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1. Introduction

Let H be the upper half-plane equipped with the hyperbolic metric |dz|/Imz,
and Γ a Fuchsian group acting on H. A subset S ⊂ H is said to be precisely
invariant under a subgroup ΓS of Γ if γ(S) = S for all γ ∈ ΓS and γ(S)∩S = ∅
for all γ ∈ Γ−ΓS. Furthermore a hyperbolic element γ ∈ Γ is said to be simple
if the axis of γ is precisely invariant under the cyclic subgroup 〈γ〉 generated
by γ. The hyperbolic distance on H is denoted by d. For a quasiconformal
automorphism f of H, the maximal dilatation of f is denoted by K(f).

Let T (Γ) be the Teichmüller space of Γ and Mod(Γ) the Teichmüller mod-
ular group of Γ. It is known that if Γ is finitely generated of the first kind,
then T (Γ) is finite dimensional and the action of Mod(Γ) on T (Γ) is properly
discontinuous. This means that for every sequence {fn}∞n=1 of quasiconformal
automorphisms of H satisfying fn ◦ Γ ◦ f−1

n = Γ and limn→∞ K(fn) = 1, there
exist an integer N and a conformal automorphism f of H such that fn are
coincident with f on the real axis R for all n ≥ N . On the other hand, if
Γ is infinitely generated, then T (Γ) is infinite dimensional and the action of
Mod(Γ) is not properly discontinuous, in general. This means that there ex-
ists a sequence {fn}∞n=1 of quasiconformal automorphisms fn of H such that
fn ◦ Γ ◦ f−1

n = Γ and limn→∞ K(fn) = 1. On the basis of this fact, in [3], we
proved that if Γ satisfies a certain bound condition on translation length, then
Mod(Γ) acts properly discontinuously. The following proposition, which gives
a lower bound of the maximal dilatation of a quasiconformal automorphism,
is crucial for the proof.

Proposition 1 ([3, Proposition 2]). Let Γ be a non-elementary Fuchsian
group acting on H and f a quasiconformal automorphism of H satisfying
f ◦ Γ ◦ f−1 = Γ. Suppose that there exist three distinct axes Li (i = 1, 2, 3)
of simple hyperbolic elements γi of Γ such that f(L1)∗ = L1, f(L2)∗ = L2 and
f(L3)∗ 6= L3, where f(Li)∗ is the axis of f ◦ γi ◦ f−1. Let M and D be positive
constants such that the translation lengths of γi (i = 1, 2, 3) are less than M
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and d(z1, L2) ≤ D, d(z1, L3) ≤ D for some z1 ∈ L1. Then there exists a
constant A = A(M,D) > 1 depending only on M and D such that K(f) ≥ A.

When M tends to +∞ even with remaining D bounded, the constant
A(M,D) might tend to 1 as the following example shows.

Example 2. Let Γ be a Fuchsian group such that

R = H/Γ = C −
∞∪

n=1

∪
m∈Z

{m

n
+ (2n + 1)

√
−1

}
− {−1, 0, 1},

and

f̂n(z) =

 x − (y − 2n − 2)/n + y
√
−1 (2n + 1 ≤ y < 2n + 2)

x + (y − 2n)/n + y
√
−1 (2n ≤ y < 2n + 1)

x + y
√
−1 elsewhere,

which are quasiconformal automorphisms of R (see [3, Example 2]). Then

limn→∞ K(f̂n) = 1. Let c1 be a simple closed geodesic on R surrounding −1
and 0, and c2 a simple closed geodesic on R surrounding 0 and 1. Furthermore
for each n, let c3,n be a simple closed geodesic on R surrounding n+1 points, 1
and 1 + (2k + 1)

√
−1 (k = 1, · · · , n). Then the hyperbolic lengths of c3,n tend

to +∞ as n → ∞. Let Li (i = 1, 2) be an axis of a hyperbolic element γi ∈ Γ
such that π(Li) = ci. Here π is the projection of H to R. We may assume

that L1 = {y
√
−1 | y > 0}. Since f̂n(ci) = ci (i = 1, 2) and c1 ∩ c2 6= ∅, we

can take a lift fn of f̂n to H so that fn(Li)∗ = Li (i = 1, 2). Furthermore for
each n, we take an axis L3,n of a primitive hyperbolic element γn ∈ Γ so that
π(L3,n) = c3,n and that d(

√
−1, L3,n) ≤ `1 for the translation length `1 of γ1.

Since f̂n(c3,n) is not homotopic to c3,n for each n, we have fn(L3,n)∗ 6= L3,n.
On the other hand, the translation lengths of γn tend to +∞.

On the other hands, when D tends to +∞ even with remaining M bounded,
the constant A(M,D) might tend to 1.

Example 3. Let Γ, R, c1, c2 and f̂n be the same as in Example 2. For
each n, let c3,n be a simple closed geodesic on R surrounding two points,
1/n + (2n + 1)

√
−1 and 2/n + (2n + 1)

√
−1. Then the hyperbolic lengths

of c3,n are uniformly bounded. Indeed, the lengths are all the same. Let Li

(i = 1, 2) be an axis of a hyperbolic element of Γ such that π(Li) = ci. We

take a lift fn of f̂n to H so that fn(Li)∗ = Li (i = 1, 2). Let L3,n be an
axis of a primitive hyperbolic element γn ∈ Γ so that π(L3,n) = c3,n. Since

f̂n(c3,n) is not homotopic to c3,n, we have fn(L3,n)∗ 6= L3,n, and we see that
the translation lengths of γn are the same for all n. On the other hand, since
d(c1, c3,n) → +∞, we have d(L1, L3,n) → +∞.
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In Proposition 1, the invariance of L1 and L2 under f is used to guaran-
tee that f fixes three points on the boundary. In this case, the condition
d(z1, L3) ≤ D implies that the spherical diameter of L3 is less than some pos-
itive constant D′ = D′(D). Furthermore the assumption on the boundedness
of the translation lengths of γi (i = 1, 2) is used to guarantee that the end
points a and b of L3 are not in some neighborhoods of the end points of L1

and L2, and the radii of the neighborhoods are estimated by M and D. In
particular, we obtained the uniformity of A on M and D.

In this paper, we consider a quasiconformal automorphism f of H fixing three
points. We call such a quasiconformal automorphism normalized, and assume
that the three points are 0, 1 and ∞. Suppose that there exist axes L such that
f(L)∗ 6= L. Then, each axis L gives a lower bound of the maximal dilatation of
f , and we will express the lower bound explicitly (Theorem 7). In particular,
we can observe the dependence of the lower bound on the translation length,
the end points and the Euclidean diameter of L. However the uniformity is
not taken into account in our theorem.

2. Results

Our first theorem gives a lower bound of the Euclidean distance between an
end point of an axis and its image under a quasiconformal automorphism.

Theorem 4. Let Γ be a torsion-free Fuchsian group acting on H, and f a
quasiconformal automorphism of H such that f ◦ Γ ◦ f−1 = Γ. Furthermore
let L be the axis of a simple hyperbolic element γ of Γ such that f(L)∗ 6= L.
Then there exists a positive constant B such that at least one end point a of L
satisfies |f(a) − a| ≥ B, where B depends only on the translation length ` of
γ, the translation length `′ of f ◦ γ ◦ f−1 and the Euclidean diameter dE(L) of
L. More precisely,

B = dE(L) · B′,

B′(`, `′) =


B′

1(`, `
′) :=

1

2

(
1 − sinh(`/2) sinh(`′/2)

cosh(`/2) cosh(`′/2) + 1

)
(L ∩ f(L)∗ = ∅)

B′
2(`, `

′) :=
δ

1 − δ
(L ∩ f(L)∗ 6= ∅),

δ = δ(`, `′) =
1

12

(
1 −

√
1 − 1

sinh2(`/2) sinh2(`′/2)

)
.

Remark. The constant B′
1(`, `

′) tends to 1/2 as `, `′ → 0 and tends to 0 as
`, `′ → +∞.

A proof of Theorem 4 is given in Section 4. In this section, assuming this
result, we give a lower bound of the maximal dilatations of the quasiconformal
homeomorphisms. The following two lemmas tell us a relationship between
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the Euclidean distance which we considered in Theorem 4 and the maximal
dilatation. The first one is due to Teichmüller (see [5]).

Lemma 5. Let f be a quasiconformal automorphism of C fixing 0 and 1.
Suppose that there exists a point z0 ∈ C−{0, 1} such that d0,1(z0, f(z0)) = log C
for some constant C > 1, where d0,1 is the hyperbolic distance on the twice
punctures plane C − {0, 1}. Then K(f) ≥ C2.

If z0, f(z0) < 0, then the exact computation of d0,1(z0, f(z0)) is given by
Sugawa and Vuorinen [7, Lemma 5.1].

Lemma 6. The hyperbolic distance between −x and −y in C−{0, 1} is given
by d0,1(−x,−y) = |Φ(x)−Φ(y)| for x, y > 0. The function Φ : R → R is given
by

Φ(x) =
1

2
log

K(x/(1 + x))

K(1/(1 + x))
,

where

K(z) =

∫ 1

0

dt√
(1 − t2)(1 − zt2)

.

Now we state our second theorem, which easily follows from Theorem 4 with
Lemmas 5 and 6.

Theorem 7. Let Γ be a torsion-free Fuchsian group acting on H and f a
normalized quasiconformal automorphism of H such that f ◦ Γ ◦ f−1 = Γ.
Suppose that there exists an axis L of a simple hyperbolic element γ of Γ such
that f(L)∗ 6= L. Then there exists a constant A > 1 such that K(f) ≥ A,
where A depends only on the translation length ` of γ, the translation length
`′ of f ◦ γ ◦ f−1 and the end points a and b of L. More precisely, under the
assumption that |f(b) − b| ≤ |f(a) − a| and a < 0,

1

2
log A =

{
Φ(−a + B) − Φ(−a) (f(a) < a)
Φ(−a) − Φ(−a − B) (f(a) > a).

The constant B and the function Φ are the same as in Theorem 4 and Lemma
6.

Proof. Since a < 0 and f is normalized, we have f(a) < 0. By Theorem
4, the end point a satisfies |f(a) − a| ≥ B. Furthermore, by Lemma 6, the
hyperbolic distance between f(a) and a in C−{0, 1} is given by d0,1(f(a), a) =
|Φ(−f(a)) − Φ(−a)|. Since the function Φ(x) is strictly increasing for x > 0,
we see that d0,1(f(a), a) ≥ Φ(−a + B)−Φ(−a) if f(a) < a and d0,1(f(a), a) ≥
Φ(−a) − Φ(−a − B) if f(a) > a. Hence Lemma 5 yields the assertion. ¤
Remark. (i) In Theorem 7, the assumption that a < 0 is not essential. Also
in the case where 0 < a < 1 or 1 < a, we have similar results by using the

4



fact that d0,1(z1, z2) ≥ |Φ(|z1|)−Φ(|z2|)| for z1, z2 ∈ C−{0, 1} (see [7, Lemma
5.16]). (ii) For a Fuchsian group Γ and a quasiconformal automorphism f of
H satisfying f ◦ Γ ◦ f−1 = Γ, we have K(f) ≥ max{`/`′, `′/`}, where ` is
the translation length of an element γ ∈ Γ and `′ is the translation length of
f ◦ γ ◦ f−1 (see [8, Lemma 3.1]). This is trivial if ` = `′. However our theorem
gives a non-trivial estimate also for the case where ` = `′. Indeed, in Theorem
4, we have

B′
1(`, `) =

2

cosh ` + 3

and

δ(`, `) =
1

12

1 −

√
1 −

(
2

cosh ` − 1

)2
 .

(iii) In Proposition 1, the constant A does not depend on the translation lengths
`′i of f ◦γi◦f−1 (i = 1, 2, 3). Indeed, in the proof of the proposition, we assume
that K(f) < 2 and use the fact that `′i < 2`i, where `i is the translation length
of γi. Also in our theorem, if we assume that `′ < 2`, then we obtain a constant
A = A(`, a, b) with B′ = B′(`, 2`).

When we can take a = −1 in Theorem 7, we express a lower bound of the
maximal dilatation simply.

Corollary 8. Let Γ be a torsion-free Fuchsian group acting on H, and f a
normalized quasiconformal automorphism of H such that f ◦ Γ ◦ f−1 = Γ.
Suppose that there exists a simple hyperbolic element γ ∈ Γ such that one end
point of the axis L of γ is −1 and that f(−1) < −1 and that |f(b) − b| ≤
|f(−1) + 1|, where b is another end point of γ. Then

K(f) ≥ 1 +
log(1 + B)

E
,

where B is the same constant as in Theorem 4 and

E =
4

π
K

(
1

2

)2

≈ 4.37688.

Proof. Since Φ(1) = 0, Theorem 7 yields that K(f) ≥ A, where (1/2) log A =
Φ(1 + B). By [7, Lemma 5.4], we have

Φ(1 + B) ≥ 1

2
log

(
1 +

log(1 + B)

E

)
,

which implies the assertion. ¤
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3. Collar lemma and its application

This section is devoted to preliminaries for a proof of Theorem 4. The
following lemma is known as the collar lemma (see [2], [4] and [6]).

Lemma 9. Let Γ be a torsion-free Fuchsian group acting on H, and L the axis
of a simple hyperbolic element γ ∈ Γ with translation length ` > 0. Then a
collar

C(L, ω(`)) = {z ∈ H | d(z, L) ≤ ω(`)}
of L with width ω(`) is precisely invariant under the cyclic subgroup 〈γ〉 gen-
erated by γ, where

ω(`) = arcsinh

(
1

sinh(`/2)

)
.

Furthermore, C(L, ω(`)) ∩ C(L′, ω(`′)) = ∅ for every pair of two disjoint axes
L and L′ of simple hyperbolic elements of Γ with translation lengths ` and `′

respectively.

Lemma 9 immediately yields the following.

Corollary 10. Let Γ be a torsion-free Fuchsian group acting on H, and L and
L′ two disjoint axes of simple hyperbolic elements of Γ with translation lengths
` and `′ respectively. Then the hyperbolic distance d(L,L′) satisfies

d(L, L′) ≥ arccosh

(
cosh(`/2) cosh(`′/2) + 1

sinh(`/2) sinh(`′/2)

)
.

Proof. By Lemma 9, we have d(L,L′) ≥ ω(`) + ω(`′). The assertion follows
from the following computation:

cosh(ω(`) + ω(`′))

= cosh(ω(`)) cosh(ω(`′)) + sinh(ω(`)) sinh(ω(`′))

= cosh

{
arcsinh

(
1

sinh(`/2)

)}
cosh

{
arcsinh

(
1

sinh(`′/2)

)}
+ sinh

{
arcsinh

(
1

sinh(`/2)

)}
sinh

{
arcsinh

(
1

sinh(`′/2)

)}
=

{(
1

sinh2(`/2)
+ 1

)(
1

sinh2(`′/2)
+ 1

)}1/2

+
1

sinh(`/2) sinh(`′/2)

=
cosh(`/2) cosh(`′/2) + 1

sinh(`/2) sinh(`′/2)
.

¤
Next, for two axes which intersect each other, we will obtain a lower bound

of the intersection angle. Note that for two axes L and L′ of simple hyperbolic
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elements γ and γ′ of Γ such that L ∩ L′ 6= ∅, the translation lengths ` and `′

of γ and γ′ respectively satisfy

sinh

(
`

2

)
sinh

(
`′

2

)
> 1.

Indeed, since L′ passes the collar of L with width ω(`), we have `′ > 2 ω(`).

Proposition 11. Let Γ be a torsion-free Fuchsian group acting on H, and
L and L′ two distinct axes of simple hyperbolic elements γ and γ′ of Γ with
translation lengths ` and `′ respectively. Suppose that L ∩ L′ 6= ∅. Then the
intersection angle θ(L,L′) between L and L′ satisfies

θ(L,L′) ≥ arcsin

(
1

sinh(`/2) sinh(`′/2)

)
.

Proof. By Lemma 9, we can take a collar C(L, ω(`)) of L with width

ω(`) = arcsinh

(
1

sinh(`/2)

)
.

Then, by the formula [1, Theorem 7.11.2] for right-angled triangles, the length
`0 of the segment L′ ∩ C(L, ω(`)) satisfies

sinh ω(`) = sinh(`0/2) · sin(θ(L,L′)).

Since the translation length of γ′ is `′, it is clear that `0 ≤ `′. Then we see that

sin(θ(L,L′)) =
sinh ω(`)

sinh(`0/2)
≥ 1

sinh(`/2) sinh(`′/2)
.

¤
In the last of this section, we mention the hyperbolic distance and the angle

between an axis and its image under a conformal automorphism.

Corollary 12. Let Γ be a torsion-free Fuchsian group acting on H, L the axis
of a simple hyperbolic element of Γ with translation length `, and f a conformal
automorphism of H satisfying f ◦ Γ ◦ f−1 = Γ. Suppose that f(L) 6= L. If
f(L) ∩ L = ∅, then

d(f(L), L) ≥ arccosh

(
cosh ` + 3

cosh ` − 1

)
.

If f(L) ∩ L 6= ∅, then the intersection angle θ(f(L), L) between f(L) and L
satisfies

θ(f(L), L) ≥ arcsin

(
2

cosh ` − 1

)
.

Proof. We may put ` = `′ in Corollary 10 and Proposition 11. ¤
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4. Proof of Theorem 4

For a proof of Theorem 4, first we prove the following.

Lemma 13. Let Γ be a torsion-free Fuchsian group acting on H and L and L′

two distinct axes of simple hyperbolic elements of Γ with translation lengths `
and `′ respectively. Suppose that L = {iy | y > 0}. Then the two end points x
of L′ satisfy |x| ≥ δ′, where

δ′ =


dE(L′)

2

(
cosh(`/2) cosh(`′/2) + 1

sinh(`/2) sinh(`′/2)
− 1

)
(L ∩ L′ = ∅)

dE(L′)

2

(
1 −

√
1 − 1

sinh2(`/2) sinh2(`′/2)

)
(L ∩ L′ 6= ∅).

Proof. First we suppose that L ∩ L′ = ∅. Without loss of generality, we may
assume that the two end points x1 and x2 of L′ satisfy 0 < x1 < x2. By
Corollary 10, we have

d(L,L′) ≥ arccosh

(
cosh(`/2) cosh(`′/2) + 1

sinh(`/2) sinh(`′/2)

)
:= D(`, `′).

Let L0 be a geodesic on H such that d(L,L0) = D(`, `′) and dE(L0) = dE(L′),
and x0

1 and x0
2 the end points of L0. We may assume that 0 < x0

1 < x0
2. Then

x1 ≥ x0
1. Let θ0 be an angle such that cos θ0 = {cosh(D(`, `′))}−1. Then we

see that (
x0

1 +
dE(L′)

2

)
cos θ0 =

dE(L′)

2

(see [1, (7.20.3)]). Thus we have

x0
1 =

dE(L′)

2

1 − cos θ0

cos θ0

=
dE(L′)

2
{cosh(D(`, `′)) − 1}

≥ dE(L′)

2

(
cosh(`/2) cosh(`′/2) + 1

sinh(`/2) sinh(`′/2)
− 1

)
.

Next we suppose that L ∩ L′ 6= ∅, and let θ be the intersection angle. Then
by Proposition 11, we have

cos θ ≤ cos

{
arcsin

(
1

sinh(`/2) sinh(`′/2)

)}
=

√
1 − 1

sinh2(`/2) sinh2(`′/2)
.

Without loss of generality, we may assume that the two end points x1 and x2

of L′ satisfy x1 < 0 < x2 and |x1| ≤ |x2|. Then x1 + dE(L′)/2 ≥ 0 and

|x1| =
dE(L′)

2
(1 − cos θ) ≥ dE(L′)

2

(
1 −

√
1 − 1

sinh2(`/2) sinh2(`′/2)

)
.

¤
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Now we prove our theorem.

Proof of Theorem 4. We may assume that neither a nor f(a) is ∞. First
we suppose that f(L)∗ ∩ L = ∅. Let Ω be a simply connected domain that is
surrounded by L, f(L)∗ and a subset of R. If Ω is not bounded, then it is clear
that at least one end point a satisfies

|f(a) − a| > dE(L).

Thus we have only to consider the case where Ω is bounded. By translation
along the real axis, we may assume that L is symmetrical about the imaginary
axis, and then passes through (dE(L)/2) i. By Corollary 10, we have

d(f(L)∗, L) ≥ arccosh

(
cosh(`/2) cosh(`′/2) + 1

sinh(`/2) sinh(`′/2)

)
=: d0.

Let L0 be a geodesic on H such that it is symmetrical about the imaginary
axis and satisfies d(L0, L) = d0 and passes through (dE(L)/2) · e−d0 i. Then
the end point c > 0 of L and the end point c0 > 0 of L0 satisfy |c − c0| =
(dE(L)/2) · (1 − e−d0) =: d1. It is easily seen that at least one end point a of
f(L)∗ satisfies

|f(a) − a| ≥ d1

≥ dE(L)

2

(
1 − exp

{
−arccosh

(
cosh(`/2) cosh(`′/2) + 1

sinh(`/2) sinh(`′/2)

)})
≥ dE(L)

2

(
1 − sinh(`/2) sinh(`′/2)

cosh(`/2) cosh(`′/2) + 1

)
,

and we have the assertion.
Next we suppose that f(L)∗ ∩ L 6= ∅. Furthermore we may assume that

the Euclidean diameter dE(f(L)∗) of f(L)∗ satisfies 2dE(L) > dE(f(L)∗) >
dE(L)/2. Indeed, if dE(f(L)∗) ≤ dE(L)/2, then at least one end point a of L
satisfies

|f(a) − a| > dE(L)/2.

If 2dE(L) ≤ dE(f(L)∗), then at least one end point a of L satisfies

|f(a) − a| > dE(L).

Since δ/(1 − δ) < 1/2, in these cases, we have the assertion.
Let α and β be the two end points of L, and α′ and β′ be the two end points

of f(L)∗. We may assume that α′ < α < β′ < β. We have only to prove
that α − α′ > B under the assumption that f(α) = α′. Indeed, if f(β) = α′,
then β − f(β) = β − α′ > α − α′ > B. We take a Möbius transformation
φ(z) = (z − α)/(z − β). Then φ(L) = {y

√
−1 | y > 0}. Furthermore

dE(φ(f(L)∗)) = |φ(α′) − φ(β′)| =
(β − α)(β′ − α′)

(β − α′)(β − β′)
.
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Here we note that

β − α′ < (β′ − α′) + (β − α) = dE(f(L)∗) + dE(L) < 3dE(L),

and
β − β′ < β − α = dE(L).

Thus

dE(φ(f(L)∗)) >
dE(L) · (dE(L)/2)

3dE(L) · dE(L)
=

1

6
.

By Lemma 13, we see that |φ(α′)| > δ. Since |φ(α′)| = (α − α′)/(β − α′), we
have

α − α′ > δ(β − α′) = δ((α − α′) + (β − α)).

Since β − α = dE(L) and δ < 1/12, the above inequality is equivalent to

α − α′ >
δ

1 − δ
· dE(L).

¤
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