
EXTENDING A VECTOR FIELD ON A SUBMANIFOLD TO A

REEB VECTOR FIELD ON THE WHOLE CONTACT MANIFOLD

TAKASHI INABA

Abstract. Given a vector field on a submanifold of a contact manifold, when

does it extend to a Reeb vector field on the whole manifold? We give an answer
to this question.

1. Introduction and statement of results

The purpose of this short note is to give a basic, but (as far as the author thinks)
important, result for Reeb vector fields. It may be known to the experts, but
the author could not find it in the literature. Manifolds, functions, forms, vector
fields and plane fields appearing in this note are all smooth, and submanifolds
are always assumed to be without boundary. Let (M, ξ) be a manifold with a
cooriented (i.e. transversely oriented) contact plane field. First, we will consider
the following extension problem for a vector field: Let N be a compact submanifold
of M transverse to ξ, and let X be a vector field on N positively transverse to ξ. In
this situation, can we find a positive function f on N and a contact form α on M
defining ξ (i.e. kerα = ξ and the coorientation of ξ is compatible with α) such that
fX coincides on N with the Reeb vector field Rα of α? Some cases are known. If
N is 1 dimensional (i.e. N is a finite union of loops), then, the answer is yes. (In
this case we need not multiply X by a function). If N is a contact submanifold of
arbitrary dimension and X is the Reeb vector field Rβ of some contact form β on N
defining TN ∩ ξ, then the answer is also yes (e.g. [3, Proof of Theorem 2.5.15]). (In
this case we need not multiply X by a function, either). In [1] we have shown the
following. Let (R2n+1, ξstd) be the standard contact space, where ξstd = kerαstd

and αstd = dz+ 1
2

∑n
j=1(xjdyj−yjdxj) ((x1, y1, · · · , xn, yn, z) being the coordinates

of R2n+1), Tn the torus defined by z = 0 and xj
2 + yj

2 = 1 (j = 1, · · · , n), and let
X be an arbitrary vector field on Tn transverse to ξstd. Then, the answer is again
yes (In this case we may need to multiply X by a nonconstant function). Here,
remark that Tn is not a contact submanifold of (R2n+1, ξstd).

In this note we unite the above mentioned results in one and formulate as follows.

Theorem 1.1. Let (M, ξ) be a cooriented contact manifold, N a compact subman-
ifold of M transverse to ξ and X a vector field on N positively transverse to ξ
everywhere on N . Then, the following are equivalent.

(1) There exists a contact form α on M defining ξ such that the restriction of
the Reeb vector field Rα on N coincides with X.
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(2) X preserves TN ∩ ξ.

We have some corollaries to this theorem.

Theorem 1.2 (Rescaling version). Let (M, ξ) be a cooriented contact manifold, N
a compact submanifold of M transverse to ξ and X a vector field on N positively
transverse to ξ. Then, the following are equivalent.

(1) There exist a contact form α on M defining ξ and a function f on N such
that the restriction of the Reeb vector field Rα on N coincides with fX.

(2) There exists a contact form α on M defining ξ such that iXdα = 0 on TN .

Remark. Under the assumption of Theorem 1.2, there exists a vector field which
never extends to a Reeb vector field by rescaling. For example, if N is a contact
submanifold and X has a hyperbolic contracting periodic orbit, then, no rescaling
of X extends to a Reeb vector field.

Corollary 1.3 ([3, Proof of Theorem 2.5.15]). Let (M, ξ) be a cooriented contact
manifold and N a compact contact submanifold of M . Then, the Reeb vector field
of any contact form on N defining TN ∩ ξ extends to the Reeb vector field of some
contact form on M defining ξ.

Before stating the next corollary, we introduce one notion. Let (M, ξ) be a
cooriented contact manifold and N a submanifold of M . Throughout this note we
denote the inclusion map of N into M by j. Let α be a contact form on M which
defines ξ. We say that N is isotropic with respect to α if j∗dα vanishes. We simply
say that N is isotropic if N is isotropic with respect to some α defining ξ.

Notice. This definition of isotropy is weaker than the one given in Geiges’ book
([3, Definition 1.5.11]), where N is called isotropic if j∗α vanishes. Our definition
coincides with the one of Foulon-Hasselblatt[2], although, there, it is defined not
for a submanifold but for a tangent subspace and for a foliation.

The following is related to (and generalizes in some sense) [1, Theorem 1.1] since
Tn is an isotropic submanifold of (R2n+1, ξstd).

Corollary 1.4. Let (M, ξ) be a cooriented contact manifold and N a compact
isotropic submanifold of M transverse to ξ. Then, any vector field on N positively
transverse to ξ extends, after multiplying a suitable function, to the Reeb vector
field of some contact form on M defining ξ.

Corollary 1.5 (folklore?). Let (M, ξ) be a cooriented contact manifold and N is
a finite union of loops transverse to ξ. Then, any vector field on N positively
transverse to ξ extends to the Reeb vector field of some contact form on M defining
ξ.

Next, we consider an extension problem of another type: the case where N is
a compact Legendrian submanifold of (M, ξ) and X = {Xp ∈ Tp(M) | p ∈ N} is
a vector field along N which is positively transverse to ξ. Note that, unlike the
previous case, in this case Xp /∈ Tp(N) for any p ∈ N .
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Theorem 1.6. Let (M, ξ) be a cooriented contact manifold, N a compact Legen-
drian submanifold of M and X a vector field along N positively transverse to ξ.
Then, the following are equivalent.

(1) There exists a contact form α on M defining ξ such that the restriction of
the Reeb vector field Rα on N coincides with X.

(2) For any contact form α on M defining ξ and satisfying α(X) = 1 on N , it
holds that iXdα = 0 on TN .

(3) There exists a contact form α on M defining ξ such that α(X) = 1 on N
and that iXdα = 0 on TN .

We pose here the following

Problem. Find a statement equivalent to (1) which is expressed only in terms of
X, ξ and N .

As an immediate consequence of the above theorem we have

Theorem 1.7 (Rescaling version). Let (M, ξ) be a cooriented contact manifold, N
a compact Legendrian submanifold of M and X a vector field along N positively
transverse to ξ. Then, the following are equivalent.

(1) There exist a contact form α on M defining ξ and a function f on N such
that the restriction of the Reeb vector field Rα on N coincides with fX.

(2) There exists a contact form α on M defining ξ such that iXdα = 0 on TN .

Remark. Note that, under the assumption of Theorem 1.7, there exists X which
never extends to a Reeb vector field by any rescaling. In §4 we give an example.

2. Non-isotropy

Given a submanifold of a contact manifold, how can one know its non-isotropy?
Here we give one simple criterion. Let (M, ξ) be a cooriented contact manifold and
N a compact submanifold of M .

Proposition 2.1. If there exists a contact form α on M defining ξ such that j∗dα
never vanishes on N , then N is non-isotropic.

Proof of Proposition 2.1. Suppose there exists an α as in the proposition. Let
β be any contact form on M defining ξ. Then, β = fα for some non-vanishing
function f on M . Since N is compact, there exists a point p ∈ N such that
(j∗df)p = 0. Thus we have (j∗dβ)p = (j∗d(fα))p = (j∗(df ∧α+fdα))p = (j∗df)p∧
(j∗α)p+f(p)(j∗dα)p = f(p)(j∗dα)p. Hence (j∗dβ)p does not vanish, implying that
N is not isotropic with respect to β. Since β is arbitrary, we get the conclusion. 2

3. The case where N is transverse to ξ

Proof of Theorem 1.1. Obviously (1) implies (2). The implication from (2) to
(1) is done just by adjusting the argument in [3, Proof of Theorem 2.5.15] to our sit-
uation. For the self-containedness of this note, we give the detail below. Let (M, ξ),
N and X be as in the hypothesis of Theorem 1.1. Suppose further that X satisfies
the condition (2), namely, X preserves TN∩ξ. First, take any contact form α on M
defining ξ. Then, in terms of α the condition (2) can be restated as follows: there
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exists a function λ on N such that LXj∗α = λj∗α. Now, we choose a function f on
M so that f = 1/α(X) on N (Such f certainly exists.) and define β = fα. Then,
β is also a contact form on M defining ξ and β(X) = 1 on N . Moreover, by a usual
computation, we have LXj∗β = 0 on N . In fact, LXj∗β = LX{(1/α(X))j∗α} =
X(1/α(X))j∗α+(1/α(X))LXj∗α = (1/(α(X))2{−X(α(X))+α(X)λ}j∗α = 0, be-
cause X(α(X)) = iXdiXj∗α = iXLXj∗α = iX(λj∗α) = α(X)λ. Since β(X) = 1 on
N , LXj∗β = 0 implies iXj∗dβ = 0 on N . Now, we will extend X to a Reeb vector
field (for some contact form) on M . To this end, we look for a smooth function g
on M satisfying (a) g > 0 on M , (b) g = 1 on N and (c) iXd(gβ) = 0 on TM |N .
Assuming (b), we have iXd(gβ) = iX(dg∧β+gdβ) = (iXdg)β−(iXβ)dg+giXdβ =
(Xg)β − β(X)dg+ giXdβ = −dg+ iXdβ. Thus, the condition (c) may be replaced
with (c)’: dg = iXdβ on TM |N . Now, to begin the construction of g, first set
g = 1 on N . Then, dg and iXdβ are both defined and vanish on TN , hence, the
equality (c)’ is consistent on the subbundle TN of TM |N . Next, we will extend g
over a neighborhood of N . Take a small tubular neighborhood U = exp(ν) of N ,
where ν is a normal disk bundle of N in M and exp : ν → M is the exponential
map along N with respect to some Riemannian metric on M . Define g on U by
g(exp(v)) = 1 + dβ(X, v) for v ∈ ν. Then, g satisfies (c)’ and is positive if U is
small. Now, extending g over whole M preserving positivity is a routine work.
The existence of g is proven. Using this g, we consider the contact form γ = gβ.
Then, its Reeb vector field Rγ is the desired one. In fact, by definition, Rγ satisfies
γ(Rγ) = 1 and ι(Rγ)dγ = 0. If we restrict these properties to TM |N , these two
properties of Rγ are the same with those of X. Since γ is a contact form on M ,
the vector field along N which satisfies these two properties is unique. Therefore,
we conclude that Rγ = X. The proof is complete. 2

Proof of Theorem 1.2. Let (M, ξ), N and X be as in the hypothesis of Theorem
1.2. That (1) implies (2) is obvious. To prove the converse implication, suppose
that X satisfies Xp ∈ ker(j∗dβ)p for any p ∈ N . Then, the rescaled vector field
(1/β(X))X satisfies L(1/β(X))Xj∗β = 0, hence, preserves TN ∩ ξ. Therefore, by
Theorem 1.1, (1/β(X))X is the restriction of the Reeb vector field of some contact
form on M defining ξ, as desired.

Proof of Corollary 1.3. Let N be a compact contact submanifold of (M, ξ) and
X the Reeb vector field of some contact form on N defining TN ∩ ξ. Then, since
X preserves TN ∩ ξ, we can apply Theorem 1.1 and obtain the conclusion. 2

Proof of Corollary 1.4. Let N be a compact isotropic submanifold of (M, ξ).
Then, by the definition of an isotropic submanifold, for any vector field X on N
transverse to ξ there exists a contact form β on M defining ξ such that X and β
satisfy the condition (2) of Theorem 1.2. So, the conclusion of the rescaling version
follows. 2

Proof of Corollary 1.5. Let N , X be as in Corollary 1.5. Then, since dimN = 1,
X obviously preserves TN ∩ ξ (the zero dimensional plane field!). Hence, the result
follows. 2

We give a simple example of the case of a submanifold which is neither contact
nor isotropic.
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Example. Let N be a submanifold of (R7, ξstd = kerαstd) defined by z = 0,
x1

2+y1
2+x2

2+y2
2 = 1 and x3

2+y3
2 = 1. Then, N is diffeomorphic to S3×S1 and

transverse to ξ. As a submanifold of (R7, ξstd), N is neither contact nor isotropic. In
fact, it is obviously non-contact by the dimension reason and non-isotropic because
j∗dαstd never vanishes in the S3-direction (see Proposition 2.1). Let (ri, θi) be the
polar coordinates for (xi, yi). Then, at each point of N , ker(j∗dαstd) is spanned by
∂

∂θ1
+ ∂

∂θ2
and ∂

∂θ3
, while ker(j∗dαstd)∩ ξ is spanned by ∂

∂θ1
+ ∂

∂θ2
− ∂

∂θ3
. Thus, any

vector field X on N of the form g( ∂
∂θ1

+ ∂
∂θ2

)− h ∂
∂θ3

(g, h are functions on N such

that g > h) satisfies the condition (2) of Theorem 1.2 for αstd, hence, extends to a
Reeb vector field on (R7, ξstd) after a suitable function multiplication.

In closing this section, we want to pose the following

Question. Let (M, ξ) be a cooriented contact manifold, L a compact oriented
smooth lamination of M with 1-dimensional leaves positively transverse to ξ. Then,
find a (general) condition on L under which there exists a contact form α on M
defining ξ such that the Reeb vector field Rα is everywhere tangent to the leaves
of L.

Here, we say that a lamination L on M is smooth if there exist an open neigh-
borhood U of L in M and a smooth foliation F on U such that F contains L as a
saturated subset.

At present the author does not know how to approach this question from a
general viewpoint. The only positive answer the author can say is the following

Corollary 3.1. Let (M, ξ) be a cooriented contact manifold and N a compact
isotropic submanifold of M transverse to ξ. Then, for any compact oriented smooth
1-dimensional lamination L on N positively transverse to ξ, there exists a contact
form α on M defining ξ such that the Reeb vector field Rα is everywhere tangent
to the leaves of L.

Proof. Suppose that N is isotropic with respect to a contact form α on M defining
ξ. Then, the plane field TN ∩ ξ defines a foliation on N given by the closed 1-form
i∗α. By Tischler’s theorem [4], N fibers over S1 so that the tangent bundle to the
fibers are arbitrary close to TN ∩ ξ. This and the assumption that L is transverse
to TN ∩ ξ imply that there exists an oriented smooth foliation F on N such that
F contains L as a saturated subset and that F is everywhere transverse to TN ∩ ξ.
Now, since any vector field tangent to F transverse to TN∩ξ satisfies the hypothesis
of Corollary 1.4, the result follows. 2

4. The case where N is Legendrian

Proof of Theorem 1.6.
(1) =⇒ (2): Suppose that X extends to the Reeb vector field of some contact

form β on M defining ξ. Let α be any contact form on M defining ξ and satisfying
α(X) = 1 on N . Then, since α and β are both contact forms defining ξ, there exists
a nowhere vanishing function f on M such that β = fα. On N , we have β(X) = 1
(because X = Rβ on N) and α(X) = 1 (by the assumption), hence f = 1 on N .
Since X = Rβ on N and β = fα, we have iXd(fα) = 0 on TN . By computation,
on TN we have iX(df ∧ α+ fdα) = 0, hence, (Xf)α− α(X)df + fiXdα = 0. Here
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we have α = 0 on TN ⊂ ξ, and df = 0 (because f = 1 on N) and f = 1 on N .
Therefore, we conclude that iXdα = 0 on TN , as desired.

(2) =⇒ (3): Take an arbitrary contact form β on M which defines ξ. Let f be
a nowhere vanishing function on M which coincides with 1/β(X) on N and put
α = fβ. Then, since α is still a contact form defining ξ and satisfies the hypothesis
of (2), it follows from the conclusion of (2) that α satisfies (3), as desired.

(3) =⇒ (1): Let α be a contact form on M such that α(X) = 1 on N and that
iXdα = 0 on TN . First, choose a subbundle E of ξ|N so that ξ|N = TN ⊕E, thus
TM |N = ⟨X⟩⊕TN ⊕E, where ⟨X⟩ is the line bundle on N generated by X. Then,
we can easily construct a nowhere vanishing function f on M so that f = 1 on N
and that at each point of N , the differential df is 0 on ⟨X⟩ ⊕ TN and coincides
with iXdα on E. Now, put β = fα. Then, β is a contact form on M such that
β(X) = 1 on N and that iXdβ = 0 on TM |N . This means that X = Rβ on N . 2

Proof of Theorem 1.7. Let (M, ξ), N and X be as in the hypothesis in Theorem
1.6. Assume (1). Then, by the condition of the Reeb vector field we have iXdα =
(1/f)ifXdα = (1/f) · 0 = 0, implying (2). Conversely, assume (2). Namely, assume
that there exists a contact form α on M defining ξ such that iXdα = 0 on TN .
Then, if we take a function f on M satisfying f = 1/α(X) on N , we see that
α(fX) = fα(X) = 1 and ifXdα = fiXdα = 0 on TN . This means that α and fX
satisfy the condition (3) in Theorem 1.6. Thus, by Theorem 1.6 the condition (1)
in Theorem 1.7 follows. This completes the proof.

Finally, we give a simple example of X which, on the assumption of Theorem
1.7, cannot extend to a Reeb vector field by any rescaling.

Example. Let M = T 3 = R3/Z3 with coordinates (x, y, z). Define a contact form
α on M by α = (sin 2πz)dx + (cos 2πz)dy and put ξ = kerα. Then, the Reeb
vector field of α is Rα = (sin 2πz)∂/∂x + (cos 2πz)∂/∂y. Let N be a Legendrian
circle in M defined by x = y = 0, and let X be a vector field along N defined by
X = R + W , where W = −(cos 2πz)∂/∂x + (sin 2πz)∂/∂y. Then, iXdα = 2πdz.
Now, we will show that, for this X, the statement (2) of Theorem 1.7 does not
hold. Namely, we will prove that, for any contact form β of M defining ξ, there
exists a point p of N such that (iXdβ)|TN does not vanish at p. In fact, suppose on
the contrary that (iXdβ)|TN vanishes identically on N for some β. Since α and β
commonly define ξ, there is a positive smooth function h on M such that β = hα.
Thus we have 0 = iXdβ = iXd(hα) = (Xh)α − α(X)dh + hiXdα. Since α = 0 on
TN , we obtain on TN the equality d log h = (2π/α(X))dz. Here, the right hand
side never vanishes on TN while the left hand side must vanish at a critical point
of log h|N . This contradiction proves that (2) of Theorem 1.7 does not hold for X,
hence, by Theorem 1.7, X does not extend to a Reeb vector field.
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