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1. Introduction

For a Riemann surface R, the reduced Teichmüller modular group Mod#(R) is
a group of automorphisms on the reduced Teichmüller space T#(R). We focus our
attention on the proper discontinuity of Mod#(R), which is defined as follows.

Definition 1.1. We say that a subgroup G ⊂ Mod#(R) acts properly discon-
tinuously at a point p ∈ T#(R) if there exists a neighborhood U of p such that the
set {χ ∈ G | χ(U) ∩ U 6= ∅} consists of only finitely many elements.

If R is of analytically finite type, Mod#(R) and T#(R) are nothing but the
ordinary Teichmüller modular group Mod(R) and the ordinary Teichmüller space
T (R), respectively, and T#(R) is finite dimensional. In this case, the definition of
proper discontinuity is well known and Mod#(R) is properly discontinuous at any
point in T#(R). On the other hand, if R is of topologically infinite type, T#(R)
is infinite dimensional and is not locally compact. However the above definition is
suitable also in infinite dimensional cases. It is different from the case of finite type
that Mod#(R) is not necessarily properly discontinuous.

On the basis of the above fact, in the next section, we explain the notions of the
limit set and the region of discontinuity for the Teichmüller modular group, which
are defined analogously to the theory of Kleinian groups. In section 3, we define the
lower and upper bound conditions for Riemann surfaces, which are main subjects
in this paper. Further, we give a sufficient condition for the maximal dilatations of
quasiconformal maps on Riemann surfaces to be bounded away from one. In section
4, as an application of the result in section 3, we consider sufficient conditions for
a Teichmüller modular group to have a non-empty region of discontinuity. In the
last section, we give some examples of Riemann surfaces that satisfy the lower and
upper bound conditions by considering normal covering surfaces.

2. Limit sets and regions of discontinuity

In this section, we explain the notions of limit sets and regions of discontinuity
of Teichmüller modular groups, which were introduced in [5].
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First, we recall the theory of Teichmüller spaces and Teichmüller modular
groups (see [10]). Throughout this paper, we assume that a Riemann surface R is
hyperbolic. In other words, it is represented as H/Γ for some torsion-free Fuchsian
group Γ acting on the upper half-plane H. Furthermore, we assume that R has
non-abelian fundamental group. We say that R is of the analytically finite type if
it is compact except for finitely many punctures. More precisely, if R is a compact
Riemann surface of genus g from which n punctures are removed, then we say that
R is of (g, n)-type. Further we say that R is of the topologically finite type if it
is compact except for finitely many punctures and holes. In other words, R is of
the topologically finite type if and only if the Fuchsian model Γ of R is finitely
generated.

Fix a Riemann surface R. For pairs (Sj , fj) of a Riemann surface Sj and a
quasiconformal map fj of R onto Sj (j = 1, 2), we say that (S1, f1) and (S2, f2)
are weakly equivalent if there exists a conformal map h of S1 onto S2 such that
f−1
2 ◦h◦f1 is homotopic to the identity on R. The reduced Teichmüller space T#(R)

with the base Riemann surface R is the set of all weakly equivalence classes [S, f ]
of such pairs (S, f) as above. We say that two quasiconformal automorphisms
h1 and h2 of R are weakly equivalent if they are homotopic on R. The reduced
Teichmüller modular group Mod#(R) is the set of all weakly equivalence classes [h]
of quasiconformal automorphisms h of R. The reduced Teichmüller space T#(R)
is equipped with the reduced Teichmüller distance dT (·, ·) defined by

dT ([S1, f1], [S2, f2]) =
1
2

inf
f1, f2

log K(f1 ◦ f−1
2 ),

where K(·) denotes the maximal dilatation of a quasiconformal map and the in-
fimum is taken over all quasiconformal maps f1 and f2 determining [S1, f1] and
[S2, f2], respectively. It is known that, for any quasiconformal map f of R onto S,
there exists a quasiconformal map having the smallest maximal dilatation in the
homotopy class of f . This is called an extremal quasiconformal map. The reduced
Teichmüller space T#(R) is a complete metric space with respect to dT .

An element χ = [h] ∈ Mod#(R) induces an automorphism of T#(R) by

[S, f ] 7→ [S, f ◦ h−1],

which is an isometry with respect to dT and denoted by χ∗. Namely, we have a
homomorphism of Mod#(R) to the automorphism group Aut (T#(R)) of T#(R).
With a few exceptional surfaces which do not appear in our present case, the above
homomorphism Mod#(R) → Aut (T#(R)) is faithful. This was first proved in [2].
Another proof was given in [3]. Therefore we identify χ∗ with χ and omit the
asterisk hereafter.

We give the definitions of the limit set and the region of discontinuity of a
Teichmüller modular group.

Definition 2.1. For a subgroup G of Mod#(R), we define Ω(G) as the set of
points p ∈ T#(R) where G acts properly discontinuously, and Λ(G) as the set of
points p ∈ T#(R) for which there exists a sequence {χn} of distinct elements of G
satisfying limn→∞ dT (χn(p), p) = 0. We call Ω(G) the region of discontinuity of G,
and Λ(G) the limit set of G.
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Since the action of Mod#(R) on T#(R) is isometric, we see that Λ(G) is G-
invariant and closed (see [5]). We classify the points in Λ(G) into three types Λ0(G),
Λ1
∞(G) and Λ2

∞(G) according to their stabilizer.

Definition 2.2. In a subgroup G of Mod#(R), the stabilizer of a point p ∈
T#(R) is defined by StabG(p) = {χ ∈ G | χ(p) = p}.

We define Λ0(G) as the set of points p ∈ Λ(G) such that there exists a sequence
{χn} of distinct elements of G satisfying limn→∞ dT (χn(p), p) = 0 and χn(p) 6= p
for all n, and Λ∞(G) as the set of points p ∈ Λ(G) such that StabG(p) consists of
infinitely many elements. Furthermore, we divide Λ∞(G) into two disjoint subsets,
Λ1
∞(G) and Λ2

∞(G). The Λ1
∞(G) is the set of points p ∈ Λ∞(G) such that there

exists an element of StabG(p) with infinite order, and the Λ2
∞(G) is the set of points

p ∈ Λ∞(G) such that all elements of StabG(p) are of finite order.

Proposition 2.3 ([5]). Let G be a subgroup of Mod#(R). For any point p in
T#(R)−Λ0(G), there exists a constant r > 0 such that the open ball B(p, r) centered
at p with radius r is precisely invariant under StabG(p). That is, χ(B(p, r)) =
B(p, r) for any χ ∈ StabG(p) and χ(B(p, r))∩B(p, r) = ∅ for any χ ∈ G−StabG(p).

Corollary 2.4. T#(R) − Λ(G) = Ω(G) for any subgroup G ⊂ Mod#(R).

The reduced Teichmüller space T#(R) is divided into two disjoint subset, the
limit set and the region of discontinuity, analogously to the theory of Kleinian
groups acting on the Riemann sphere. We expect that they satisfy similar properties
to those of limit sets and regions of discontinuity for Kleinian groups. We proved
in [5] that Λ(G)−Λ2

∞(G) does not have an isolated point. In particular, if Λ(G)−
Λ2
∞(G) 6= ∅, then the limit set Λ(G) is an uncountable set.

Remark 2.5. Similarly, for a subgroup G of the ordinary Teichmüller mod-
ular group Mod(R), we can define Λ(G) and Ω(G) in the ordinary Teichmüller
space T (R). However, for a Riemann surface R whose Fuchsian model is of the
second kind, we always have Ω(Mod(R)) = ∅, since a slight change of the value
of a quasiconformal map on the ideal boundary produces a different element of
Mod(R). On the other hand, for a Riemann surface R of analytically finite type,
Λ(Mod(R)) = Λ(Mod#(R)) = ∅. This is the reason why we consider the reduced
Teichmüller modular group Mod#(R), not the ordinary Teichmüller modular group
Mod(R), for Riemann surfaces R of infinite type.

3. The maximal dilatations of quasiconformal maps

In this section, we give a sufficient condition for the maximal dilatations of
quasiconformal maps on Riemann surfaces to be bounded away from one.

The hyperbolic distance on H is denoted by d(·, ·), and the hyperbolic length
of a curve c on a Riemann surface R is denoted by `(c). For a non-trivial simple
closed curve c on R that is not homotopic to a puncture of R, we denote the simple
closed geodesic that is homotopic to c by c∗. For a geodesic L on H and for a
quasiconformal automorphism f̃ of H, we denote the geodesic having the same end
points as those of f̃(L) by f̃(L)∗.

Definition 3.1. For a constant M > 0, we define RM to be the set of points
p ∈ R for which there exists a non-trivial simple closed curve cp passing through
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p with `(cp) < M . The set Rε is called the ε-thin part of R if ε > 0 is smaller
than the Margulis constant. Furthermore, a connected component of the ε-thin
part corresponding to a puncture is called the cusp neighborhood.

We consider the following conditions in terms of hyperbolic geometry of R.

Definition 3.2. We say that R satisfies the lower bound condition if there ex-
ists a constant ε > 0 such that ε-thin part of R consists of either cusp neighborhoods
or neighborhoods of geodesics which are homotopic to boundary components. We
also say that R satisfies the upper bound condition if there exist a constant M > 0
and a connected component R∗

M of RM such that the homomorphism of π1(R∗
M )

to π1(R) induced by the inclusion map of R∗
M into R is surjective.

Remark 3.3. The lower and upper bound conditions are invariant under qua-
siconformal deformations (see Remark 3.6 and Lemma 3.7).

We state the main result we will prove in this section.

Theorem 3.4. Let R be a Riemann surface, and Γ the Fuchsian model of R.
Suppose that R satisfies the lower bound condition for a constant ε > 0 as well as
the upper bound condition for a constant M > 0 and for a connected component
R∗

M of RM . Let ` > 0 and C > 0 be constants. Then there exists a constant
A > 1 depending only on ε, M , ` and C that satisfies the following property: for
a quasiconformal automorphism f of R, suppose that there exist three distinct axes
Li (i = 1, 2, 3) of hyperbolic elements of Γ such that

(1) their projections on R are simple closed geodesics ci (i = 1, 2, 3) with
ci ⊂ R∗

M and `(ci) < `,
(2) d(z1, L2) ≤ C for some z1 ∈ L1,
(3) f̃(L1)∗ = L1, f̃(L2)∗ = L2, f̃(L3)∗ 6= L3 for a lift f̃ of f to H.

Then K(f) ≥ A.

Before we prove this theorem, we state an extension of this theorem. First, we
define the lower and upper bound conditions for a subdomain of a Riemann surface.

Definition 3.5. We say that a subdomain R′ of R satisfies the lower bound
condition if there exists a constant ε > 0 such that the Rε ∩ R′ consists of either
cusp neighborhoods or neighborhoods of geodesics which are homotopic to bound-
ary components. We also say that R′ satisfies the upper bound condition if there
exist a constant M > 0 and a connected component U of RM ∩ R′ such that the
homomorphism of π1(U) to π1(R′) induced by the inclusion map of U into R′ is
surjective.

Remark 3.6. If we set R′ = R, then Definition 3.5 is nothing but Definition
3.2 for U = R∗

M .

We show that the above conditions are quasiconformally invariant.

Lemma 3.7. Let R and S be Riemann surfaces, and f a quasiconformal map of
R onto S. If R has a subdomain satisfying the lower and upper bound conditions,
then S also has a subdomain satisfying those conditions.

Proof. Let f̃ : H → H be a lift of K-quasiconformal map f . The f̃ can be
extended to H ∪ R̂ and the restriction f̃ |R of f̃ to R is a quasisymmetric function.
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We may assume that f̃(∞) = ∞. The Douady-Earle extension Φ(f̃) of f̃ |R to H
is a quasiconformal and bilipschitz map, and the bilipschitz constant K ′ depends
only on K (see [1]). The projection φf : R → S of Φ(f̃) satisfies (K ′)−1`(c) ≤
`(φf (c)) ≤ K ′`(c) for an arbitrary curve c on R, and [S, f ] = [S, φf ] in T#(R).

Let R′ ⊆ R be a subdomain satisfying the lower and upper bound conditions for
positive constants ε and M , respectively. Then there exists a connected component
U of RM ∩ R′ such that the homomorphism of π1(U) to π1(R′) induced by the
inclusion map of U into R′ is surjective. For an arbitrary point p ∈ φf (RM ), there
exists a non-trivial simple closed curve cp passing through p with `(cp) ≤ K ′M .
Thus, φf (RM ) ⊂ SK′M . Therefore, we see that the subdomain φf (R′) of S satisfies
the upper bound condition for a constant K ′M and for a connected component of
SK′M∩φf (R′) containing φf (U). Since Rε∩R′ consists of either cusp neighborhoods
or neighborhoods of geodesics which are homotopic to boundary components, we see
that S(K′)−1ε ∩φf (R′) also consists of either cusp neighborhoods or neighborhoods
of geodesics which are homotopic to boundary components. Hence φf (R′) satisfies
the lower bound condition for a constant (K ′)−1ε. ¤

We obtain an extension of Theorem 3.4.

Theorem 3.8. Let R be a Riemann surface, and R′ a subdomain of R having
non-abelian fundamental group. Suppose that R′ satisfies the lower bound condition
for a constant ε > 0 as well as the upper bound condition for a constant M > 0 and
for a connected component U of RM ∩ R′. Let ι∗ be the homomorphism of π1(R′)
to π1(R) that is induced by the inclusion map ι of R′ into R, and set Γ′ = Im ι∗
which we regard as a subgroup of the Fuchsian model Γ of R. Further, let ` > 0 and
C > 0 be constants. Then there exists a constant A > 1 depending only on ε, M , `
and C that satisfies the following property: for a quasiconformal automorphism f of
R, suppose that there exist three distinct axes Li (i = 1, 2, 3) of hyperbolic elements
of Γ′ such that

(1) their projections on R are simple closed geodesics ci (i = 1, 2, 3) with
ci ⊂ U and `(ci) < `,

(2) d(z1, L2) ≤ C for some z1 ∈ L1,
(3) f̃(L1)∗ = L1, f̃(L2)∗ = L2, f̃(L3)∗ 6= L3 for a lift f̃ of f to H.

Then K(f) ≥ A on R.

Remark 3.9. If we set R′ = R, then Theorem 3.8 is nothing but Theorem 3.4.

For proofs of the theorems, we note the following fact on the definition of RM .

Proposition 3.10 ([7]). For a constant M > 0, let R∗
M be a connected compo-

nent of RM . We assume that R∗
M − Rε is not of (0, 3)-type for a positive constant

ε (< M). Then there exists a constant M ′ ≥ M depending only on ε and M such
that, for any point p ∈ R∗

M − Rε, there exists a non-trivial simple closed curve cp

passing through p such that `(cp) < M ′ and cp is not homotopic to a puncture of
R.

The following proposition on hyperbolic geometry is a basis of proofs of the
theorems.

Proposition 3.11 ([7]). Let Γ be a Fuchsian model on H of a Riemann surface
R. Assume that Γ is non-elementary. Let M0 > 0 and D0 > 0 be constants. Then
there exists a constant A > 1 depending only on M0 and D0 that satisfies the
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following property: for a quasiconformal automorphism f̃ of H satisfying f̃ ◦ Γ ◦
f̃−1 = Γ, suppose that there exist three distinct axes L1, L2 and L3 of hyperbolic
elements of Γ such that

(1) the projections of Li (i = 1, 2, 3) on R are simple closed geodesics with
lengths less than M0,

(2) d(z1, L2) ≤ D0, d(z1, L3) ≤ D0 for some z1 ∈ L1,
(3) f̃(L1)∗ = L1, f̃(L2)∗ = L2, f̃(L3)∗ 6= L3.

Then K(f̃) ≥ A.

For readers’ convenience, we explain the proof of Proposition 3.11, which is
based on the Teichmüller Theorem.

Proof of Proposition 3.11. We may assume that the end points of L1 are 0
and ∞, and that z1 =

√
−1. We may also assume that K(f̃) < 2. The assumption

d(
√
−1, Li) ≤ D0 (i = 2, 3) implies that there exists a constant r = r(D0) > 0

depending only on D0 such that the Euclidean distance dE(Li) of two end points
of Li satisfies dE(Li) > r. By applying the following Lemma 3.12 to two axes L1

and Li (i = 2, 3), we see that there exists a constant δ > 0 depending only on r
and M0 (that is, depending only on M0 and D0) such that two end points of Li

(i = 2, 3) are in {x ∈ R | δ < |x| < 1/δ}.
Since K(f̃) < 2, the length of the projection of f̃(L3)∗ is less than 2M0 by

Lemma 3.13. By the assumption, we have f̃(L3)∗ 6= L3. Applying Lemma 3.12 to
axes f̃(L3)∗ and L3, we see that there exists a constant C > 0 depending only on
r and M0 such that the inequality |b− f̃(b)| ≥ C holds for at least one end point b
of L3.

Fixing an end point a of L2, we denote the hyperbolic distance on C−{0, a} by
da(·, ·). By the above consideration, δ < |a| < 1/δ and δ < |b| < 1/δ. Furthermore,
by applying Lemma 3.12 to axes L2 and L3, we have |a− b| > C0 for some constant
C0 > 0 depending only on r and M0. Since da(·, ·) is compatible with the Euclidean
distance on R2 except neighborhoods of 0, a and ∞, we have da(b, f̃(b)) ≥ log C ′ for
some constant C ′ > 1 depending only on C. We consider a Möbius transformation
φ satisfying φ(0) = 0, φ(a) = 1 and φ(∞) = ∞. Then d1(b, f̃(b)) ≥ log C ′′, where
C ′′ is a constant depending only on C ′ and δ (that is, depending only on M0 and
D0). By applying Lemma 3.14, we see that the assertion follows for A = (C ′′)2. ¤

Lemma 3.12 ([7]). For a constant M > 0, let L and L′ be two distinct axes
of hyperbolic elements of a Fuchsian group Γ whose projections to H/Γ are simple
closed geodesics with lengths less than M . If L and L′ are disjoint, then they have
a distance greater than C1 > 0 depending only on M . If L and L′ intersect each
other, then they make an angle greater than C2 > 0 depending only on M .

Lemma 3.13 ([12]). Let f be a quasiconformal map of R onto another Riemann
surface, and c a non-trivial simple closed curve on R. Then the inequality

K(f)−1`(c∗) ≤ `(f(c)∗) ≤ K(f)`(c∗)

holds.

Lemma 3.14 ([9]). Let f be a quasiconformal automorphism of C fixing 0 and
1. Suppose that there exists a point z0 ∈ C−{0, 1} such that d1(z0, f(z0)) = log M
for some constant M > 1, where d1( , ) is the hyperbolic distance on C − {0, 1}.
Then K(f) ≥ M2.
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Using Proposition 3.11, we will prove the theorems. By Remark 3.9, we have
only to prove Theorem 3.8. The proof is based on the argument in the proof of the
main theorem in [7].

Proof of Theorem 3.8. First, we observe a property of U , which is a
connected component of RM ∩R′. For an arbitrary point p in U −Rε, there exists a
non-trivial simple closed curve cp passing through p such that cp is not homotopic
to a puncture of R and that `(cp) < M ′, where M ′ = M ′(ε, M) is a constant in
Proposition 3.10 depending only on ε and M . Since cp ⊂ U , we have cp∗ ⊂ U . Since
R′ satisfies the lower bound condition for a constant ε, we have `(cp∗) > ε. Hence
there exists a constant B = B(ε,M ′) > 0 depending only on ε and M ′ such that
d(p, cp∗) ≤ B. This implies that, for every point z in H whose projection to R is in
U − Rε, there exists an axis L of a hyperbolic element of Γ such that d(z, L) ≤ B
and that the projection of L to R is a simple closed geodesic with length less than
M ′.

We fix a point z1 ∈ L1, and set D = 2(B +M ′+1). We shall apply Proposition
3.11 to M0 := max{`,M ′} and D0 := max{C, 2D}. We consider the following two
cases.

Case 1: d(z1, L3) ≤ 2D
By applying Proposition 3.11 to the three axes Li (i = 1, 2, 3) and to the constants
M0 (≥ `) and D0, we see that there exists a constant A > 1 depending only on M0

and D0 (hence, depending only on ε, M , ` and C) such that K(f) ≥ A, and we
have thus proved the theorem.

Case 2: d(z1, L3) > 2D
We take the nearest point z3 ∈ L3 from z1. Since ci ⊂ U (i = 1, 2, 3), the projections
of z1 and z3 are in U . Since R′ satisfies the upper bound condition for a connected
component U of RM ∩ R′, the homomorphism of π1(U) to π1(R′) induced by the
inclusion map of U into R′ is surjective. Hence, since L1 and L3 are axes of elements
of Γ′, we can take an oriented smooth curve α from z3 to z1 so that its projection
α̂ on R lies in U . Further, we can take the curve α so that α̂ is in U − Rε, since
Rε consists of either cusp neighborhoods or neighborhoods of geodesics which are
homotopic to boundary components by the lower bound condition.

We take points z4 and z5 on α so that z3, z4 and z5 are located in this order
with respect to the orientation of α and that they satisfy d(z3, z4) = d(z4, z5) = D.
Since z4 and z5 are points whose projections to R are in U −Rε, it follows from the
above observation that there exists an axis L4 (resp. L5) of a hyperbolic element
of Γ such that d(z4, L4) ≤ B (resp. d(z5, L5) ≤ B) and the projections of L4 and
L5 to R are simple closed geodesics with lengths less than M ′. Since d(z3, w4) =
d(z4, w5) > 2(B + M ′), we see that L3, L4 and L5 are mutually distinct. We take
a point ζ4 ∈ L4 so that d(z4, ζ4) ≤ B.

Suppose that f̃(L4)∗ = L4 and f̃(L5)∗ = L5. Note that d(ζ4, L5) ≤ D+2B and
d(ζ4, L3) ≤ D + B. By applying Proposition 3.11 to three axes L4, L5 and L3 and
to the constants M0 and D0 (> D + 2B), we have K(f) ≥ A, and have completed
the proof.

We consider the case that either f̃(L4)∗ 6= L4 or f̃(L5)∗ 6= L5 is satisfied. We
may assume that f̃(L4)∗ 6= L4 because the argument below works for the case that
f̃(L5)∗ 6= L5.

If d(z1, L4) ≤ 2D, then we apply Proposition 3.11 to three axes L1, L2 and L4

and to the constants M0 and D0, and we have K(f) ≥ A.
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If d(z1, L4) > 2D, then we use the argument in the case 2. We have z6, z7 on
α such that z4, z6 and z7 are located in this order with respect to the orientation
of α and d(z4, z6) = d(z6, z7) = D, and have distinct axes L6, L7 of hyperbolic
elements as above. Repeating this argument, we get desired three axes to which we
can apply Proposition 3.11, since d(z1, L2k) ≤ 2D for some k ∈ N. ¤

4. Teichmüller modular group of the second kind

In this section, we consider sufficient conditions for a Teichmüller modular
group to have a non-empty region of discontinuity.

Definition 4.1. For a subgroup G of Mod#(R), we say that G is of the first
kind if Ω(G) = ∅, and of the second kind if Ω(G) 6= ∅

First we show a sufficient condition for Mod#(R) to be of the first kind.

Proposition 4.2 ([5]). If R does not satisfy the lower bound condition, then
Mod#(R) is of the first kind.

Sketch of the proof of Proposition 4.2. By the assumption, there
exists a sequence {cn∗} of simple closed geodesics on R such that cn∗ are not freely
homotopic to boundary components and satisfy `(cn∗) → 0 (n → ∞). Let [hn] be
an element of Mod#(R) that is the Dehn twist along cn for each n. We can take
a representative hn so that limn→∞ K(hn) = 1. Hence, for p0 = [R, id], we have
limn→∞ dT ([hn](p0), p0) = 0, which means that p0 ∈ Λ(Mod#(R)). Let p = [S, f ]
an arbitrary point in T#(R). By Lemma 3.13, we have `(f(cn)∗) → 0. Then we
can apply the same argument also to p. ¤

Next we consider conditions for Mod#(R) to be of the second kind. By using
a result in the previous section, we have the following which is a basis of our
consideration.

Proposition 4.3. Let R be a Riemann surface, and R′ a subdomain of R
having non-abelian fundamental group and satisfying the lower and upper bound
conditions. Let {fn} be a sequence of quasiconformal automorphisms of R satisfying
the following three conditions:

(1) fn converge to the identity locally uniformly on R,
(2) limn→∞ K(fn) = 1,
(3) fn(c) is homotopic to c for all curves c on R − R′.

Then fn is homotopic to the identity for sufficiently large n.

Proof. Let ι∗ be the homomorphism of π1(R′) to π1(R) that is induced by
the inclusion map ι of R′ into R, and set Γ′ = Im ι∗ which we regard as a subgroup
of the Fuchsian model Γ of R. We take a lift f̃n of fn so that f̃n converge to the
identity locally uniformly on H. Then the isomorphisms χn : Γ → Γ induced by f̃n

converge to the identity. We will prove that χn are eventually the identity.
We take positive constants ε and M so that R′ satisfies the lower and upper

bound conditions for ε and M , respectively. Then there exists a connected compo-
nent U of RM ∩R′ such that the homomorphism of π1(U) to π1(R′) induced by the
inclusion map of U into R′ is surjective. We can take a non-trivial simple closed
curve c ⊂ U such that `(c) < M and that c is not homotopic to a puncture of R.
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Then c∗ ⊂ U . Let γ1 be a hyperbolic element of Γ′ that represents c∗. Fixing a
hyperbolic element γ (6= γ1) ∈ Γ′, we set γ2 = γ ◦ γ1 ◦ γ−1 ∈ Γ′. Since χn → id
(n → ∞) and Γ′ is a discrete group, we have χn(γ1) = γ1 and χn(γ2) = γ2 for
sufficiently large n.

Suppose to the contrary that χn are not eventually the identity. Then, there
exists an element αn ∈ Γ′ such that χn(αn) 6= αn for each n. We put γn,1 =
αn ◦ γ1 ◦ α−1

n and γn,2 = αn ◦ γ2 ◦ α−1
n , which are elements of Γ′.

We claim that either χn(γn,1) 6= γn,1 or χn(γn,2) 6= γn,2 is satisfied. Indeed,
suppose to the contrary that both χn(γn,1) = γn,1 and χn(γn,2) = γn,2 are satisfied.
Then βn ◦ γj ◦ β−1

n = γj (j = 1, 2), where βn = α−1
n ◦ χn(αn). Thus, βn fixes all

fixed points of γ1 and γ2. Since γ1 and γ2 are non-commutative, the Möbius trans-
formation βn fixes four points and it must be the identity map. This contradicts
that χn(αn) 6= αn.

Thus, without loss of generality, we may assume that χn(γn,1) 6= γn,1. Let L1,
L2 and Ln be axes of γ1, γ2 and γn,1, respectively. Then all the projections of L1,
L2 and Ln to R are c∗, which satisfies `(c∗) < M . By applying Theorem 3.8 to f̃n

and to the three axes L1, L2 and Ln for each n, we see that there exists a constant
A > 1 depending only on ε, M and C := d(L1, L2) (in particular, independent of
n) such that K(fn) ≥ A for all n. This contradicts the assumption. ¤

If we set R′ = R in Proposition 4.3, then we have the following.

Corollary 4.4. Let R be a Riemann surface satisfying the lower and up-
per bound conditions, and {fn} a sequence of quasiconformal automorphisms of R
satisfying the following two conditions:

(1) fn converge to the identity locally uniformly on R,
(2) limn→∞ K(fn) = 1.

Then fn is homotopic to the identity for sufficiently large n.

Using the above result, we obtain a candidate for a point of the region of
discontinuity.

Theorem 4.5. Let R be a Riemann surface satisfying the lower and upper
bound conditions, and G a subgroup of Mod#(R) satisfying the following: there
exist two compact subsets C1 and C2 on R such that, for every [g0] ∈ G, there is
a conformal automorphism f of R satisfying f ◦ g(C1) ∩ C2 6= ∅ for an extremal
quasiconformal map g in [g0]. Then p0 = [R, id] /∈ Λ0(G).

Proof. Let {[gn]} be a sequence of distinct elements of G. We assume that
gn is an extremal quasiconformal map in the homotopy class [gn]. Suppose that
[gn](p0) → p0 (n → ∞). Then K(gn) → 1. We will show that [gn](p0) = p0 for
sufficiently large n. By the assumption, for each gn, there exists a conformal auto-
morphism fn of R such that fn ◦ gn(C1)∩C2 6= ∅. Then we see that a subsequence
of {fn ◦ gn} converges to a quasiconformal automorphism of R locally uniformly
on R. Since K(fn ◦ gn) = K(gn) → 1, we may assume that fn ◦ gn converge to a
conformal automorphism h of R. Since fn ◦ gn ◦ h−1 converge to the identity and
since K(fn ◦gn ◦h−1) = K(gn) → 1, Corollary 4.4 says that [fn ◦gn ◦h−1] = [id] for
sufficiently large n. Then [gn] = [f−1

n ◦ h] for sufficiently large n. Since f−1
n ◦ h is a

conformal automorphism of R, we have [gn](p0) = [f−1
n ◦h](p0) = p0 for sufficiently

large n. ¤
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We show an example of a Riemann surface satisfying the assumption in Theo-
rem 4.5.

Example 4.6. Let R̂ be a topologically finite Riemann surface. For a normal
covering surface R of R̂ which is not a universal cover and for G = Mod#(R), the
assumptions of Theorem 4.5 are satisfied.

Indeed, R satisfies the lower and upper bound conditions, which will be proved
in Theorem 5.1. Since R̂ is a topologically finite Riemann surface, R̂0 = C(R̂)− R̂ε

is compact. Here C(R̂) is the convex core of R̂ and R̂ε is the ε-thin part of R̂. Let
Γ be the covering transformation group for a normal covering surface R of R̂, and
C a compact subset of R that satisfies C/Γ ⊃ R̂0. Then, for any quasiconformal
automorphism g of R, there exists an element γ ∈ Γ such that g(C) ∩ γ(C) 6= ∅.
Thus γ−1 ◦ g(C) ∩ C 6= ∅, and the assumptions of Theorem 4.5 are satisfied.

Corollary 4.7. Let R be a normal covering surface of a topologically finite
Riemann surface such that R is not a universal cover, and p0 = [R, id] ∈ T#(R)
and G = Mod#(R). Then there exists a neighborhood U of p0 that is precisely
invariant under StabG(p0).

Proof. By Theorem 4.5 and Example 4.6, we have p0 /∈ Λ0(G). Thus, by
Proposition 2.3, we have the assertion. ¤

We have a special case of Theorem 4.5.

Theorem 4.8. Let R be a Riemann surface satisfying the lower and upper
bound conditions, and G a subgroup of Mod#(R) satisfying the following: there
exist compact subsets C1 and C2 on R such that, for every [g0] ∈ G, g(C1)∩C2 6= ∅
for all quasiconformal maps g in [g0]. Then Λ(G) = ∅.

Proof. By Theorem 4.5, we have p0 = [R, id] /∈ Λ0(G). We set C = C1 ∪ C2.
Then g(C) ∩ C 6= ∅ for all quasiconformal maps g in [g0] ∈ G. Since we assumed
that R has non-abelian fundamental group, the group of conformal automorphisms
of R acts properly discontinuously ([11, Theorem X.48]). Then there exist only
finitely many conformal automorphisms g of R satisfying g(C)∩C 6= ∅. Hence, we
see that p0 /∈ Λ∞(G). Therefore, we have proved that p0 ∈ Ω(G).

Letting p = [S, f ] be an arbitrarily point in T#(R), we set C ′ = f(C). Then
S also satisfies the lower and upper bound conditions (see Remark 3.3) and, for
every [g0] ∈ G, a quasiconformal automorphism g′ = f ◦ g−1 ◦ f−1 of S satisfies
g′(C ′) ∩ C ′ 6= ∅ for all g ∈ [g0]. Thus, by the same consideration as above, we see
that p ∈ Ω(G). ¤

Remark 4.9. As we mentioned in the proof of Theorem 4.8, the number of
conformal automorphisms of R fixing a compact subset on R is finite. In particular,
if a conformal automorphism f of R fixes a compact subset on R, then f has finite
order. In [4], we proved that, if a conformal automorphism f of R has finite order,
then f fixes either a simple closed geodesic, a puncture or a point on R. Further,
in each case, we obtained a concrete estimate of the order of f in terms of the
injectivity radius on R.

We have another condition for the limit set to be empty.
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Theorem 4.10. Let R be a Riemann surface, and R′ a subdomain of R sat-
isfying the lower and upper bound conditions. Suppose that R′ and R − R′ have
non-abelian fundamental groups. Let G be a subgroup of Mod#(R) such that, for
every [g] ∈ G, g(c) is homotopic to c for all curves c on R − R′. Then Λ(G) = ∅.

Proof. Since R−R′ has non-abelian fundamental group, there exists a simple
closed geodesic c1 on R − R′ which is not homotopic to a boundary component of
R. Then there exists a simple closed geodesic c2 (6= c1) such that c1∩ c2 6= ∅. Since
g(c1) is homotopic to c1 for [g] ∈ G, we have g(c1) ∩ c2 6= ∅.

First we show that p0 = [R, id] ∈ Ω(G). Suppose to the contrary that p0 =
[R, id] ∈ Λ(G). Then there exists a sequence {[gn]} of distinct elements of G such
that [gn](p0) → p0 (n → ∞). We assume that gn is an extremal quasiconformal
map in the homotopy class [gn]. Then K(gn) → 1. Since gn(c1) ∩ c2 6= ∅, we see
that gn converge to a conformal automorphism h of R locally uniformly. Since
fn := gn ◦h−1 satisfies the three conditions in Proposition 4.3, the proposition says
that [gn ◦ h−1] = [id] for sufficiently large n. Thus [gn] = [h]. This contradicts the
assumption that all [gn] are distinct, and we conclude that p0 ∈ Ω(G).

A similar argument to the proof of Theorem 4.8 yields that p ∈ Ω(G) for any
point p ∈ T#(R). ¤

As corollaries of Theorem 4.8, we obtain the following two results.

Corollary 4.11 ([7]). Let R be a Riemann surface satisfying the lower and
upper bound conditions, and G a subgroup of Mod#(R) satisfying the following:
there exist simple closed geodesics c1 and c2 on R such that, for every [g] ∈ G,
g(c1) is homotopic to c2. Then Λ(G) = ∅.

Proof. First suppose that c2 is not homotopic to a boundary component of
R. Then there exists a simple closed geodesic c′ (6= c2) on R such that c2 ∩ c′ 6= ∅.
Since g(c1) is homotopic to c2 for [g] ∈ G, we have g(c1) ∩ c′ 6= ∅. Then Theorem
4.8 concludes Λ(G) = ∅.

Next suppose that c2 is homotopic to a boundary component of R. We take
a pair of pants Pi (i = 1, 2) whose boundary consists of ci and two non-trivial
dividing simple closed curves on R. Then for every [g] ∈ G, we have g(P1)∩P2 6= ∅.
Thus Theorem 4.8 concludes Λ(G) = ∅. ¤

We have a sufficient condition of a Riemann surface for the Teichmüller modular
group to act on the Teichmüller space properly discontinuously.

Corollary 4.12 ([7]). Let R be a Riemann surface satisfying the lower and
upper bound conditions. Suppose that either the genus, the number of cusps or the
number of holes of R is positive finite. Then Λ(Mod#(R)) = ∅.

Proof. First suppose that R is a Riemann surface of genus g (0 < g < ∞).
Let l be a non-trivial dividing simple closed curve such that one of components of
R− l is a Riemann surface S of genus g with only one boundary component. Then
for every [g0] ∈ Mod#(R), g(S̄) ∩ S̄ 6= ∅ for all quasiconformal maps g in [g0]. By
Theorem 4.8, we have the assertion.

Next suppose that the number of cusps of R is m (0 < m < ∞). Let S be a
subdomain on R whose boundary consists of m cusps and two non-trivial dividing
simple closed curves on R. Let V be the union of cusp neighborhoods of S. Then
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for every [g0] ∈ Mod#(R), g(S̄ − V ) ∩ (S̄ − V ) 6= ∅ for all quasiconformal maps g
in [g0]. By Theorem 4.8, we have the assertion.

Finally suppose that the number of holes of R is n (0 < n < ∞). Let ci

(i = 1, · · · , n) are simple closed geodesics which are homotopic to the borders. Let
S be a subdomain on R whose boundary consists of the ci (i = 1, · · · , n) and two
non-trivial dividing simple closed curves on R. Then for every [g0] ∈ Mod#(R),
g(S̄) ∩ S̄ 6= ∅ for all quasiconformal maps g in [g0]. By Theorem 4.8, we have the
assertion. ¤

We consider a condition of Riemann surfaces for corresponding points in T#(R)
to belong the region of discontinuity.

Definition 4.13. The length spectra LS(R) of a Riemann surface R is the set
of all lengths of simple closed geodesics on R.

Theorem 4.14. Let R be a Riemann surface satisfying the lower and upper
bound conditions. If a point p = [S, f ] ∈ T#(R) satisfies the following property (∗),
then p belongs to Ω(Mod#(R)).

(∗) There exists a simple closed geodesic c on S such that the set

{x ∈ R | |`(c) − x| < r} ∩ LS(S)

is a finite subset of R for some r > 0. Moreover, for any ` > 0 satisfying
|`(c)− `| < r, there exist at most finitely many simple closed geodesics on
S with lengths `.

Proof. Suppose to the contrary that p ∈ Λ(Mod#(R)). Then there exist
distinct elements [hn] of Mod#(R) such that [hn](p) → p (n → ∞). Let gn be an
extremal quasiconformal automorphism of S in the homotopy class of f ◦h−1

n ◦f−1.
Then K(gn) → 1. We may assume that K(gn) < 1 + r/`(c) for all n. Then,
by Lemma 3.13, we see that the geodesic gn(c)∗ satisfies |`(c) − `(gn(c)∗)| < r.
By the property (∗), the set {gn(c)∗} consists of finitely many elements. Taking
a subsequence of {gn}, we may assume that gn(c)∗ = g1(c)∗ for all n. Then by
Corollary 4.11, we have p /∈ Λ(Mod#(R)), which is a contradiction. ¤

If R is a compact Riemann surface, then LS(R) is a discrete subset of R (see
[8]). Thus all points p ∈ T#(R) satisfy the property (∗), and hence Mod#(R) acts
on T#(R) properly discontinuously by Theorem 4.14. The following lemma shows
that, if a Riemann surface R of infinite type satisfies the lower bound condition,
then there exists a point p = [S, f ] ∈ T#(R) satisfying the property (∗).

Lemma 4.15 ([5]). Let R be a Riemann surface satisfying the lower bound con-
dition for a constant ε > 0, and c0 a simple closed geodesic on R. Then there exist
a positive constant α < ε and a quasiconformal map f of R such that `(f(c0)∗) < α
and `(f(c)∗) > α for any other simple closed geodesics c 6= c0 on R.

Theorem 4.14 and Lemma 4.15 yield the following proposition, where the as-
sumption and the conclusion in Corollary 4.12 are weakened.

Proposition 4.16 ([5]). If R satisfies the lower and upper bound conditions,
then Mod#(R) is of the second kind.
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In connection with Proposition 4.16, we have the following conjecture: “If R
satisfies the lower bound condition, then Mod#(R) is of the second kind.” That is,
considering Proposition 4.2, we conjecture that Mod#(R) is of the second kind if
and only if R satisfies the lower bound condition. We have a partial solution of this
conjecture, giving a weaker condition than the upper bound condition.

Proposition 4.17 ([6]). Let R be a Riemann surface satisfying the following
two conditions:

(1) R satisfies the lower bound condition.
(2) There exists a constant M > 0 such that, for any connected component V

of R−RM , V is either simply or doubly connected and R− V consists of
finitely many connected components.

Then Mod#(R) is of the second kind.

Remark 4.18. It is easily seen that, if R satisfies the upper bound condition,
then R satisfies the second condition in Proposition 4.17.

The proof of Proposition 4.17 is based on Theorem 3.8. The examples of
Riemann surfaces satisfying the two conditions in this proposition are in Examples
5.6 and 5.7.

5. The lower and upper bound conditions

In the previous section, we showed that the lower and upper bound conditions
are sufficient conditions for Teichmüller modular groups to be of the second kind.
In this section, we consider some examples of Riemann surfaces satisfying those
conditions. Further we give examples of Riemann surfaces such that both the limit
sets and the regions of discontinuity of the Teichmüller modular groups are not
empty.

Theorem 5.1. Let R̂ be a topologically finite Riemann surface, and R a normal
covering surface of R̂ which is not a universal cover. Then R satisfies the lower
and upper bound conditions.

Proof. The lower bound condition is clearly satisfied. We will prove that R
satisfies the upper bound condition. We set R̂0 = C(R̂) − R̂ε, where C(R̂) is the
convex core of R̂ and R̂ε is the ε-thin part of R̂. The lift R0 of R̂0 to R is connected
and the homomorphism of π1(R0) to π1(R) induced by the inclusion map of R0

into R is surjective. We will show that R0 ⊂ RM for some M > 0. Then the upper
bound condition is satisfied for the constant M . Since R is a normal covering
surface of R̂ which is not a universal cover, we can take a simple closed geodesic ĉ∗
on R̂ so that the lifts of ĉ∗ to R are closed geodesics. For an arbitrary point p ∈ R0,
let p̂ ∈ R̂0 be the projection of p. We connect p̂ and ĉ∗ by the shortest geodesic ˆ̀.
Since R̂0 is compact, there exists a constant M1 such that the hyperbolic length of
ˆ̀ is less than M1 for all p̂ ∈ R̂0. Hence there exists a non-trivial simple closed curve
ĉp passing through p̂ whose hyperbolic length is less than M = 2M1 + M2, where
M2 is the hyperbolic length of ĉ∗. By considering the lift cp of ĉp passing through
p, we conclude that p ∈ RM . ¤

By Proposition 4.16 and Theorem 5.1, the following corollary is obtained.
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Corollary 5.2. Let R̂ be a topologically finite Riemann surface, and R a
normal covering surface of R̂ which is not a universal cover. Then Mod#(R) is of
the second kind.

Example 5.3. Let R̂ be a compact Riemann surface of genus g ≥ 2, and R a
normal covering surface of R̂ whose covering transformation group is a cyclic group
〈φ〉 generated by a conformal automorphism φ of R. Then p0 = [R, id] ∈ T#(R) and
[φ] ∈ Mod#(R) satisfy [φ](p0) = p0. Hence p0 belongs to Λ1

∞(Mod#(R)). On the
other hand, Mod#(R) is of the second kind by Corollary 5.2. Thus Λ(Mod#(R)) 6= ∅
and Ω(Mod#(R)) 6= ∅.

In connection with Theorem 5.1, we see that a Riemann surface inherits the
lower and upper bound conditions from its normal covering surface. This is proved
by using the result stated in Remark 4.9.

Proposition 5.4 ([4]). Let R be a Riemann surface and R̃ a normal covering
surface of R. If R̃ satisfies the lower and upper bound conditions, then R also
satisfies these conditions.

From Propositions 4.16 and 5.4, we have a condition of a normal covering
surface R̃ for Mod#(R) to be of the second kind.

Corollary 5.5. If R̃ satisfies the lower and upper bound conditions, then both
Mod#(R̃) and Mod#(R) are of the second kind.

If R̃ does not satisfy the upper bound condition, then Proposition 5.4 and
Corollary 5.5 are not necessarily true.

Example 5.6. Let

R̃ = C −
∞∪

n=1

∪
m∈Z

{m

n
± n2

√
−1

}
,

and R = R̃/〈f〉, where f(z) = z + 1. By a similar consideration to that in [7,
Example 2], we see that R̃ satisfies the lower bound condition but does not satisfy
the upper bound condition. However it satisfies the second condition in Proposition
4.17. Indeed, there exists a constant M > 0 such that, for any connected compo-
nent V of R̃ − R̃M , V is simply connected and R̃ − V consists of two connected
components. Then Mod#(R̃) is of the second kind. On the other hand, R does
not satisfy the lower bound condition. Indeed, let cn be the geodesic on R being
homotopic to a simple closed curve {(n2 + 1)

√
−1}/〈f〉. For a sufficiently small

constant ε > 0, we set An = {x + y
√
−1 ∈ C | n2 + ε < y < (n + 1)2 − ε}/〈f〉,

which is an annulus containing cn. By considering the modulus of An, we see that
`(cn) → 0 (n → ∞). Hence, by Proposition 4.2, Mod#(R) is of the first kind.

We have an example that R̃ does not satisfy the upper bound condition but
both Mod#(R̃) and Mod#(R) are of the second kind.

Example 5.7. Let

R̃ = C −
∞∪

n=1

∪
m∈Z

{m

n
+ (2n + 1)

√
−1

}
.
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Although R̃ does not satisfy the upper bound condition (see [7, Example 2]), it
satisfies the two conditions in Proposition 4.17 (see [6]). Then Mod#(R̃) is of the
second kind, that is, Ω(Mod#(R̃)) 6= ∅. Further we see that Λ(Mod#(R̃)) 6= ∅.
Indeed, set

fn(z) =


x − (y − 2n − 2)/n + y

√
−1 (2n + 1 ≤ y < 2n + 2)

x + (y − 2n)/n + y
√
−1 (2n ≤ y < 2n + 1)

x + y
√
−1 elsewhere.

Then fn are quasiconformal automorphisms of R̃ satisfying K(fn) → 1 (n → ∞).
Hence [fn](p0) → p0, where p0 = [R̃, id]. This means that p0 ∈ Λ(Mod#(R̃)).

Let R = R̃/〈f〉, where f(z) = z +1. Then we see that R satisfies the lower and
upper bound conditions (cf. Example 5.6). Thus, by Proposition 4.16, Mod#(R)
is also of the second kind.

In the last of this section, we propose the following problem: “If Mod#(R̃) is
of the first kind, then so is Mod#(R) ?” It is clear that, if R̃ does not satisfy the
lower bound condition, then neither does R. Hence, from Proposition 4.2, if R̃ does
not satisfy the lower bound condition, then both Mod#(R̃) and Mod#(R) are of
the first kind. Further, if the conjecture, which is stated in the previous section, is
true, then this problem is solved affirmatively.
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