ladder). We take in J a discrete infinite subset S and
put ΣJ = J − S. Then the endset E of ΣJ consists of isolated planar ends
en (n ∈ N) each of which corresponds to a point of S and one non-planar
end e to which en’s converge. Thus, E = {e} ∪ {en}n∈N and E∗ = {e}.
See Fig. 1. Set Z = {en}n∈N. Then the 4-tuple (E , E∗, Z, e) satisfies the
self-similarity property. Indeed, it suffices to define: E+ = {e} ∪ {e2n−1}n∈N,
E− = {e} ∪ {e2n}n∈N, E+∗ = E−∗ = {e}, Z± = E± − {e}, e+ = e− = e, and
h as the identity.
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We remark that there are many other surfaces whose endsets have the
self-similarity property; we give examples at the end of §4.

The next theorem shows that infinitely many surfaces can be realized as
leaves of uni-leaf foliations on B3.

Theorem 1.2. Let Σ be a connected open orientable smooth surface with
genus g either 0 or ∞, and let (E , E∗) be its endset pair. Suppose that there
exist a point e of E and a subset Z of E − E∗ − {e} such that

(1) Z is empty if g = 0 and countably infinite if g =∞,
(2) every point of Z is an isolated point of E,
(3) the derived set of Z in E is E∗, and
(4) (E , E∗, Z, e) satisfies the self-similarity property.

Then there exists a codimension 1 complete closed smooth uni-leaf foliation
of B3 having Σ as a leaf.

Remark. In the holomorphic situation, the existence of a uni-leaf fo-
liation on the 2-dimensional holomorphic ball is known in the case where
the leaf Σ is the disk {z ∈ C | |z| < 1} (see [2]). It seems that the prob-
lem remains open whether other Riemann surfaces can be leaves of some
holomorphic uni-leaf foliations.

The following two arguments are crucial to proving our theorems:
(1) We build a kind of barrier in Bn (called a labyrinth in [2]) in order to

force all leaves to become complete. The existence of a holomorphic labyrinth
is a profound result. On the other hand, we find that a real labyrinth is quite
easy to build (see §2).

(2) We show that the self-similarty property of the endset of a surface is
a sufficient condition for the surface to be a leaf of some uni-leaf foliation.
This is proved by a careful construction of a rather complicated submersive
function on some domain of R3 (see §4).

We close this section with two more remarks.
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Remark. All foliations in this paper are C∞. For foliations in Theorems
1.1 and 1.2 the authors have an idea of raising the differentiability to Cω by
using Cω approximation of C∞ Morse functions and diffeomorphisms. But,
at present, they have not written up the proof in full precision yet.

Remark. All foliations in this paper are closed, hence their holonomy
pseudogroups are always trivial.

2. Constructing complete foliations on the ball. The content of
this section is a real smooth version of the argument developed in [2].

Let {rk} and {sk} be sequences of real numbers satisfying 0 < s1 <
r1 < s2 < r2 < · · · → 1, and let Bk (resp. Sk) be the closed ball (resp.
the sphere) in Rn centered at the origin with radius rk (resp. sk). Put Γk =
Sk − Uε(pk), where 0 < ε � s1, pk = (0, . . . , 0, (−1)ksk) and Uε(pk) is
the open ε-neighborhood of pk in Rn. A path γ : [0,∞) → M in an open
manifold M is called divergent if γ(t) leaves any compact subset of M as
t→∞. Then the following is evident.

Lemma 2.1. Every divergent smooth path in Bn avoiding
⋃
k≥k0 Γk (for

some k0) has infinite length.

We denote Pk = Rn−1 × [−k, k]. Let Ω be an open set of Rn diffeo-
morphic to Bn such that its image projected to the last coordinate of Rn is
unbounded. Then we can choose an exhaustive sequence {Ck}k∈N of subsets
of Ω satisfying the following properties: (i) Ck is diffeomorphic to the closed
ball, (ii) Ck ⊂ IntCk+1, (iii) Ck ⊂ Pk+1, and (iv) Ck − Pk 6= ∅.

Lemma 2.2. There exists a diffeomorphism Φ from Ω to Bn such that for
all k ∈ N:

(1k) Φ(Ck) = Bk, and
(2k) Φ(Pk ∩ Ck) ∩ Γk = ∅.

Proof. We will enlarge the domain of definition inductively. First, define
Φ on C1 so that it satisfies (11) and (21). This is possible because, by (iv)
above, C1 − P1 is non-empty and Γ1 ⊂ IntB1. Next, suppose Φ has already
been defined on Ck so as to satisfy (1`) and (2`) for ` ≤ k . Since Γk+1 ⊂
Bk+1 − Bk and, by (iv) above, Ck+1 − Pk+1 is non-empty, it is possible to
extend the definition of Φ on Ck+1 so that Φ(Ck+1−Pk+1) ⊃ Γk+1 and that
Φ(Ck+1−Ck) = Bk+1−Bk. Then we see that the resulting Φ satisfies (1k+1)
and (2k+1). Since {Ck}k∈N is an exhausting sequence in Ω, this inductive
procedure gives a diffeomorphism from Ω to Bn, as desired.

Lemma 2.3. Let Φ be as in Lemma 2.2. Then Φ(Pk ∩ Ω) ∩ Γk = ∅ for
every k ∈ N.
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Proof. Since Γk ⊂ Bk = Φ(Ck), a point p of Ω satisfies Φ(p) ∈ Γk only if
p ∈ Ck. Hence, by Lemma 2.2(2k), Φ(Pk ∩Ω)∩Γk = Φ(Pk ∩Ck)∩Γk = ∅.

Let G be a closed foliation on Ω (that is, every leaf of G is a closed subset
of Ω). Then the direct image F = Φ(G) is a closed foliation on Bn. Here, we
consider the following property (P) for G:
(P) for any leaf L of G there exists k ∈ N such that L ⊂ Pk.

We recall that a leaf F of F is complete if and only if every divergent
smooth path in F has infinite length. The next lemma gives a sufficient
condition for the completeness of the leaves of F .

Lemma 2.4. If G satisfies (P), then all leaves of F are complete.

Proof. Suppose G satisfies (P); let F be any leaf of F . Put L = Φ−1(F ).
Since L is a leaf of G, by (P) there exists kL ∈ N such that L ⊂ PkL .
Then, recalling Lemma 2.3, for any k ≥ kL we have F ∩ Γk = Φ(L) ∩ Γk ⊂
Φ(PkL ∩ Ω) ∩ Γk ⊂ Φ(Pk ∩ Ω) ∩ Γk = ∅. Therefore, F does not intersect⋃
k≥kL Γk, hence, in particular, neither does any smooth path on F . This

together with Lemma 2.1 implies the completeness of the leaves of F .
We summarize the result obtained in this section as follows.

Proposition 2.5. Let G be a closed foliation on an open subset Ω of Rn
diffeomorphic to Bn such that

(1) prn(Ω) is unbounded, where prn : Rn → R is the projection to the nth
coordinate, and

(2) each leaf L of G has property (P): prn(L) is bounded.

Then there exists a diffeomorphism Φ from Ω to Bn such that Φ(G) is a
complete closed foliation on Bn.

3. Realizing open surfaces as leaves. First, we prepare an elementary
result:

Proposition 3.1. LetW be a smooth open manifold and C be a countable
family of injective smooth paths ck : [0,∞)→W (k ∈ N) such that

(1) ck is divergent for each k, and
(2) they are pairwise disjoint and the family C is locally finite.

Then W −
⋃
k ck([0,∞)) is diffeomorphic to W .

Proof. The reasoning consists in “pushing to infinity” each point ck(0)
along the path ck. Let dimW = n and give W an arbitrary Riemannian
metric. Put N = Dn−1 × [−1,∞) (where Dn−1 is the closed unit disk in
Rn−1 centered at the origin). Take a non-negative bounded smooth function
λ : N → R such that λ = 1 near ∂N and that for (p, t) ∈ N , λ(p, t) = 0
if and only if p = 0 and t ∈ [0,∞). Define a smooth vector field V on N
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by V = λ ∂
∂t , and let ϕ : N × [0,∞) → N be the (local) flow generated

by V . Then the map g : N → N − ({0} × [0,∞)) defined as g(p, t) =
ϕ((p,−1), t + 1) is a diffeomorphism which is the identity near ∂N . Now,
for each k, take a neighborhood Nk of ck([0,∞)) and a diffeomorphism uk :
N → Nk so that (1) Nk’s are pairwise disjoint and the family is locally finite,
(2) uk(0, t) = ck(t) for t ∈ [0,∞), and (3) the diameter of uk(Dn−1 × {t})
tends to 0 as t → ∞. We then obtain the desired diffeomorphism h : W →
W −

⋃
k ck([0,∞)) by setting h = uk ◦ g ◦ uk−1 on Nk for any k, and the

identity everywhere else.

Using almost the same argument, we can also show the following

Proposition 3.2. Let M be a smooth manifold, P a subset of M , and
N a neighborhood of P in M . Put W = M × R. Let `p = {p} × (−∞, ap]
(p ∈ P , ap ∈ R) be a family of vertical lines in W . If

⋃
p∈P `p is closed in W ,

then W −
⋃
p∈P `p is diffeomorphic to W by a diffeomorphism preserving the

fibers ({{m} × R}m∈M ) and equal to the identity outside N × R.

Proof. It suffices to push
⋃
p `p to −∞ with respect to the R-factor. To

be precise, take a non-negative bounded smooth function µ :W → R which
vanishes exactly on

⋃
p `p and is constantly 1 outside N × R. Consider the

flow ψ : W × R → W on W generated by the vector field µ ∂
∂z , where

z is the coordinate of R. Take a smooth function λ : M → R such that
λ(p) > ap for p ∈ P . Then the map h : W → W −

⋃
p `p defined by

h(m, t) = ψ((m,λ(m)), t− λ(m)) is the desired diffeomorphism.

Note that in this proposition, (i) the local finiteness need not be assumed
and (ii) the pushing-to-infinity operation can be carried out for an arbitrary
small neighborhood N of P .

Proof of Theorem 1.1. Any connected open orientable surface Σ can be
constructed as follows: First, remove from R2 a closed totally disconnected
set X. (Then X ∪ {∞} will be the endset E of Σ, where ∞ is the point
at infinity of the one-point compactification of R2.) Next, take an at most
countable set Z in R2 − X in such a way that for any compact set K in
R2−X the intersection Z ∩K is finite. (The set of accumulation points of Z
in R2∪{∞} will be E∗.) Then, for each point q of Z, choose a small compact
neighborhood Uq of q in R2−X so that they are pairwise disjoint, and in each
Uq perform a surgery to attach a handle. The resulting surface is Σ. Observe
that the entire construction above can be carried out in (R2 −X) × R. To
do so, for each q ∈ Z choose a small compact neighborhood Vq of (q, 0) in
(R2−X)×R, and perform ambient surgeries on (R2−X)×{0} inside each Vq.
Thus, we obtain Σ as a properly embedded submanifold of (R2 − X) × R.
Note that Σ separates (R2 −X)× R into two connected components.
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We then take a Morse function f : (R2 −X)× R→ R such that

• f(x, y, z) = z for (x, y, z) ∈ (R2 −X)× [(−∞,−1] ∪ [1,∞)], and
• 0 is a regular value of f with f−1(0) = Σ.

The existence of such f follows from the above construction of Σ. We let
Crit(f) denote the set of critical points of f (which is a countably infi-
nite set if Σ has non-planar ends). Now, we take an increasing sequence
∅ = K0 ⊂ K1 ⊂ · · · of codimension 0 compact submanifolds in R2 − X
such that

⋃∞
i=1Ki = R2 − X. For each p ∈ Crit(f), we can construct an

injective smooth path cp : [0,∞) → (R2 − X) × R as follows. Suppose
p ∈ (Ki −Ki−1)× R. Then

(1) cp(0) = p,
(2) cp intersects neither Σ nor (R2 −X)× {±1},
(3) cp does not intersect Ki−1 × R,
(4) for each j ≥ i, cp intersects ∂Kj × R transversely in exactly one point,
(5) cp(t) converges to a point in (X ∪ {∞})× {±1/2} as t→∞, and
(6) if p 6= q, then cp([0,∞)) and cq([0,∞)) are disjoint.

We denote by M the space obtained from (R2 − X) × R by removing⋃
p∈Crit(f) cp([0,∞)). Then applying Proposition 3.1 for W = (R2 −X)× R

and C = {cp} we see that M is diffeomorphic to (R2 −X)× R.
Next, define an open subset Ω of R3 to be the union ofM and R2×(2,∞).

By the above argument, Ω is diffeomorphic to [(R2−X)×R]∪ [R2× (2,∞)].
Thus, by Proposition 3.2 we can push X × (−∞, 2] to −∞ with respect to
the second coordinate and obtain Ω diffeomorphic to B3.

Now, we extend the domain of our Morse function f to Ω by defining f
to be the projection to the second factor on R2 × (2,∞). We let G denote
the foliation on Ω whose leaves are connected components of the level sets
of f . Then G has no singularities because all the critical points of f are
removed from Ω. It is also obvious that all leaves of G are closed in Ω. By
construction, G satisfies conditions (1) and (2) of Proposition 2.5. Therefore,
G is diffeomorphic to a complete closed foliation on B3 containing Σ as a
leaf. Theorem 1.1 is proved.

4. Uni-leaf foliations. In this section we consider the question: which
manifold is a leaf of a complete closed uni-leaf foliation on the open unit
ball? This question was first asked by Alarcón and Forstnerič [2] in the holo-
morphic category. They showed that for any integer n > 1, there exists a
complete closed holomorphic uni-leaf foliation of the open unit ball in Cn
with disks as leaves. We work in the real smooth category and prove Theo-
rem 1.2.
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We first treat two simple cases: ΣC and ΣJ given in §1. We will realize
each of them as a leaf of a complete closed smooth uni-leaf foliation of B3.
(Then the full proof of Theorem 1.2 will be understood as an elaboration of
these cases.)

Example. Let C, ΣC , E , E± and e be as in Example (1) of §1. Through
the identification of S2 − {e} with R2, we regard ΣC , E − {e} and E± − {e}
as subsets of R2. Now, put

Ω = R3 − (E+ − {e})× [−1,∞)− (E− − {e})× (−∞, 1].

Then, by Proposition 3.2, Ω is diffeomorphic to R3. We denote by G the
foliation on Ω obtained by restricting the foliation {pr−13 (z)}z∈R on R3.
Then all leaves of G are diffeomorphic to ΣC . In fact, this is obvious when
|z| ≤ 1. When z > 1 (resp. z < −1), see that pr−13 (z) ∩ Ω is diffeomorphic
to R2− (E+−{e}) (resp. R2− (E−−{e})). But, since we are assuming that
E± are homeomorphic to E , pr−13 (z) ∩Ω is diffeomorphic to ΣC also in this
case. Finally, since G satisfies conditions (1) and (2) of Proposition 2.5, G is
diffeomorphic to a complete closed uni-leaf foliation on B3, as desired.

Example. We first embed Jacob’s ladder J in R3. Let H = R2 × {0}
and 0 < ε � 1. For each n ∈ Z − {0,±1}, choose a small neighborhood Un
of (n, 0) in R2. We put W+

n = Un × (−1 − ε, n + ε) (n ≥ 2) and W−n =
Un× (n−ε, 1+ε) (n ≤ −2). Inside eachW±n we perform an ambient surgery
on H to attach a handle. Thus, we obtain a new surface embedded in R3

and diffeomorphic to J . Hereafter, we identify this surface with J . Next, we
put `+n = {(n, 0)} × [−1,∞) (n ≥ 2) and `−n = {(n, 0)} × (−∞, 1] (n ≤ −2).
We can take a Morse function f : R3 → R satisfying the following conditions
(by isotoping J suitably in

⋃
W+
n ∪

⋃
W−n if necessary):

(1) 0 is a regular value of f and f−1(0) = J .
(2) f(x, y, z) = z outside the union of W+

n ’s and W−n ’s.
(3) The critical points of f are A+

n = (n, 0,−1), B+
n = (n, 0, n) (n ≥ 2) and

A−n = (n, 0, n), B−n = (n, 0, 1) (n ≤ −2); their critical values are their
z-coordinates. If we pass through A+

n or A−n (resp. B+
n or B−n ), in the

direction of increasing values of f , then the level set of f is modified so
that a handle is created (resp. erased).

(4) Inside each W±n , f is a standard Morse function admitting a canceling
pair of critical points.

(5) On each `±n , f is strictly increasing with respect to z.

Let H denote the foliation (with singularity) on R3 with the level sets of
f as leaves. Then every regular leaf f−1(z) of H is diffeomorphic to J . In
fact, if |z| < 1, this is obvious. If |z| > 1, then f−1(z) loses “half” of the
infinitely many handles in comparison with f−1(0). But it still has infinite
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genus, hence, is diffeomorphic to J . We can also observe that any singular
leaf of H has infinite genus. Now, denote by Ω the set obtained from R3 by
removing the infinite family of half-lines `±n . Then it follows from Proposition
3.1 that Ω is diffeomorphic to R3. Since all the critical points are removed,
H restricted to Ω becomes a non-singular foliation, say G. We will check
the topology of leaves of G. First, we recall that the diffeomorphism type
of ΣJ is characterized by being orientable and having infinite genus, one
non-planar end (say e) and a countably infinite sequence of isolated planar
ends converging to e. Note that each leaf L = f−1(z) ∩ Ω of G is obtained
from the leaf H = f−1(z) of H by removing a countably infinite set of
discrete points H ∩ `±n . Therefore, if H is a regular leaf (hence diffeomorphic
to J), then L is diffeomorphic to ΣJ . When H is a singular leaf, we have
to notice that by the removal of one singular point from H, two punctures
(i.e. planar ends) are produced on L. But, anyway, planar ends of L are
countably infinite in number and each of them is isolated. Therefore, L is
diffeomorphic to ΣJ also in this case. Consequently, all the leaves of G are
diffeomorphic to ΣJ . As a final step, we take a diffeomorphism Ψ : R3 → V ,
where V = {(x, y, z) ∈ R3 | (x2 + y2)|z| < 1}, such that Ψ preserves the
one-dimensional foliation dx = dy = 0 leafwise. If we set Ω̂ = Ψ(Ω), we can
see that the foliation Ψ(G) on Ω̂ has property (P) of §2, while Ω̂ is unbounded
in the direction of z. Consequently, by Proposition 2.5, we obtain a complete
closed uni-leaf foliation on B3 with all leaves diffeomorphic to ΣJ .

Proof of Theorem 1.2. Let Σ be a connected open orientable smooth
surface and (E , E∗) the endset pair of Σ. We use the notation of §1. We
assume that there exist e and Z as in Theorem 1.2 such that (E , E∗, Z, e) has
the self-similarity property. (Here, we should recall that if Σ has no genus,
then E∗ and Z are empty.) Put X = E − {e} and X± = E± − {e±}. Via h,
we regard E±, X± and Z± as subsets of E , X and Z respectively.

Now, we will start the construction of the uni-leaf foliation. We embed E
into the one-point compactification R2 ∪ {∞} of R2 in such a way that e is
mapped to ∞. From now on, we identify e with ∞ and regard X and Z as
subsets of R2. We consider two cases separately.

The case where Z is empty. In this case, the construction is a verbatim
repetition of the one in the case of ΣC (S2 minus a Cantor set): Namely, put

Ω = R3 −X+ × [−1,∞)−X− × (−∞, 1]
and let G denote the foliation on Ω obtained by restricting the foliation
{pr−13 (z)}z∈R on R3. Then, by Proposition 3.2, Ω is diffeomorphic to R3

and, by the self-similarity condition, all leaves of G are diffeomorphic to Σ.
Finally, by Proposition 2.5, we can conclude that G is diffeomorphic to a
complete closed uni-leaf foliation on B3.
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The case where Z is countably infinite. Since X − Z is closed in R2,
similarly to §3, for each point q of Z, we can choose a small compact neigh-
borhood Vq of (q, 0) in the open 3-manifold (R2 − (X − Z)) × R in such a
way that they are pairwise disjoint. Then perform an ambient surgery on
(R2 − (X − Z)) × {0} to attach a handle inside each Vq. Thus, we obtain
a new surface as a properly embedded submanifold of (R2 − (X − Z))× R.
Let Σ̂ denote this surface. We see that the endset pair of Σ̂ is (E − Z, E∗).
We may assume that for each q ∈ Z the intersection of Σ̂ and {q} × R is a
single point.

By the self-similarity property, X and Z can be expressed as disjoint
unions X = X+ t X− and Z = Z+ t Z−, where X± and Z± are home-
omorphic to X and Z respectively. We put A+ = (X+ − Z+) × [−1,∞),
A− = (X− − Z−)× (−∞, 1] and

O = R3 −A+ −A−.
Note that X+ − Z+ and X− − Z− are closed in R2, and hence A+ and
A− are closed in R3. We number the elements of Z arbitrarily: Z+ = {qn |
n = 2, 3, 4, . . .} and Z− = {qn | n = −2,−3,−4, . . .}. We then take a Morse
function f : O → R satisfying the following six conditions.

(1) f−1(0) = Σ̂.
(2) Crit(f) consists of the following points:

• (qn,−1− 1/n) and (qn, n) for each n = 2, 3, 4, . . . ,
• (qn, n) and (qn, 1− 1/n) for each n = −2,−3,−4, . . . .

(3) For each p ∈ Crit(f), the value f(p) is the z-coordinate of p.

Let W+
q = D+

q × I+q (q ∈ Z+) be a compact product neighborhood of the
segment {q}×[−1−1/n, n] in O, whereD+

q is a closed disk in R2 centered at q
such that D+

q ∩X = {q} and [−1− 1/n, n] ⊂ I+q ⊂ R. Similarly, let W−q =
D−q × I−q (q ∈ Z−) be a compact product neighborhood of {q}× [n, 1− 1/n]

in O, where D−q is a closed disk in R2 centered at q such that D−q ∩X = {q}
and [n, 1 − 1/n] ⊂ I−q ⊂ R. We choose the sets D+

q (q ∈ Z+) and D−q
(q ∈ Z−) so as to be pairwise disjoint.

(4) Inside eachW+
q (q ∈ Z+) orW−q (q ∈ Z−), f is conjugate to the standard

Morse function which admits a standard canceling pair of critical points;
the one with a smaller z-coordinate is of index 1 and the other is of
index 2.

(5) The lines {q}×[−1−1/n,∞) (q ∈ Z+) and {q}×(−∞, 1−1/n] (q ∈ Z−)
are transverse to the level sets of f everywhere except at critical points.

(6) f(x, y, z) = z outside the union of W+
q ’s (q ∈ Z+) and W−q ’s (q ∈ Z−).

Then the family of the level sets of f defines a singular foliation on O. The
singularities are the critical points of f . We see that each level set contains at
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most one critical point. We can also observe that for each z ∈ R the endset
pair (Ez, E∗z ) of the level set f−1(z) is identified with: (E − Z, E∗) × {z} if
|z| ≤ 1, (E+−Z+, E+∗)×{z} if z > 1, and (E−−Z−, E−∗)×{z} if z < −1.
By self-similarity, all of these are homeomorphic to (E − Z, E∗).

As the next step, we define

C =
⋃

qn∈Z+

{qn} × [−1− 1/n,∞) ∪
⋃

qn∈Z−
{qn} × (−∞, 1− 1/n]

and
Ω = O − C.

By Propositions 3.1 and 3.2, Ω is diffeomorphic to R3. Each level set Lz =
f−1(z)∩Ω of f |Ω is obtained from f−1(z) by deleting the points of intersec-
tion with C. Since all the critical points of f are removed by this deletion,
every Lz is now a non-singular smooth surface. Let G be the foliation on Ω
thus obtained. Observe that if the point of intersection of f−1(z) and {q}×I
(q ∈ Z, and I is either [−1−1/n,∞) or (−∞, 1−1/n]) is not a critical point,
then the deletion yields one puncture (or one planar end) on f−1(z), while
if the point of intersection is a critical point, then the deletion yields two
punctures (or two planar ends). Now, let Zz be the set of all ends of Lz
newly produced by these deletions. Then the endset pair of Lz can be ex-
pressed as (Ez ∪Zz, E∗z ), where (Ez, E∗z ) is the endset pair of f−1(z). Since, as
remarked above, each f−1(z) contains at most one critical point, it follows
from property (2) of f that Zz is identified with: Z if |z| ≤ 1, and the union
of Z+ and Fz if z > 1, and the union of Z− and Fz if z < −1, where Fz is
a (possibly empty) finite subset of R2 −X. (Supplementary explanation: If
z ≥ 2, then f−1(z) does not intersect {q}×(−∞, 1−1/n] for any q ∈ Z−. So,
in this case, Fz is either a singleton or empty depending on whether there
exists a critical point on f−1(z) ∩ {q} × [−1 − 1/n,∞) for some q ∈ Z+.
If 1 < z < 2, we see that f−1(z) intersects {q} × (−∞, 1 − 1/n] for at
most finitely many q ∈ Z−.) Therefore, (Ez∪Zz, E∗z , Zz,∞) is identified with
(E , E∗, Z,∞)×{z} if |z| ≤ 1, (E+ ∪Fz, E+∗, Z+ ∪Fz,∞)×{z} if z > 1, and
(E− ∪ Fz, E−∗, Z− ∪ Fz,∞)× {z} if z < −1.

Lemma 4.1. If F is a finite subset of R2−X, then there is a homeomor-
phism h : E ∪ F → E such that h is the identity on E∗ and h(Z ∪ F ) = Z.

Proof. Let F be {x1, . . . , xr}. Take a point p in E∗ and any sequence
{pi}∞i=1 in Z converging to p. We define a bijection h : E ∪ F → E by:
h(xk) = pk for k = 1, . . . , r, h(pi) = pr+i for i ≥ 1, and h is the identity
otherwise. Then the continuity of h easily follows.

By this lemma and the self-similarity property, the 4-tuple (Ez ∪ Zz, E∗z ,
Zz,∞) for the leaf Lz is homeomorphic to (E , E∗, Z,∞) for every z ∈ R.
Hence, all the leaves Lz of Ω are diffeomorphic to Σ.
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As the final step, we will transform the foliation (Ω,G) so that the result-
ing foliation has property (P). To do so, take any (x0, y0) ∈ R2−X and put
V = {(x, y, z) ∈ R3 | ((x − x0)2 + (y − y0)2)|z| < 1}. Next, choose any dif-
feomorphism Ψ : R3 → V which preserves the vertical foliation dx = dy = 0
leafwise. Then we can see that the foliation Ψ(G) on Ψ(Ω) has property (P)
from §2, while Ψ(Ω) is unbounded in the direction of z. Therefore, by Propo-
sition 2.5, we obtain a complete closed uni-leaf foliation on B3 with leaves
diffeomorphic to Σ. This completes the proof of Theorem 1.2.

Examples of surfaces with the self-similarity property. In the case of pla-
nar surfaces, E∗ and Z are empty, hence, to check self-similarity, we only
have to show that E1 ∨e1=e2 E2 is homeomorphic to E for some e ∈ E , where
(Ei, ei), i = 1, 2, are copies of (E , e). The following surfaces have that prop-
erty: R2, R2 minus a discrete closed infinite set, R2 minus a Cantor set, and
S2 minus a Cantor set.

In the case of non-planar surfaces, there are also many examples. Here,
we give one family of surfaces Σ(r), r ∈ N (Example (2) in §1 is Σ(1)).

e

e33

e32

e31

e23

e22

e21

e13

e12

e1

e11

e2 e3

1

Fig. 2. Σ(2)

The endset pair (E , E∗) of Σ(r) is described as follows:

E = {e, ei1 , ei1i2 , . . . , ei1i2···ir | ik ∈ N, 1 ≤ k ≤ r},
E∗ = {e, ei1 , ei1i2 , . . . , ei1i2···ir−1 | ik ∈ N, 1 ≤ k ≤ r − 1},
Z = {ei1i2···ir | ik ∈ N, 1 ≤ k ≤ r}.

Let E(`) denote the `th derived set of E . Then, for 1 ≤ ` ≤ r − 1,

E(`) = {e, ei1 , ei1i2 , . . . , ei1i2···ir−`
| ik ∈ N, 1 ≤ k ≤ r − `},
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and E(r) = {e}. For each 1 ≤ k ≤ r, ei1i2···ik converges to ei1i2···ik−1
as

ik →∞ while i1, . . . , ik−1 are fixed, and ei1 converges to e as i1 →∞.
Now, put

E+ = {e, ei1 , ei1i2 , . . . , ei1i2···ir | i1 is even and i2, . . . , ir are arbitrary},
E− = {e, ei1 , ei1i2 , . . . , ei1i2···ir | i1 is odd and i2, . . . , ir are arbitrary},
E+∗ = E+ ∩ E∗, E−∗= E− ∩ E∗, Z+= E+ ∩ Z, Z−= E− ∩ Z, e+= e−= e,

and h = id : E+∨e+=e− E− → E . Then the 4-tuple (E , E∗, Z, e) of the surface
Σ(r) has the self-similarity property.

Question. List up all the open orientable surfaces whose endsets have
the self-similarity property.

Question. Can a surface which does not satisfy the self-similarity prop-
erty be realized as a leaf of a uni-leaf foliation on B3?

5. Higher-dimensional leaves. In this section we consider the case of
higher-dimensional leaves. We give two results. The first of these was kindly
communicated to the authors by the referee, and is the following:

Theorem 5.1. LetM be a simply connected open n-manifold, n ≥ 3, with
a smooth foliation F by leaves diffeomorphic to Rn−1. Then F is smoothly
conjugate to a complete closed (and necessarily uni-leaf ) foliation on Bn.

Proof. LetM and F be as in the hypothesis. Then, it follows from a deep
result of Palmeira [14] that there are an open set Ω of Rn diffeomorphic
to Rn and a diffeomorphism h : M → Ω such that h(F) coincides with
the restriction to Ω of the foliation of Rn by horizontal hyperplanes. Here,
we may assume that Ω satisfies (1) of Proposition 2.5. In fact, if prn(Ω) is
bounded, it suffices to replaceΩ with (idRn−1×ϕ)(Ω), where ϕ is an arbitrary
diffeomorphism of the open interval (inf prn(Ω), sup prn(Ω)) onto R. Clearly,
h(F) satisfies (2) of Proposition 2.5. Thus, by that proposition, there exists
a diffeomorphism Φ from Ω to Bn such that Φ(h(F)) is a complete closed
foliation on Bn.

Let Bn denote the closed unit n-ball, and pri the projection from a prod-
uct space to its ith factor. Our next result in this section is

Theorem 5.2. Let n ≥ 3. Suppose that F is a connected compact (n−1)-
dimensional smooth submanifold of Bn−1 ×R such that F ∩ (∂Bn−1 ×R) =
∂Bn−1 × {0} = ∂F and F is transverse to ∂Bn−1 × R at ∂F . Let E be a
closed subset of F such that

(1) F − E is connected,
(2) E contains ∂F , and
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(3) there exists a neighborhood U of E in F such that pr1 : B
n−1×R→ Bn−1

maps U diffeomorphically to pr1(U) and pr−11 pr1(U) ∩ F = U .

Then there is a codimension 1 complete closed smooth foliation of Bn with
a leaf diffeomorphic to F − E.

Proof. The proof is essentially the same as in the surface case. Let n, F
and E be as above. We take a Morse function f : (Bn−1 − pr1(E))×R→ R
such that
• f = pr2 on (Bn−1 − pr1(E))× [(−∞,−1] ∪ [1,∞)], and
• 0 is a regular value of f with f−1(0) = F − E.

Next, we take an exhausting sequence {Ki} of codimension 0 compact sub-
manifolds in Bn−1 − pr1(E), and a family of injective smooth paths cp :

[0,∞) → (Bn−1 − pr1(E)) × R, p ∈ Crit(f), satisfying the same six con-
ditions as in §3. Then M = (Bn−1 − pr1(E)) × R −

⋃
p∈Crit(f) cp([0,∞)) is

diffeomorphic to (Bn−1−pr1(E))×R, and Ω =M∪(Bn−1×(2,∞)) is diffeo-
morphic to Bn. Finally, by exactly the same argument as in §3 we complete
the proof.

Remark. For example, we may take for E − ∂F the Whitehead contin-
uum, the Menger sponge, and so on.

6. Higher codimensions

Proposition 6.1. Let q and q′ be positive integers such that 1 ≤ q < q′.
Given a connected p-dimensional manifold L, if there is a codimension q
complete closed smooth foliation on Bp+q with a leaf diffeomorphic to L, then
there is a codimension q′ complete closed smooth foliation on Bp+q′ with a
leaf diffeomorphic to L.

Proof. Suppose F is a codimension q complete closed smooth foliation
on Bp+q with a leaf diffeomorphic to L. Then the foliation on Bp+q × Bq′−q
defined by F ×{z} (F ∈ F , z ∈ Bq′−q) as leaves is a codimension q′ complete
closed smooth foliation and has a leaf diffeomorphic to L. Since Bp+q×Bq′−q
is diffeomorphic to Bp+q′ by a quasi-isometric diffeomorphism, the assertion
follows.

Combining Proposition 6.1 with Theorems 1.1 and 5.2, we obtain

Theorem 6.2. Let L be Σ in Theorem 1.1 or F − E in Theorem 5.2,
and let p = dimL. Then, for any positive integer q, there is a codimension q
complete closed smooth foliation on the open unit ball Bp+q having L as a leaf.

Similarly, by Proposition 6.1 and Theorem 1.2 we have
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Theorem 6.3. Let L be Σ in Theorem 1.2. Then, for any positive inte-
ger q, there is a codimension q complete closed smooth uni-leaf foliation on
the open unit ball B3+q having L as a leaf.
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