
DYNAMICS ON TEICHMÜLLER SPACES AND
SELF-COVERING OF RIEMANN SURFACES

EGE FUJIKAWA, KATSUHIKO MATSUZAKI, AND MASAHIKO TANIGUCHI

Abstract. A non-injective holomorphic self-cover of a Riemann surface in-
duces a non-surjective holomorphic self-embedding of its Teichmüller space.
We investigate the dynamics of such self-embeddings by applying our struc-
ture theorem of self-covering of Riemann surfaces and examine the distri-
bution of its isometric vectors on the tangent bundle over the Teichmüller
space. We also extend our observation to quasiregular self-covers of Rie-
mann surfaces and give an answer to a certain problem on quasiconformal
equivalence to a holomorphic self-cover.

1. Introduction

The Teichmüller space T (R) of a hyperbolic Riemann surface R is the qua-
siconformal deformation space of the complex structure of R. It can be con-
sidered as a complex Banach manifold, and actually it is biholomorphically
equivalent to a bounded domain in a certain complex Banach space. When R
is of analytically finite type, T (R) is a domain of holomorphy in Cn. One of
the central issues for such domains is to investigate the structure of the space
of holomorphic self-maps and its certain subspaces.

For a complex Banach manifold M in general, we denote by End(M) the
semigroup of all holomorphic self-maps of M . It contains the distinguished
subgroup Aut(M) consisting of all biholomorphic automorphisms of M . In
the case where M is the Teichmüller space T (R), every element of Aut(T (R))
is now known to be a geometric automorphism induced by a quasiconformal
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automorphism of R, and hence Aut(T (R)) can be identified with the quasicon-
formal mapping class group MCG(R) of the base Riemann surface R (Earle
and Gardiner [3], Markovic [12]). The key to understanding the structure of
End(T (R)) is such intertwinement between the geometric properties of R and
the analytic properties of T (R), which allows us to treat it more concretely
and obtain deeper results than those by the general theory. This is the reason
why we do not discuss general domains in complex Banach spaces but restrict
ourselves to Teichmüller spaces.

There are another kind of particular elements in End(T (R)) raised analo-
gously as in the classical Fatou-Bieberbach phenomena, i.e. injective, but not
surjective, holomorphic self-maps in End(Cn) for n ≥ 2 (cf. [17]). However,
for the bounded domain T (R), it is easy to make an injective holomorphic self-
map in such a way that the closure of its image is properly contained in T (R).
To avoid these self-maps, we impose such a condition on F ∈ End(T (R)) that
F preserves the infinity, namely, F (p) tends to the boundary of T (R) if and
only if p tends to the boundary. Remark that, for a bounded domain M in
Cn, this condition is nothing but F ∈ End(M) is proper. Hence the existence
of injective, but non-surjective, self-maps preserving the infinity forces T (R)
to be infinite dimensional.

Let Emb(T (R)) denote the semigroup consisting of all injective holomor-
phic self-maps of T (R) preserving the infinity, which is possibly larger than
Aut(T (R)). We call an element in Emb(T (R)) a holomorphic self-embedding of
T (R). For the sake of simplicity, we consider only the elements of End(T (R))
fixing the base point of T (R) for the moment. We express this restriction
by adding a subscript 0, or more explicitly, by End0(T (R)), Aut0(T (R)) and
Emb0(T (R)). Every element of Aut0(T (R)) is induced geometrically by an el-
ement of Conf(R), the group of all conformal automorphisms of R. Similar to
this case, typical examples of elements in Emb0(T (R)) come from a semigroup
Cov(R), which consists of all holomorphic self-covers of the Riemann surface
R.

Proposition 1.1. Every element f ∈ Cov(R) − Conf(R) induces an element
f∗ belonging to Emb0(T (R)) − Aut0(T (R)).

Indeed, this assertion is based on a fact that a holomorphic cover of Rie-
mann surfaces induces an injective holomorphic map between the correspond-
ing Teichmüller spaces, where the condition of preserving the infinity can be
easily verified if we consider the Bers embeddings of their Teichmüller spaces.
We call such an element f∗ ∈ Emb0(T (R)) induced by f ∈ Cov(R) geometric,
and denote by Cov∗(T (R)) the sub-semigroup of Emb0(T (R)) consisting of all
geometric elements.

We should emphasize again that the fact that Emb0(T (R)) − Aut0(T (R))
is not empty is far from trivial, which is one of the amazing phenomena for
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infinite dimensional Teichmüller spaces. This follows from non-emptiness of
the corresponding set Cov(R)−Conf(R). However, there seems no systematic
researches on this subject matter before. Thus our first work is to investigate
the structure of non-injective holomorphic self-covers of Riemann surfaces, and
to show that they are not empty for many Riemann surfaces.

Theorem 1.2. If a Riemann surface R with a non-cyclic fundamental group
admits a holomorphic self-cover f ∈ Cov(R)−Conf(R), then there exist a holo-
morphic cover f∞ : R → R∞ and a conformal automorphism g∞ ∈ Conf(R∞)
of infinite order such that f∞ ◦ f = g∞ ◦ f∞. Conversely, for a Riemann
surface R with a conformal automorphism g ∈ Conf(R) of infinite order,
there exist a holomorphic cover f : R → R and a holomorphic self-cover
f ∈ Cov(R) − Conf(R) such that f ◦ f = g ◦ f .

Here we give an example of a holomorphic non-injective self-cover.

Example 1.3. A pair of pants is a hyperbolic surface homeomorphic to a
three-punctured sphere having three geodesic boundary components. Choose a
pair of pants P whose boundary components c0, c1 and c2 have the same length.
First, glue two copies of P along the 2 boundary components c1 and c2 of P ,
which results in a hyperbolic surface P1 with 5 boundary components. Next,
glue four copies of P along the 4 boundary components of P1 coming from c1

and c2, which results in a hyperbolic surface P2 with 9 boundary components.
Continuing this process infinitely many times, we have a hyperbolic surface
P∞ with the boundary component c0. Let Γ be a Fuchsian group acting on
the unit disk ∆ such that R = ∆/Γ is the Nielsen extension of P∞ beyond c0.
On the other hand, for a connected component R′ of P∞ − P , the subgroup
Γ′ of Γ ∼= π1(R) corresponding to π1(R

′) is properly contained in Γ but it is
conformally conjugate to Γ. This implies that the Riemann surface R admits
a holomorphic non-injective self-cover.

The Teichmüller space T (R) is endowed with the Teichmüller-Kobayashi
distance dT (R) and every holomorphic self-map F of T (R) is not expanding with
respect to this distance. A geometric self-embedding F = f∗ ∈ Cov∗(T (R)) is
not necessarily isometric, but it is close to an isometry in the following sense,
namely, f∗ is a strongly bounded contraction with respect to dT (R).

Proposition 1.4. For any geometric self-embedding f∗ ∈ Cov∗(T (R)), there
exists a uniform constant c > 0 such that

c dT (R)(p, q) ≤ dT (R)((f
∗)n(p), (f∗)n(q)) ≤ dT (R)(p, q)

for any p and q in T (R) and for any n ∈ N.

Next, we consider the dynamics on T (R) induced by the iteration of f∗ ∈
Cov∗(T (R)) and introduce the concept of the full cluster set, the recurrent set
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and the limit set. As the following proposition implies, this case contrasts with
the case where F ∈ End0(T (R)) is strictly contracting and T (R) shrinks to
the unique attracting fixed point of F by the iteration of F .

Proposition 1.5. For every geometric self-embedding f∗ ∈ Cov∗(T (R)), the
full cluster set C(f∗) =

⋂∞
n=1(f

∗)n(T (R)) is a non-degenerate submanifold of
T (R), which can be identified with the Teichmüller space T (R∞) for a Riemann
surface R∞ by a holomorphic cover R → R∞. The recurrent set Rec(f∗) and
the limit set Λ(f∗) are coincident and contained in C(f∗).

However, even on this C(f∗), the distribution of contracting/isometric tan-
gent vectors by the derivative df∗ of f∗ ∈ Cov∗(T (R)) is not so clear. Actually,
the isometry locus of df∗ on the holomorphic tangent bundle over T (R) can
be a nowhere dense closed subset and, at the same time, non-empty.

Theorem 1.6. For a non-amenable holomorphic self-cover f , the set of tan-
gent vectors strictly contracted by df∗ is open and dense in the holomorphic
tangent bundle T (T (R)). On the other hand, the projection of the isometric
locus of df∗ in T (T (R)) to T (R) contains the recurrent set Rec(f∗).

Here, the assumption that f is a non-amenable cover is essential according
to McMullen [14]. In fact, for every amenable holomorphic self-cover f of R,
the derivative df∗ is isometric on the whole T (T (R)).

In the previous paragraphs, we restrict ourselves to the self-embeddings of
T (R) fixing the base point. When we remove this restriction, the corresponding
self-maps of R will be quasiregular self-covers of R. Here a quasiregular cover
means the composition of a holomorphic cover and a quasiconformal homeo-
morphism. We denote the semigroup consisting of all quasiregular self-covers
of R by QCov(R). Accordingly, the sub-semigroup of Emb(T (R)) consisting of
all geometric elements induced by quasiregular self-covers of R is denoted by
QCov∗(T (R)). The central problem for this subject is to determine whether
Emb(T (R)) is coincident with QCov∗(T (R)) or not. This would be a gener-
alization of the fact that Aut(T (R)) is coincident with QC∗(T (R)), which is
identified with MCG(R). Although we cannot prove or disprove it so far, we
will seek a way of investigating this problem by using invariant metrics on the
Teichmüller space.

Dynamics on T (R) by f∗ ∈ QCov∗(T (R)) are essentially the same as those
by elements of Cov∗(T (R)) if f∗ has a fixed point on T (R). This is the case
if the quasiregular self-cover f is quasiconformally conjugate to a holomor-
phic self-cover. One may consider the problem of finding the fixed point as a
generalization of the Nielsen realization problem on a certain mapping class
group. We consider equivalent conditions to the existence of fixed points and
obtain the following assertion. Similar situations often appear in the study of
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complex dynamics of rational maps and our result is related to those subject
matters.

Theorem 1.7. A quasiregular self-cover f ∈ QCov(R) is equivalent to a holo-
morphic self-cover of another Riemann surface R′ by quasiconformal homeo-
morphisms R → R′ in the same Teichmüller class if and only if the orbit of
f∗ ∈ QCov∗(T (R)) is bounded in T (R).

A brief summary of this paper is as follows. In Section 2, we give the fun-
damental structure theorem for holomorphic self-covering of R and show that
Cov(R)−Conf(R) is non-empty for fairly general R. In Section 3, for a holo-
morphic self-embedding F ∈ Emb(T (R)) satisfying a certain condition, an
F -invariant distance on T (R) is constructed and the strongly bounded prop-
erty is proved. Every geometric self-embedding f∗ ∈ QCov∗(T (R)) satisfies
that condition. In Section 4, we clarify the full cluster set C(f∗) for the dy-
namics f∗ ∈ Cov∗(T (R)) on T (R) as an application of the structure theorem
for holomorphic self-covering. In Section 5, we extend the structure theo-
rem to the quasiregular self-covers QCov(R) and give an answer to the fixed
point problem for such maps. Finally in Section 6, we prove that any element
f∗ ∈ Cov∗(T (R)) is strictly contracting almost everywhere in the holomorphic
tangent bundle over T (R) if f is a non-amenable holomorphic self-cover of R.

2. Structure theorem for non-injective self-coverings
of Riemann surfaces

We always assume that a Riemann surface R admits a hyperbolic metric and
has a non-cyclic fundamental group. Namely, R is represented as the quotient
space ∆/Γ of the unit disk ∆ ⊂ C by a non-elementary torsion-free Fuchsian
group Γ. We denote by Cov(R) the semigroup of all holomorphic self-covers
of a Riemann surfaces R. We assume that R has a non-injective holomorphic
self-cover f : R → R. Hereafter in this paper, covering is always meant to be
unlimited and unbranched unless we specifically mention otherwise.

First, we prove the following structure theorem of self-covering, which is
a basis of our consideration on the dynamics of holomorphic self-covers on
Riemann surfaces. Similar results have appeared in Jørgensen, Marden and
Pommerenke [9], Beardon [1] and McMullen and Sullivan [16].

Theorem 2.1. Let R be a Riemann surface, π : ∆ → R a holomorphic uni-
versal cover and Γ ⊂ Aut(∆) the covering transformation group for π, which
is a non-elementary torsion-free Fuchsian group. Suppose that R has a non-
injective holomorphic self-cover f : R → R. Then the following claims are
satisfied.
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(1) There exists a conformal automorphism g ∈ Aut(∆) such that f ◦ π =
π ◦ g. The conjugate Γ1 = g−1Γg properly contains Γ, which is the
covering transformation group for f ◦ π.

(2) Set Γn = g−nΓgn for each n ∈ N. They are the covering transformation
groups for fn ◦ π and the following proper inclusion relations hold.

Γ = Γ0 $ Γ1 $ · · · $ Γn $ · · · .

(3) Let Γ∞ =
⋃∞

n=0 Γn = limn→∞ Γn. Then Γ∞ is discrete and torsion-free.
Actually it is the geometric limit of the sequence {Γn}.

(4) The conformal automorphism g ∈ Aut(∆) belongs to the normalizer of
the Fuchsian group Γ∞, that is, g−1Γ∞g = Γ∞. Let R∞ = ∆/Γ∞ be
the Riemann surface represented by Γ∞ and let g∞ be the conformal
automorphism of R∞ induced by g. Then g∞ is of infinite order and
R∞ is of topologically infinite type.

(5) Let f∞ : R → R∞ be the holomorphic cover corresponding to the inclu-
sion relation Γ ⊂ Γ∞. Then it satisfies g∞ ◦ f∞ = f∞ ◦ f . In fact, the
following diagram commutes:

∆
g−−−→ ∆

g−−−→ ∆
g−−−→ · · ·yπ

yπ

yπ

R
f−−−→ R

f−−−→ R
f−−−→ · · ·yf∞

yf∞

yf∞

R∞
g∞−−−→ R∞

g∞−−−→ R∞
g∞−−−→ · · ·

(6) Let Γ̂ = 〈Γ, g〉 be a subgroup of Aut(∆) generated by Γ and g. Then

Γ̂ is a torsion-free Fuchsian group and is represented as a semi-direct
product Γ̂ = Γ∞ o 〈g〉. The quotient R∞/〈g∞〉 of R∞ by the cyclic
group of the conformal automorphism g∞ is coincident with the Rie-
mann surface R̂ = ∆/Γ̂.

(7) Suppose that there are a holomorphic cover f : R → R and a biholo-
morphic automorphism g : R → R of a Riemann surface R satisfying

g ◦f = f ◦f . Then there is a holomorphic cover f̂ : R∞ → R such that

g◦ f̂ = f̂ ◦g∞. In other words, f∞ : R → R∞ is the highest holomorphic
cover from R among all such f : R → R.

Proof. Most of the statements follows in line-by-line order from general facts
on covering of Riemann surfaces and its transformation groups. Here we give
proofs only for less trivial statements (3) and (4).
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Concerning statement (3), the discreteness of Γ∞ follows from the Jørgensen
criterion [8], which asserts that a non-elementary group G of Möbius transfor-
mations is discrete if and only if the subgroup 〈g1, g2〉 is discrete for all pairs of
elements g1 and g2 in G. Furthermore, since all Γn have no torsion elements,
so does Γ∞. It is easy to see that the increasing sequence {Γn} has the geo-
metric limit Γ′

∞ which contains Γ∞. However, since Γ∞ is discrete, they are
coincident.

For statement (4), first we show that g−1Γ∞g = Γ∞. Indeed, the inclusion
g−1Γ∞g ⊂ Γ∞ follows from g−1Γng = Γn+1 ⊂ Γ∞ and the other inclusion
gΓ∞g−1 ⊂ Γ∞ follows from gΓng

−1 = Γn−1 ⊂ Γ∞. Next we show that g∞ is
of infinite order. Indeed, gm

∞ = id for some m ∈ Z implies that gm ∈ Γ∞, and
hence gm ∈ Γn for some n. Then fm = id, but this is impossible since f is not
injective. ¤

In the diagram of Theorem 2.1, we assume the top-left ∆ as the base stage.
Then we have a diagram of the covering transformation groups action on this
∆ for the corresponding covering maps:

1 −−−→ 1 −−−→ 1 −−−→ · · ·y y y
Γ −−−→ Γ1 −−−→ Γ2 −−−→ · · ·y y y

Γ∞ −−−→ Γ∞ −−−→ Γ∞ −−−→ · · ·

Here all the arrows indicate the inclusion maps.

Remark 2.2. Theorem 2.1 is not valid when the fundamental group of R is
cyclic. We will consider this case when R is a punctured disk. The correspond-
ing Fuchsian group Γ is a parabolic cyclic group. We may assume that Γ acts
on the upper half-plane H and is generated by γ(z) = z+1. Take g(z) = kz for
some positive integer k and take the conjugate Γ1 = g−1Γg, which is a cyclic
group generated by γ1(z) = z + 1/k. This defines a holomorphic k-sheeted
self-cover f : R = H/Γ → R = H/Γ1. Moreover, Γn = g−nΓgn (n ∈ N) gives
an increasing sequence with the geometric limit Γ∞ = lim Γn. It is easy to see
that Γ∞ consists of all parabolic transformations z 7→ z + α where α is any
k-adic rational number. Hence Γ∞ is not discrete but is elementary. It is the
same for Γ̂ = 〈γ, g〉.

Theorem 2.1 tells us that, for the investigation of the action of the self-cover
f on R, it is helpful to see the action of the automorphism g∞ of R∞. On
the other hand, the orbit of f itself defines the following equivalence relations,
which are also important. See also [16, Section 6].
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Definition 2.3. Let f : R → R be a map in general. The grand orbit of
x ∈ R under f is the set of all points x′ ∈ R such that fn(x) = fm(x′) for

some n ≥ 0 and m ≥ 0, which is denoted by Ô(f, x). The small orbit of
x ∈ R under f is the set of all points x′ ∈ R such that fn(x) = fn(x′) for

some n ≥ 0, which is denoted by O(f, x). Clearly O(f, x) ⊂ Ô(f, x). The
equivalence relation defined by the grand orbit under f is called the grand
orbit equivalence relation for f and is denoted by x ≈f x′ when x and x′ are
grand orbit equivalent. The equivalence relation defined by the small orbit
under f is called the small orbit equivalence relation for f and is denoted by
x ∼f x′ when x and x′ are small orbit equivalent.

Here we note the relationship between these two equivalence relations and
the action of the automorphism g∞ of R∞.

Proposition 2.4. The quotient space R/ ∼f by the small orbit equivalence
relation for f is coincident with the Riemann surface R∞ = ∆/Γ∞. The
quotient space R/≈f by the grand orbit equivalence relation for f is coincident

with the Riemann surface R̂ = ∆/Γ̂.

Proof. Take two points z and z′ in ∆. If x = π(z) and x′ = π(z′) in R are in
the same small orbit, then there is some n ≥ 0 such that fn(π(z)) = fn(π(z′)).
Since Γn is the covering transformation group for fn◦π, this implies that z and
z′ are equivalent under Γn, and hence under Γ∞. Conversely, if z and z′ are
equivalent under Γ∞, then there is some n ≥ 0 such that they are equivalent
under Γn. Hence fn(π(z)) = fn(π(z′)) and x and x′ are in the same small
orbit.

Also, if x = π(z) and x′ = π(z′) in R are in the same grand orbit, then there
is some n ≥ 0 and m ≥ 0 such that fn(π(z)) = fm(π(z′)). We may assume
that m ≥ n. Since fm−n◦π = π◦gm−n, this yields fn(π(z)) = fn(π(gm−n(z′))).
Hence z and gm−n(z′) are equivalent under Γn, and thus z and z′ are equivalent

under Γ̂. The converse direction can be seen by the fact that any element
γ̂ ∈ Γ̂ = Γ∞ o 〈g〉 has a representation γ̂ = γgk (γ ∈ Γ∞). ¤

Example 2.5. Let f be a rational map of the Riemann sphere that has an
immediate attracting or parabolic basin D. Suppose that the grand orbit Ô of
the critical points of f is discrete in D or f has a non-critical attracting fixed
point in D. We consider a Riemann surface R = D − cl(Ô). The restriction

of f to R gives a finite-sheeted holomorphic self-cover and R̂ = R/≈f is an
analytically finite Riemann surface (see [16]). For instance, consider f(z) =
z2 + 1/4, which has an immediate parabolic basin D. In this case, f : R → R

is a two-sheeted normal cover and the quotient R̂ is a three-punctured sphere.

In the last of this section, we prove that an element of Cov(R) − Conf(R)
exists widely.
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Theorem 2.6. For every Riemann surface R with a conformal automorphism
g : R → R of infinite order, there exist a holomorphic cover f : R → R and a
non-injective holomorphic self-cover f : R → R such that f ◦ f = g ◦ f .

For the proof of Theorem 2.6, we note the following proposition, which
concerns the fundamental groups of surfaces. See [9].

Proposition 2.7. Let Γ̂ be a Fuchsian group represented by Γ̂ = Γ∞ o 〈g〉.
Then there exist a proper subgroup H $ Γ∞ and subgroups Ji ⊂ H (i = 0, 1)

such that Γ̂ is the HNN-extension H∗g0 of H by some element g0 in the coset
gΓ∞ satisfying g0J0g

−1
0 = J1.

Proof. Let R̂ = ∆/Γ̂ and R∞ = ∆/Γ∞. Let g∞ be the conformal automor-
phism of R∞ induced by g. Taking a base point x0 ∈ R∞ arbitrarily, we have
a Dirichlet fundamental domain W of 〈g2

∞〉 in R∞ centered at x0. Namely,

W = {x ∈ R∞ | dR∞(x, x0) < dR∞(x, g2k
∞(x0)) for all k ∈ Z − {0}},

where dR∞ denotes the hyperbolic distance on R∞. Let V0 = W ∩ g−1
∞ (W ) and

V1 = g∞(V0). Since the identification on W by g∞ gives the Riemann surface

R̂ = R∞/〈g∞〉, the subgroups H, J0 and J1 of Γ∞ ∼= π1(R∞) corresponding to
the fundamental groups of W , V0 and V1 respectively give the representation
of Γ̂ ∼= π1(R̂) by the HNN-extension. ¤

Proof of Theorem 2.6. We represent R = ∆/Γ by a Fuchsian group Γ and take
a lift g ∈ Aut(∆) of g such that g−1Γg = Γ. Then by Proposition 2.7, there

exists a proper subgroup H $ Γ such that Γ̂ := Γ o 〈g〉 is the HNN-extension
of H. Set

Γ = 〈g`hg−` : h ∈ H, ` ≥ 0〉,
which is a proper subgroup of Γ. Then, for the Riemann surface R = ∆/Γ, we
have a holomorphic cover f : R → R.

Moreover, set
Γn = 〈g`hg−` : h ∈ H, ` ≥ −n〉,

which is coincident with g−nΓgn. It is clear that

Γ ⊂ Γ1 ⊂ Γ2 ⊂ · · · ⊂ Γ.

This implies that there is a holomorphic self-cover f : R → R that satisfies
f ◦ f = g ◦ f .

The limit Γ∞ =
⋃

Γn is a subgroup of Γ represented by

Γ∞ = 〈g`hg−` : h ∈ H, ` ∈ Z〉.
Since g−1Γ∞g = Γ∞ and 〈Γ∞, g〉 = Γ̂, we see that Γ̂ = Γ∞ o 〈g〉, from which
Γ∞ = Γ follows. Hence the inclusion relations of {Γn} are proper, which
implies that the covering map f is non-injective. ¤
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3. Holomorphic self-embeddings of Teichmüller spaces
and bounded contraction property

In this section, we consider holomorphic self-embeddings of the Teichmüller
space and their bounded contraction property with respect to the Teichmüller
distance.

The Teichmüller space T (R) of a Riemann surface R = ∆/Γ is the set of
equivalence classes [f ] of quasiconformal homeomorphisms f of R. Here we
say that two quasiconformal homeomorphisms f1 and f2 of R are Teichmül-
ler equivalent if there exists a conformal homeomorphism h : f1(R) → f2(R)
such that f−1

2 ◦ h ◦ f1 is homotopic to the identity of R. Here the homotopy
is considered to be relative to the ideal boundary at infinity of R. One can
consult monographs [5], [6], [7], [11] and [18] for basic facts on Teichmüller
spaces mentioned hereafter.

A distance between two points [f1] and [f2] in T (R) is defined by

dT (R)([f1], [f2]) =
1

2
log K(f),

where f is an extremal quasiconformal homeomorphism in the sense that its
maximal dilatation K(f) is minimal in the homotopy class of f2 ◦ f−1

1 . Then
dT (R) is a complete distance on T (R) which is called the Teichmüller distance.

Let ∆∗ be the complement of ∆ in the Riemann sphere and B(Γ) the com-
plex Banach space of all bounded holomorphic quadratic differentials for Γ
on ∆∗ endowed with the hyperbolic supremum norm. Then the Teichmüller
space T (R) is a complex Banach manifold modeled on B(Γ). In fact, T (R)
is embedded in B(Γ) as a bounded contractible domain TB(Γ). More pre-
cisely, for a holomorphic universal cover π : ∆ → R, we have an injection
βπ : T (R) → B(Γ) whose image is TB(Γ). This is called the Bers embedding of
T (R). If R is analytically infinite, then T (R) is infinite dimensional, and vice
versa.

The Teichmüller distance dT (R) is coincident with the Kobayashi distance on
the complex manifold T (R) for every Riemann surface (see [5]). The Kobayashi
distance has the non-expanding property for holomorphic maps. Concerning
the Kobayashi distance, one can refer to [10].

We denote by End(T (R)) the semigroup of all holomorphic self-maps of
T (R) and by End0(T (R)) the sub-semigroup of End(T (R)) consisting the
elements fixing the base point o = [id] of T (R). Moreover, we denote by
Emb(T (R)) the semigroup consisting of all injective holomorphic self-maps
of T (R) preserving the infinity and define its sub-semigroup Emb0(T (R)) =
Emb(T (R)) ∩ End0(T (R)). Here we say that F ∈ End(T (R)) preserves the
infinity if the following condition is satisfied:
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(*) F (p) tends to the infinity of T (R), that is, F (p) escapes from each
bounded set of T (R) if and only if p tends to the infinity.

Of course, this definition can be extended to any map between metric spaces.
We call an element in Emb(T (R)) a holomorphic self-embedding of T (R).

Every holomorphic cover f : R → R′ of a Riemann surface R onto another
Riemann surface R′ induces an injective holomorphic map f∗ : T (R′) → T (R)
between their Teichmüller spaces that preserves the base points. If we consider
the Bers embeddings TB(Γ′) and TB(Γ) for T (R′) and T (R) respectively, then
f∗ is nothing but the inclusion map TB(Γ′) ↪→ TB(Γ).

We consider a Riemann surface R that admits a holomorphic self-cover f ∈
Cov(R). It induces an injective holomorphic self-map f∗ of T (R) preserving
the base point. We call such an element geometric and denote by Cov∗(T (R))
the sub-semigroup of End0(T (R)) consisting of all geometric elements. By
considering the Bers embeddings, we see that f∗ ∈ Cov∗(T (R)) preserves the
infinity, namely, Cov∗(T (R)) ⊂ Emb0(T (R)).

A quasiregular map is the composition of a quasiconformal homeomorphism
and a holomorphic map. A quasiregular cover is a covering map given by a
quasiregular map. Every quasiregular cover f : R → R′ of a Riemann surface
R onto another Riemann surface R′ induces an injective holomorphic map f∗ :
T (R′) → T (R) between their Teichmüller spaces, not necessarily preserving
the base points. This is a generalization of the fact that a quasiconformal
homeomorphism h : R → R′ induces a biholomorphic homeomorphism h∗ :
T (R′) → T (R). By [12], we see that f is injective if and only if f∗ is surjective.

Similar to the case of holomorphic self-covering, we consider a Riemann
surface R that admits a quasiregular cover f of R onto itself. We call such an f
quasiregular self-cover and denote the set of all quasiregular self-covers of R by
QCov(R). Every quasiregular self-cover of R induces an injective holomorphic
self-map f∗ ∈ End(T (R)). We also call such an element geometric and denote
by QCov∗(T (R)) the sub-semigroup of End(T (R)) consisting of all geometric
elements. As is seen later, f∗ ∈ QCov∗(T (R)) preserves the infinity, namely,
QCov∗(T (R)) ⊂ Emb(T (R)).

In this section, we investigate the inclusion QCov∗(T (R)) ⊂ Emb(T (R))
more closely. We denote by dT (∆) the universal Teichmüller distance on T (∆)
as well as the induced distance on T (R) by the embedding π∗ : T (R) → T (∆).
The non-expanding property of π∗ implies dT (∆) ≤ dT (R). For a holomorphic
self-map F ∈ End(T (R)), we consider the following condition:

(**) There exists a distance d0 on T (R) with d0 ≤ dT (R) such that F is an
isometry with respect to d0.

In what follows, we call a distance on T (R) for which a map F : T (R) →
T (R) is isometric an F -invariant distance. Also, if F satisfies condition (**),
then we say that F is virtually isometric. We will see in Section 5 that every
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geometric element f∗ ∈ QCov∗(T (R)) is isometric with respect to dT (∆) and
thus virtually isometric.

In this section, we prove that a holomorphic self-map F of T (R) that is
virtually isometric is a strongly bounded contraction in the following sense.

Definition 3.1. A holomorphic self-map F ∈ End(T (R)) is said to be a
bounded contraction with respect to dT (R) if there exists a uniform constant
c > 0 such that

c dT (R)(p, q) ≤ dT (R)(F (p), F (q)) ≤ dT (R)(p, q)

for any p and q in T (R). Moreover, F ∈ End(T (R)) is said to be a strongly
bounded contraction if there exists a uniform constant c > 0 such that

c dT (R)(p, q) ≤ dT (R)(F
n(p), F n(q)) ≤ dT (R)(p, q)

for any p and q in T (R) and for any n ∈ N.

Theorem 3.2. Every virtually isometric, holomorphic self-map F ∈ End(T (R))
is a strongly bounded contraction with respect to dT (R).

Clearly, if F ∈ End(T (R)) is a bounded contraction, then it preserves the
infinity, namely F ∈ Emb(T (R)). As is mentioned in the introduction, our
future problem is to show that QCov∗(T (R)) = Emb(T (R)). As a weaker
version of this problem, we are also interested in a question whether a virtually
isometric, holomorphic self-map is geometric or not.

To prove Theorem 3.2, we introduce another F -invariant distance as follows.

Definition 3.3. For any non-expanding map F : T (R) → T (R) with respect
to dT (R), a pseudo-distance dF is defined by

dF (p, q) = lim
n→∞

dT (R)(F
n(p), F n(q))

for any p and q in T (R).

Let d be a distance on T (R) that is topologically equivalent to dT (R). For any
smooth curve α : [0, 1] → T (R), the length of α with respect to d is denoted
by Ld(α). The inner distance d i induced by d is the path distance defined by
the infimum of the lengths Ld(α) taken over all smooth curves α connecting
two points. Then d i ≥ d holds in general. When the equality is satisfied, the
distance d is called an inner distance. Since the Teichmüller distance dT (R) is
the Kobayashi distance on T (R), it is an inner distance. See [10].

Proposition 3.4. For a virtually isometric, holomorphic self-map F : T (R) →
T (R), the pseudo-distance dF is a distance. It is the maximal distance among
all F -invariant distances d satisfying d ≤ dT (R). Moreover, it is an inner
distance on T (R).

12



Proof. The invariance of dF under F is clear from the definition. Every F -
invariant distance d with d ≤ dT (R) satisfies

dT (R)(F
n(p), F n(q)) ≥ d(F n(p), F n(q)) = d(p, q)

for any p and q in T (R) and for any n ∈ N. This yields dF ≥ d and, since
there exists at least one F -invariant distance d0(≤ dT (R)) by being virtually
isometric, dF is the maximal distance.

The inner distance d i
F induced by dF is also F -invariant. Since dF ≤ dT (R)

and d i
T (R) = dT (R), we see that d i

F ≤ dT (R). Then the maximality of dF yields

d i
F = dF . ¤
By Proposition 3.4, we have dT (∆) ≤ dF ≤ dT (R) for every virtually isometric,

holomorphic self-map F : T (R) → T (R).
We consider infinitesimal metrics of Teichmüller distances. Let v be a tan-

gent vector based at p ∈ T (R) and α(t) a smooth curve on T (R) with α(0) = p
whose tangent vector at t = 0 is v. Then the infinitesimal Teichmüller metric
is obtained by

‖v‖ = lim
t→0

dT (R)(α(t), α(0))

t
.

This is well-defined independently of the choice of α. In fact, it is coincident
with the Teichmüller norm (Finsler metric) on each tangent space of T (R).
Similarly, we have the infinitesimal universal Teichmüller metric ‖v‖T (∆) re-
stricted to T (R).

The following claim says that these two metrics are globally biLipschitz
equivalent. See [11, Theorem V.4.7].

Lemma 3.5. There exists a uniform constant c > 0 such that

c ‖v‖ ≤ ‖v‖T (∆) ≤ ‖v‖

for any tangent vector v of T (R).

For a holomorphic self-map F of T (R), we denote by dF the derivative of F ,
which is a holomorphic self-map of the holomorphic tangent bundle T (T (R))
over T (R). Note that the derivative and the iteration are commuting such as
d(F n) = (dF )n.

Since ‖(dF )n(v)‖ ≤ ‖v‖ by the non-expanding property, in parallel to Def-
inition 3.3, we have a norm on each tangent space of T (R) for which the
derivative dF is an isometry as

‖v‖dF := lim
n→∞

‖(dF )n(v)‖.

This is the maximal metric dominated by the infinitesimal Teichmüller metric
for which dF is an isometry. On the other hand, we define the infinitesimal
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metric of dF as

δF (v) = lim
t→0

dF (α(t), α(0))

t
,

where α(t) is a smooth curve on T (R) with α(0) = p whose tangent vector at
t = 0 is v.

Proposition 3.6. The infinitesimal metric δF (v) of dF is well-defined and
coincident with ‖v‖dF .

Proof. By using a fact that limt→0 exists uniformly on n ∈ N in the second
line below, we have

δF (v) = lim
t→0

dF (α(t), α(0))

t

= lim
t→0

lim
n→∞

dT (R)(F
n(α(t)), F n(α(0)))

t
= lim

n→∞
‖(dF )n(v)‖ = ‖v‖dF .

Thus the assertions are verified. ¤

By Proposition 3.6, we have ‖v‖T (∆) ≤ ‖v‖dF ≤ ‖v‖ for a virtually isometric,
holomorphic self-map F : T (R) → T (R) since dT (∆) ≤ dF .

A key to the proof of Theorem 3.2 is to show that the F -invariant distance
dF is biLipschitz equivalent to dT (R) in the following sense.

Lemma 3.7. For a virtually isometric, holomorphic self-map F : T (R) →
T (R), there exists a constant c > 0 independent of F such that

c dT (R)(p, q) ≤ dF (p, q) ≤ dT (R)(p, q)

for any p and q in T (R).

Proof. Since dT (R) and dF are inner distances, we have only to show that
cLdT (R)

(α) ≤ LdF
(α) for any smooth curve α : [0, 1] → T (R). Here LdT (R)

(α) =∫ 1

0
‖α′(t)‖dt and LdF

(α) =
∫ 1

0
‖α′(t)‖dF dt by Proposition 3.6. Since c‖v‖ ≤

‖v‖T (∆) ≤ ‖v‖dF by Lemma 3.5, we obtain the assertions. ¤

Proof of Theorem 3.2. By Lemma 3.7, there is a constant c > 0 such that
cdT (R)(p, q) ≤ dF (p, q). Hence inequalities

dF (p, q) = dF (F n(p), F n(q)) ≤ dT (R)(F
n(p), F n(q)) ≤ dT (R)(p, q)

yield the assertion. ¤
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4. Dynamics of geometric self-embeddings
of Teichmüller spaces

In this section, we investigate dynamics of the geometric holomorphic self-
embedding f∗ : T (R) → T (R) induced by a holomorphic self-cover f ∈
Cov(R), by applying the structure theorem discussed in Section 2.

Since every holomorphic cover f : R → R′ of a Riemann surface R onto
another Riemann surface R′ induces a holomorphic embedding f∗ : T (R′) →
T (R) between their Teichmüller spaces, the diagram of holomorphic covering
in Theorem 2.1 yields the corresponding diagram as follows:

T (∆)
g∗←−−− T (∆)

g∗←−−− T (∆)
g∗←−−− · · ·xπ∗

xπ∗

xπ∗

T (R)
f∗

←−−− T (R)
f∗

←−−− T (R)
f∗

←−−− · · ·xf∗
∞

xf∗
∞

xf∗
∞

T (R∞)
g∗∞←−−− T (R∞)

g∗∞←−−− T (R∞)
g∗∞←−−− · · ·

Recall that every holomorphic embedding in the diagram above preserves the
base points. Moreover, a holomorphic cover of Riemann surfaces is non-
injective if and only if the induced holomorphic embedding between Teich-
müller spaces is non-surjective.

In general, let R be a Riemann surface, π : ∆ → R a holomorphic universal
cover, and Γ the covering transformation group for π. The Bers embedding
of the Teichmüller space T (R) is well-defined for the holomorphic universal
cover π, which we denote by βπ : T (R) → TB(Γ). Let R′ be another Riemann
surface, f : R → R′ a holomorphic cover, and Γ′ the covering transformation
group for f ◦π. Let f∗ : T (R′) → T (R) be the holomorphic embedding induced
by f . Then the Bers embedding βf◦π : T (R′) → TB(Γ′) satisfies βf◦π = βπ ◦f∗.
Therefore

βπ ◦ f∗ ◦ β−1
f◦π : TB(Γ′) → TB(Γ)

is an inclusion map.
On the other hand, any conformal automorphism g ∈ Aut(∆) gives another

universal cover π◦g : ∆ → R and it defines the Bers embedding βπ◦g : T (R) →
TB(g−1Γg). Then this satisfies βπ◦g = g∗ ◦ βπ, where

g∗ = (g−1)∗ : B(1) → B(1)

is the isometric linear automorphism defined by the push-forward of the holo-
morphic quadratic differentials in B(1) by g.

We represent the diagram above in the Bers embedding. For the holomorphic
universal covers π and f ◦π of R, we have two Bers embeddings of T (R), which
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are βπ : T (R) → TB(Γ) and βf◦π : T (R) → TB(Γ1). Then

βπ ◦ f∗ ◦ β−1
f◦π : TB(Γ1) → TB(Γ)

is the inclusion map. On the other hand, when we represent f∗ as a self-map
of TB(Γ), we consider the conjugation βπ ◦ f∗ ◦ β−1

π , which is coincident with
βf◦π ◦ β−1

π . Since f ◦ π = π ◦ g, we have

g∗ = βπ ◦ f∗ ◦ β−1
π : TB(Γ) → TB(Γ),

whose image is TB(Γ1). In a similar way, we have (g∗)
n(TB(Γ)) = TB(Γn) for

every n ∈ N. Then it is easy to see the following claim.

Proposition 4.1. For a geometric self-embedding f∗ ∈ Cov∗(T (R)) and for
any n ∈ N, the image (f∗)n(T (R)) of the n-th iteration of f∗ is a closed
submanifold of T (R) whose image under the Bers embedding βπ : T (R) →
TB(Γ) is TB(Γn). Also the intersection

⋂∞
n=1(f

∗)n(T (R)) is a closed subspace
of T (R) whose image under βπ is TB(Γ∞).

In general, we define a characteristic subset of the dynamics of F ∈ End(T (R))
as follows.

Definition 4.2. For a holomorphic self-map F ∈ End(T (R)), we define the

full cluster set of F by C(F ) =
⋂∞

n=1 F n(T (R)).

The full cluster set C(F ) is the maximal, closed, completely invariant set
under the action of F . Proposition 4.1 can be paraphrased as follows.

Corollary 4.3. For a geometric self-embedding f∗ ∈ Cov∗(T (R)), the full
cluster set C(f∗) is identified with TB(Γ∞) ∼= T (R∞), namely, it is coincident
with f∗

∞(T (R∞)) in T (R).

Remark 4.4. Similarly, the fixed point set Fix(f∗) of f∗ ∈ Cov∗(T (R)) is

identified with TB(Γ̂) ∼= T (R̂). The Teichmüller space T (R̂) is regarded as the
quasiconformal deformation space of the complex dynamical system defined
by the holomorphic self-cover f : R → R. Namely, given p̂ ∈ T (R̂), we
have another holomorphic self-cover fp̂ : Rp → Rp such that f and fp̂ are
quasiconformally conjugate by R → Rp. For the complex dynamics induced by
a rational map, this Teichmüller space has been studied in [16]. For instance,

in Example 2.5, the Riemann surface R̂ is the three-punctured sphere and
hence T (R̂) consists of a singleton.

We also give the definition of certain subsets concerning the dynamics of
F ∈ End(T (R)).

Definition 4.5. For a point p ∈ T (R), it is said that q ∈ T (R) is a ω-limit
point of p for F ∈ End(T (R)) if there exists a sequence {ni} of distinct positive
integers such that F ni(p) converge to q as i → ∞. The set of all ω-limit points
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of p for F is called the ω-limit set and is denoted by Λ(F, p). It is said that
p ∈ T (R) is a recurrent point for F if p ∈ Λ(F, p). The set of all recurrent
points for F is called the recurrent set for F and is denoted by Rec(F ). The
ω-limit set for F is defined by Λ(F ) =

⋃
p∈T (R) Λ(F, p). Furthermore, p ∈ T (R)

is a periodic point for F if there exists some n ∈ N such that p ∈ Fix(F n).
The set of all periodic points for F is denoted by Per(F ).

It is easy to see that the recurrent set Rec(F ) is a closed and completely
invariant set under the action of F . Moreover, we have the following assertions.

Proposition 4.6. For a holomorphic self-map F ∈ End(T (R)), the recurrent
set Rec(F ) is coincident with the limit set Λ(F ). It satisfies the inclusion
relations

C(F ) ⊃ Rec(F ) ⊃ Per(F ) ⊃ Fix(F ).

Proof. Since the inclusion relation Rec(F ) ⊂ Λ(F ) is clear by definition, we
will show the other direction. For any p ∈ Λ(F ), there are some q ∈ T (R)
and an increasing sequence of positive integers {ni} such that dT (R)(F

ni(q), p)
converge to 0 as i → ∞. Then the triangle inequality yields

dT (R)(F
ni+1−ni(p), p) ≤ dT (R)(F

ni+1−ni(p), F ni+1(q)) + dT (R)(F
ni+1(q), p).

Since F ni+1−ni is non-expanding, the first term in the right-hand side is not
greater than dT (R)(p, F

ni(q)). Hence we see that both terms in the right-hand
side converge to 0, which shows that p ∈ Rec(F ).

The inclusion relation Rec(F ) ⊂ C(F ) is seen from the facts that Rec(F ) is
a closed, completely invariant set and that C(F ) is the maximal one among
such sets. The other inclusions are obvious from the definition. ¤

For a geometric self-embedding f∗ ∈ Cov∗(T (R)), we consider the restric-
tion of f∗ to the full cluster set C(f∗). This is equivalent to considering the
biholomorphic automorphism g∗

∞ of T (R∞) induced by the conformal auto-
morphism g∞ ∈ Conf(R∞). In the Bers embedding, this is represented as the
restriction of the linear isometry g∗ to TB(Γ∞). Then the next corollary comes
from results in [4].

Corollary 4.7. A geometric self-embedding f∗ ∈ Cov∗(T (R)) satisfies the
following: (1) The inclusion relations given in Proposition 4.6 for F = f∗ are
proper; (2) For every point p ∈ C(f∗), the orbit O(f∗, p) = {(f∗)n(p) | n ∈ N}
is nowhere dense in C(f∗); (3) The set of periodic points Per(f∗) is nowhere
dense in C(f∗).
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5. General geometric self-embeddings induced by
quasiregular self-covers

In this section, we investigate the dynamics of a geometric self-embedding
f∗ : T (R) → T (R) induced by a quasiregular self-cover f ∈ QCov(R). We
assume that f is non-injective in the arguments below, but the statements of
the theorems are of course valid without this assumption.

Let π : ∆ → R a holomorphic universal cover and Γ the covering transfor-
mation group for π. Take a lift g : ∆ → ∆ of f such that f ◦π = π ◦ g. This is
a quasiconformal automorphism of ∆ that conjugates Γ to a Fuchsian group
Γ1 = g−1Γg containing Γ properly. Then set R1 = ∆/Γ1 and let f1 : R → R1

be a holomorphic cover corresponding to the inclusion Γ $ Γ1. Since the uni-
versal cover f1 ◦ π : ∆ → R1 has the covering transformation group Γ1 that is
conjugate to Γ by g, there exists a quasiconformal automorphism g1 : R1 → R
such that g1 ◦ f1 ◦ π = π ◦ g. This in particular implies g1 ◦ f1 = f , which
gives the decomposition of the quasiregular cover f into the quasiconformal
homeomorphism g1 and the holomorphic cover f1. Note that this decomposi-
tion is uniquely determined up to conformal automorphisms of R1. However,
this ambiguity does not affect the global structure of the commutative diagram
below.

In the same way, set Γ2 = g−2Γg2 and R2 = ∆/Γ2. Then Γ1 $ Γ2 and
this induces a holomorphic cover f2 : R1 → R2. Also the quasiconformal
conjugation by g induces a quasiconformal homeomorphism g2 : R2 → R1

such that g2 ◦ f2 = f1 ◦ g1. Continuing this process, we have an increasing
sequence of quasiconformally conjugate Fuchsian groups and their limit

Γ $ Γ1 $ Γ2 $ · · · ⊂ Γ∞ = lim
n→∞

Γn.

Finally, set R∞ = ∆/Γ∞. Since g−1Γ∞g = Γ∞, there is a quasiconformal
automorphism g∞ of R∞ induced by g.
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Summing up, we have the following diagram.

∆
g−−−→ ∆

g−−−→ ∆
g−−−→ · · ·yπ

yπ

yπ

R
f−−−→ R

f−−−→ R
f−−−→ · · ·yf1

∥∥∥ ∥∥∥
R1

g1−−−→ R
f−−−→ R

f−−−→ · · ·yf2

yf1

∥∥∥
R2

g2−−−→ R1
g1−−−→ R

f−−−→ · · ·yf3

yf2

yf1

≈ ≈ ≈y y y
R∞

g∞−−−→ R∞
g∞−−−→ R∞

g∞−−−→ · · ·

Here the vertical projection in each column from R to R∞ is the holomorphic
cover f∞ : R → R∞ satisfying g∞ ◦ f∞ = f∞ ◦ f .

In general, a quasiregular cover f : R → R′ of a Riemann surface R onto
another Riemann surface R′ induces a holomorphic embedding f∗ : T (R′) →
T (R) between their Teichmüller spaces, not necessarily preserving the base
points. The diagram above induces a diagram between the corresponding
Teichmüller spaces, where T (Rn) (n = 1, 2, . . .) are all biholomorphically equiv-
alent to T (R). The maps in the diagram consist of holomorphic embeddings
f∗ : T (R) → T (R) and f∗

n : T (R) → T (R), biholomorphic automorphisms
g∗

n : T (R) → T (R) and a biholomorphic automorphism g∗
∞ : T (R∞) → T (R∞).

In particular, we see that the image (f∗)n(o) of the base point of T (R) un-
der the n-th iteration of f∗ is [(g1 ◦ · · · ◦ gn)−1]. Moreover, we have similar
statements to Proposition 4.1 and Corollary 4.3 as follows.

Proposition 5.1. For a geometric self-embedding f∗ ∈ QCov∗(T (R)) and for
any n ∈ N, the image (f∗)n(T (R)) is a closed submanifold of T (R) whose
image under the Bers embedding βπ : T (R) → TB(Γ) is TB(Γn). Also the in-
tersection

⋂∞
n=1(f

∗)n(T (R)) is coincident with the full cluster set C(f∗), which
is a closed submanifold f∗

∞(T (R∞)) of T (R) whose image under the Bers em-
bedding βπ is TB(Γ∞).
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Recall an invariant distance discussed in Section 3. Based on the consider-
ation above, we give the following remark on invariant distances for geometric
self-embeddings.

Remark 5.2. For a geometric self-embedding f∗ ∈ QCov∗(T (R)), we may take
the universal Teichmüller distance dT (∆) as an f∗-invariant distance that meets
condition (**). However, there is a possibly different invariant distance, which
is the restriction of another Teichmüller distance on a larger space containing
T (R).

Let g be the quasiconformal automorphism of ∆ taken as above, which is
the lift of f ∈ QCov(R). Define Γn = g−nΓgn for any negative integer n < 0.
Then a decreasing sequence of Fuchsian groups

Γ ⊃ Γ−1 ⊃ Γ−2 ⊃ · · ·
is given and the limit Γ−∞ =

⋂∞
n=1 Γ−n is again a Fuchsian group. It satisfies

g−1Γ−∞g = Γ−∞. Consider the Riemann surface R−∞ = ∆/Γ−∞, which ad-
mits a quasiconformal automorphism g−∞ induced by g. Then g−∞ defines a
biholomorphic automorphism g∗

−∞ : T (R−∞) → T (R−∞). Let dT (R−∞) denote
the distance on T (R) induced from the Teichmüller distance on T (R−∞). Then
dT (R−∞) is an f∗-invariant distance.

The Fuchsian group Γ−∞ may be trivial. In this case, dT (R−∞) = dT (∆). In

any case, the Bers embedding TB(Γ−∞) properly contains
⋃∞

n=1 TB(Γ−n).

Quasiregular self-covers of R are quasiconformally conjugate to holomorphic
self-covers of other Riemann surfaces R′ in certain cases. In such cases, the
geometric self-embeddings of T (R) are essentially the same as those of T (R′)
induced by the holomorphic self-covers. On the other hand, there is an exam-
ple of a quasiregular self-cover that is not quasiconformally conjugate to any
holomorphic self-cover. For instance, a quasiconformal automorphism f of R
induced by the Dehn twist along a simple closed geodesic on R is a kind of
quasiregular self-cover, but it is not quasiconformally conjugate to any con-
formal automorphism. Thus, it is interesting to characterize the quasiregular
self-covers that are realizable as holomorphic ones by quasiconformal conjuga-
tion, or more generally, by quasiconformal equivalence in the same Teichmüller
class. Concerning this subject, our main theorem in this section is as follows.

Theorem 5.3. Let f∗ ∈ QCov∗(T (R)) be a geometric self-embedding induced
by a quasiregular self-cover f of a Riemann surface R. Then the following
conditions are equivalent:

(1) there exist quasiconformal homeomorphisms φ : R → R′ and φ′ : R →
R′ in the same Teichmüller class p0 ∈ T (R) such that φ′ ◦ f ◦ φ−1 is a
holomorphic self-cover of another Riemann surface R′;

(2) f∗ has a fixed point p0 in T (R);
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(3) the set Per(f∗) of the periodic points of f∗ is not empty;
(4) the orbit {(f∗)n(p)}n∈N of any point p ∈ T (R) is bounded.

Proof. (1) ⇒ (2): Let f ′ = φ′◦f ◦φ−1 be the holomorphic self-cover of R′. The
holomorphic embedding f ′∗ : T (R′) → T (R′) fixes the base point o′ of T (R′).
Since φ and φ′ induce the same biholomorphic homeomorphism φ∗ : T (R′) →
T (R) satisfying f∗◦φ∗ = φ∗◦f ′∗, we see that f∗ fixes φ∗(o′) = [φ] = p0 ∈ T (R).

(2) ⇒ (3) ⇒ (4): Since f∗ is non-expanding, if the orbit of some point in
T (R) is bounded, then so is the orbit of every point in T (R). The orbit of a
periodic point is finite and in particular bounded. Thus proves the assertion.

(4) ⇒ (1): The biholomorphic automorphism g∗
∞ : T (R∞) → T (R∞) in-

duced by the quasiconformal automorphism g∞ : R∞ → R∞ satisfies f∗◦f∗
∞ =

f∗
∞ ◦ g∗

∞. Since any orbit under f∗ is bounded in T (R), any orbit under g∗
∞

is also bounded in T (R∞) since f∗
∞ : T (R∞) → T (R) preserves the infinity.

Remark that, since g∗
∞ is bijective, we can consider the backward orbit of g∗

∞.
It is easy to see that the forward orbit is bounded if and only if the backward
orbit is bounded.

Then, by applying the next Theorem 5.4 to g∗
∞, we see that g∗

∞ has a fixed
point in T (R∞), which we denote by the Teichmüller class [φ∞] of a quasicon-
formal homeomorphism φ∞ of R∞ onto another Riemann surface R′

∞. We can
find another φ′

∞ in the same Teichmüller class so that g′
∞ = φ′

∞ ◦ g∞ ◦φ−1
∞ is a

conformal automorphism of R′
∞. Moreover, lifting φ∞ and φ′

∞ to R, we have
quasiconformal homeomorphisms φ : R → R′, φ′ : R → R′ and a holomorphic
cover f ′

∞ : R′ → R′
∞ satisfying φ∞ ◦ f∞ = f ′

∞ ◦ φ and φ′
∞ ◦ f∞ = f ′

∞ ◦ φ′.
Then we see that f ′ = φ′ ◦ f ◦ φ−1 is a holomorphic self-cover of R′ because
f ′
∞ ◦ f ′ = g′

∞ ◦ f ′
∞ and g′

∞ is conformal. ¤

Markovic [13] has proved that every uniformly quasisymmetric group is con-
jugate to a Fuchsian group by a quasisymmetric automorphism of the unit
circle. This result generalizes the Nielsen realization problem (the fixed point
problem on finite-dimensional Teichmüller spaces) to arbitrarily Teichmüller
spaces and asserts that the bounded orbit of a quasiconformal mapping class
subgroup yields a common fixed point on the Teichmüller space. More pre-
cisely, this in particular contains the following.

Theorem 5.4. Let g∞ : R∞ → R∞ be a quasiconformal automorphism of
a Riemann surface R∞ and g∗

∞ : T (R∞) → T (R∞) the biholomorphic auto-
morphism of the Teichmüller space T (R∞) induced by g∞. If the whole orbit
{(g∗

∞)n(p)}n∈Z of any point p ∈ T (R∞) is bounded with respect to the Teich-
müller distance, then g∗

∞ has a fixed point in T (R∞).

As a consequence of Theorem 5.3, we have an assertion finding a holomor-
phic self-cover under quasiconformal equivalence in the same Teichmüller class.
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First, we extend the structure theorem of self-covering of Riemann surfaces in
Section 2 to the case where it is allowed to have branched points.

Lemma 5.5. Let f : R → R be a holomorphic branched self-cover of a Rie-
mann surface R. Suppose that the grand orbit of the critical points of f is
discrete in R. Then there exist a holomorphic branched cover f∞ : R → R∞
and a conformal automorphism g∞ : R∞ → R∞ of infinite order such that
g∞ ◦ f∞ = f∞ ◦ f .

Proof. Let R′ be a Riemann surface obtained from R by removing the grand
orbit of the critical points of f . Then f restricted R′ is a holomorphic self-
cover of R′. Applying Theorem 2.1 to this f |R′ , we obtain a holomorphic cover
f ′
∞ : R′ → R′

∞ and a conformal automorphism g′
∞ : R′

∞ → R′
∞ of infinite order.

After that, we fill in all punctures of R′ that come from the grand orbit of the
critical points in order to recover R. By the condition that g′

∞◦f ′
∞ = f ′

∞◦f |R′ ,
we see that the extension of f ′

∞ by filling in the corresponding punctures of
R′

∞ is well-defined and thus obtain a Riemann surface R∞ and a holomorphic
branched cover f∞ : R → R∞. Also g′

∞ extends to a conformal automorphism
g∞ : R∞ → R∞. ¤

Remark 5.6. Differently from Theorem 2.1, Lemma 5.5 does not state the
construction of the Riemann surface R∞ explicitly. However, as in statement
(7) of Theorem 2.1, the condition g∞ ◦ f∞ = f∞ ◦ f is able to characterize R∞
implicitly in terms of the highest cover among all such f∞ : R → R∞.

By Theorem 5.3 and Lemma 5.5, we have the following assertion concern-
ing realization as holomorphic self-covering, which is related to a problem of
complex dynamics of rational maps originating from Thurston (see [2], in par-
ticular, Remarks after Theorem 1).

Corollary 5.7. Let f : R → R be a quasiregular self-cover of a Riemann
surface R possibly branched. Suppose that the grand orbit Ô of the critical
points of f is discrete in R. Set R0 = R − Ô and consider the restriction
of f to R0. If the orbit of any point p ∈ T (R0) under f∗, say {(f∗)n(o)}, is
bounded, then there exist quasiconformal homeomorphisms φ0 : R0 → R′

0 and
φ′

0 : R0 → R′
0 in the same Teichmüller class of T (R0) such that they extend

to R quasiconformally and φ′ ◦ f ◦ φ−1 is a holomorphic self-cover of another
Riemann surface R′.

In Theorem 5.3 and Corollary 5.7, we consider conditions for the quasicon-
formal equivalence φ′ ◦ f ◦ φ−1 to be holomorphic. However, if we see the
boundedeness of the maximal dilatation K(fn) of the n-th iteration of f itself,
we have a stronger conclusion that the quasiconformal conjugation φ ◦ f ◦ φ−1

is holomorphic. Actually, this is an easier claim to obtain, for we do not have
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to rely on Theorem 5.4. Instead, we have only to use a technique of aver-
aging the complex dilatations as in Tukia [20], where he has shown that any
uniformly bounded quasiconformal group is quasiconformally conjugate to a
Fuchsian group. Since the converse claim is also true, we may summarize them
as follows.

Corollary 5.8. Let f∗ ∈ QCov∗(T (R)) be a geometric self-embedding induced
by a quasiregular self-cover f of a Riemann surface R. Then the following
conditions are equivalent:

(1) there exist a quasiconformal homeomorphism φ : R → R′ such that
φ ◦ f ◦ φ−1 is a holomorphic self-cover of another Riemann surface R′;

(2) the maximal dilatation K(fn) of the n-th iteration of f is uniformly
bounded independently of n ∈ N.

In Sullivan [19], there is an account of Corollary 5.7 (branched cover) in this
conjugation version.

6. Distribution of the isometric locus

In Section 4, we have observed the dynamics of the geometric holomorphic
self-embedding f∗ ∈ Cov∗(T (R)) by using its non-expanding property. In this
section, we consider this property more closely.

The holomorphic self-embedding f∗ induces a holomorphic self-map

f̂∗ : T (T (R)) → T (T (R))

of the holomorphic tangent bundle T (T (R)) over T (R) such that f∗ maps (p, v)
to (f∗(p), df ∗(v)), where p is a point in T (R) and v is a tangent vector in the
tangent space Tp(T (R)) at p. We define the magnification of a tangent vector
v 6= 0 at p by

rf∗(p, v) :=
‖df∗(v)‖f∗(p)

‖v‖p

.

Here a tangent vector is measured by the Teichmüller norm ‖v‖p defined on
each tangent space Tp(T (R)). When there is no fear of confusion, we omit
indicating p and write ‖v‖ instead of ‖v‖p.

If a covering f : R → R is amenable, then rf∗(p, v) = 1 for every (p, v) ∈
T (T (R)). Namely, f∗ is an isometry with respect to the Teichmüller metric on
T (R). This has been proved in [14]. For example, finite covering and abelian
covering are amenable. On the other hand, in this section, we will prove the
following theorem for a non-amenable cover.

Theorem 6.1. If a holomorphic self-cover f ∈ Cov(R) is non-amenable, then
the set

D = {(p, v) ∈ T (T (R)) | rf∗(p, v) < 1, v 6= 0}
is open and dense in the holomorphic tangent bundle T (T (R)).
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Note that it is trivial for D to be open because rf∗ is continuous. Theorem
6.1 follows from Theorem 6.4 due to McMullen [14] (see also [15]) combined
with the fact that the Reich-Strebel functionals (tangent vectors) are dense in
each tangent space Tp(T (R)).

Let Belt(R) be the Banach space of all Beltrami differentials µ on a Riemann
surface R with the norm ‖µ‖∞ = ess. sup |µ|. Let Q(R) be the Banach space
of all integrable holomorphic quadratic differentials ϕ on R with the norm
‖ϕ‖1 =

∫
R
|ϕ|. Then the tangent space To(T (R)) of T (R) at the base point o

is identified with the dual space Q(R)∗. Each element µ ∈ Belt(R) induces a
bounded linear functional v ∈ Q(R)∗ by v(ϕ) =

∫
µϕ. This gives a bounded

linear operator P : Belt(R) → Q(R)∗ by µ 7→ v = P (µ). We say that µ ∈
Belt(R) represents v ∈ Q(R)∗ if P (µ) = v.

The operator norm on Q(R)∗ is defined by

‖v‖∗ = sup {|v(ϕ)| | ϕ ∈ Q(R), ‖ϕ‖1 = 1}.

Since Q(R)∗ = To(T (R)), this is also endowed with the Teichmüller norm

‖v‖o = inf {‖µ‖∞ | µ ∈ Belt(R), P (µ) = v}.

It is clear that ‖v‖∗ ≤ ‖v‖o. The inverse inequality follows from the Hahn-
Banach theorem and the duality (L1)∗ = L∞. Hence ‖v‖∗ = ‖v‖o.

We say that µ ∈ Belt(R) is extremal if ‖P (µ)‖∗ = ‖µ‖∞. For each v ∈
Q(R)∗, there exists an extremal µ ∈ Belt(R) that represents v. This can be
seen by ‖v‖∗ = ‖v‖o and a fact that the infimum for ‖v‖o is attained as the
minimum.

The norm ‖ · ‖p on the tangent space Tp(T (R)) at each p ∈ T (R) is defined
in the same way as above by changing the base point of the Teichmüller space
to p.

We say that {ϕn} ⊂ Q(R) is a Hamilton sequence for µ ∈ Belt(R) if ‖ϕn‖1 ≤
1 for all n ∈ N and

lim
n→∞

∣∣∣∣∫
R

µϕn

∣∣∣∣ = ‖µ‖∞.

Moreover, it is a degenerating Hamilton sequence if, in addition, ϕn converge
compact uniformly to zero. We say that a tangent vector v ∈ Q(R)∗ =
To(T (R)) is a Reich-Strebel functional if

inf {inf
W

‖µ|R−W‖∞ | P (µ) = v} < ‖v‖o,

where infW is taken over all compact subsets W of R.
The characterization of Reich-Strebel functionals is given as follows. This is

an infinitesimal version of the characterization of Strebel points in the Teich-
müller space. See [6, Section 4.8].
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Proposition 6.2. An extremal Beltrami differential µ ∈ Belt(R) represents
a Reich-Strebel functional if and only if µ has no degenerating Hamilton se-
quence.

The following fact is useful, which can be also found in [6, Section 4.7].

Lemma 6.3. Suppose that µ ∈ Belt(R) has no degenerating Hamilton sequence
but has a Hamilton sequence {ϕn}n∈N in Q(R). Then there exist a subsequence
{ϕn(k)}k∈N of {ϕn} and ϕ ∈ Q(R) with ‖ϕ‖1 = 1 such that

lim
k→∞

‖ϕn(k) − ϕ‖1 = 0.

Proof. Since {ϕn} is a normal family, we can choose a subsequence {ϕn(k)}k∈N

that converges uniformly on compact subsets. Moreover, the limit ϕ belongs to
Q(R) and satisfies ‖ϕ‖1 ≤ 1. It is easy to see that the assumption |

∫
R

µϕn| →
‖µ‖∞ implies that ‖ϕn‖1 → 1 as n → ∞. Then, by [3, Lemma 7.2], we have

lim
k→∞

‖ϕn(k) − ϕ‖1 = 1 − ‖ϕ‖1.

Indeed, the triangle inequality gives

0 ≤ ‖ϕn − ϕ‖1 + ‖ϕ‖1 − ‖ϕn‖1 ≤ 2‖ϕ‖1,

and then the dominated convergence theorem yields

lim
k→∞

(‖ϕn(k) − ϕ‖1 + ‖ϕ‖1 − ‖ϕn(k)‖1) = 0.

To prove the assertion, we have only to show that ‖ϕ‖1 = 1. Suppose to the
contrary that ‖ϕ‖1 < 1. Set

ψk :=
ϕn(k) − ϕ

‖ϕn(k) − ϕ‖1

.

Then ‖ψk‖1 = 1 and {ψk}k∈N converges to zero compact uniformly on R. On
the other hand, since∣∣∣∣∫

R

µψk

∣∣∣∣ ≥
∣∣∫

R
µϕn(k)

∣∣
‖ϕn(k) − ϕ‖1

−
∣∣∫

R
µϕ

∣∣
‖ϕn(k) − ϕ‖1

,

we have

‖µ‖∞ ≥ lim
k→∞

∣∣∣∣∫
R

µψk

∣∣∣∣ ≥ ‖µ‖∞
1 − ‖ϕ‖1

− ‖µ‖∞‖ϕ‖1

1 − ‖ϕ‖1

= ‖µ‖∞.

Hence limk→∞ |
∫

R
µψk| = ‖µ‖∞, which means that {ψk}k∈N is a Hamilton

sequence for µ. This contradicts the assumption that µ has no degenerating
Hamilton sequence. ¤

Let f : S → R be a holomorphic cover between Riemann surfaces S and R.
The pull-back of the Beltrami differentials is defined as usual and represented
by the lift µ̃ ∈ Belt(S) of µ ∈ Belt(R). On the other hand, the push-forward
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of the quadratic differentials is defined by the Poincaré series Θ(φ) ∈ Q(R) for
φ ∈ Q(S). The Poincaré series operator Θ : Q(S) → Q(R) is surjective and
the operator norm satisfies ‖Θ‖ ≤ 1. Moreover,∫

R

µΘ(φ) =

∫
S

µ̃φ

is satisfied for every µ ∈ Belt(R) and every φ ∈ Q(S). The pull-back of
the tangent vectors in To(T (R)) is also defined by the derivative (df∗)o of
the holomorphic embedding f∗ : T (R) → T (S) at o ∈ T (R). For every
µ ∈ Belt(R), we have (df∗)o(PR(µ)) = PS(µ̃), where PR : Belt(R) → Q(R)∗

and PS : Belt(S) → Q(S)∗. Therefore

(df∗)o(PR(µ))(φ) = PS(µ̃)(φ) = PR(µ)(Θ(φ))

for every φ ∈ Q(S).
A fundamental fact in our arguments is the following theorem proved by

McMullen [14].

Theorem 6.4. Let f : S → R be a holomorphic cover of Riemann surfaces S
and R and let Θ : Q(S) → Q(R) be the Poincaré series operator induced by f .
For every ψ ∈ Q(R) − {0}, we set

N(ψ) = sup{‖Θ(φ)‖1/‖φ‖1 | φ ∈ Θ−1(〈ψ〉)} (≤ 1),

which is the operator norm of Θ restricted to the inverse image Θ−1(〈ψ〉) of
the subspace spanned by ψ. Then N is continuous on Q(R) − {0}. If f is a
non-amenable cover, then N(ψ) < 1 for every ψ ∈ Q(R) − {0}.

A consequence from this theorem is as follows.

Theorem 6.5. Let f : S → R be a non-amenable holomorphic cover be-
tween Riemann surfaces S and R and let f̂∗ : T (T (R)) → T (T (S)) be the
holomorphic embedding between the holomorphic tangent bundles of the Teich-
müller spaces induced by f . Assume that v ∈ Tp(T (R)) is a Reich-Strebel
functional and µ ∈ Belt(Rp) is an extremal differential that represents v.
Let µ̃ ∈ Belt(Sf∗(p)) be the lift of µ to Sf∗(p). Then the differential µ̃ rep-
resenting df∗(v) is not extremal. In particular, ‖df∗(v)‖f∗(p) < ‖v‖p, that is,
rf∗(p, v) < 1.

Proof. Suppose to the contrary that µ̃ is extremal, that is,

sup
φ∈Q(Sf∗(p)), ‖φ‖1=1

∣∣∣∣∣
∫

Sf∗(p)

µ̃φ

∣∣∣∣∣ = ‖µ̃‖∞.

Then there is a sequence {φn}n∈N ⊂ Q(Sf∗(p)) such that ‖φn‖1 = 1 and
|
∫

Sf∗(p)
µ̃φn| → ‖µ̃‖∞ as n → ∞. Let Θp : Q(Sf∗(p)) → Q(Rp) be the

Poincaré series operator. Since |
∫

Sf∗(p)
µ̃φn| = |

∫
Rp

µΘp(φn)|, we see that
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|
∫

Rp
µΘp(φn)| → ‖µ‖∞. Set ψn := Θp(φn) ∈ Q(Rp). It satisfies ‖ψn‖1 ≤

‖φn‖1 = 1 by ‖Θp‖ ≤ 1. This means that {ψn}n∈N is a Hamilton sequence for
µ. Moreover, ‖ψn‖1 → 1 as n → ∞.

We apply Lemma 6.3 to µ ∈ Belt(Rp) and {ψn} ⊂ Q(Rp). Then there exist
a subsequence of {ψn}n∈N, denoted by the same indices, and ψ0 ∈ Q(Rp) such
that ψn → ψ0. Next we apply Theorem 6.4 to see that N(ψn) → N(ψ0) and
N(ψ0) < 1. On the other hand, since

N(ψn) ≥ ‖Θp(φn)‖1/‖φn‖1 = ‖ψn‖1

and ‖ψn‖1 → 1, we have N(ψn) → 1. This is a contradiction. ¤
Now, for the proof of Theorem 6.1, we have only to remark the following

fact. The proof is the same for the fact that the Strebel points are dense in
T (R). See [6, Section 4.11].

Proposition 6.6. For every p ∈ T (R), the set of the Reich-Strebel functionals
v is dense in Tp(T (R)).

Theorem 6.1 says that generic tangent vectors in T (T (R)) are strictly con-
tracted by f∗ if f is non-amenable. However, we know that the magnification
rf∗(p, v) is not uniformly bounded from above, for otherwise, the fixed point
theorem says that the full cluster set C(f∗) should consist of the unique fixed
point of f∗; this is impossible by the fact that C(f∗) ∼= T (R∞) is not a single-
ton. We see more detailed information concerning this fact as follows.

Theorem 6.7. Let f ∈ Cov(R) be a non-amenable holomorphic cover. Then
the following claims are satisfied.

(1) For every (p, v) ∈ T (T (R)) with v 6= 0, limn→∞ rf∗((f̂∗)n(p, v)) = 1.
(2) For every p ∈ Rec(f∗), there exists a tangent vector v ∈ Tp(T (R)) with

v 6= 0 such that rf∗(p, v) = 1.

Proof. (1) Suppose that lim infn→∞ rf∗((f̂∗)n(p, v)) < 1. Then, for some ε >
0, there exists an infinite sequence {mi}i∈N of positive integers such that

rf∗((f̂∗)mi(p, v)) < 1 − ε. However, for every n ∈ N, we have

rf∗((f̂∗)n−1(p, v)) × · · · × rf∗((f̂∗)(p, v)) =
‖(df∗)n(v)‖(f∗)n(p)

‖v‖p

≥ c > 0

by the infinitesimal version of Theorem 3.2, which is seen by Lemma 3.5 and
the fact that ‖v‖T (∆) = ‖(df∗)n(v)‖T (∆). This is a contradiction.

(2) The Bers embedding βπ : T (R) → TB(Γ) extends to their tangent bun-

dles as β̂π : T (T (R)) → T (TB(Γ)), where T (TB(Γ)) = TB(Γ) × B(Γ). Since
the holomorphic embedding f∗ is represented by the linear isometry g∗ in the
Bers embedding, we have

ĝ∗ := β̂π ◦ f̂∗ ◦ β̂−1
π : T (TB(Γ)) → T (TB(Γ)),
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where ĝ∗(ϕ, ψ) = (g∗(ϕ), dg∗(ψ)) = (g∗(ϕ), g∗(ψ)) for every (ϕ, ψ) ∈ TB(Γ) ×
B(Γ).

Since p ∈ Rec(f∗), there exists an infinite sequence {ni}i∈N ⊂ N such
that (f∗)ni(p) → p as i → ∞. For ϕp = βπ(p), choose a tangent vector

(p, v) ∈ T (T (R)) such that β̂π(p, v) = (ϕp, ϕp). Then (f̂∗)ni(p, v) converge to

(p, v). By continuity of rf∗ , we have rf∗((f̂∗)ni(p, v)) → rf∗(p, v) as i → ∞,
and by the result of (1), we see that rf∗(p, v) = 1. ¤

In the remainder of this section, we investigate the above facts more closely
on the tangent space To(T (R)) based at the origin o ∈ T (R). As remarked
before, we have the identification To(T (R)) ∼= {0} × B(Γ) under the Bers
embedding βπ. Then the derivative df∗ : To(T (R)) → To(T (R)) turns to be
the linear isometry g∗ : B(Γ) → B(Γ) under this identification.

We define the following two sets:

Io(df
∗) = {v ∈ To(T (R)) | ‖df∗(v)‖ = ‖v‖};

I ′
o(df

∗) = {v ∈ To(T (R)) | ‖v‖ = ‖v‖df∗}.
Both sets are closed and I ′

o(df
∗) is forward invariant under df∗. Moreover, we

can define the recurrent set for df∗ : To(T (R)) → To(T (R)) in the same way
as before and denote it by Reco(df

∗).

Proposition 6.8. The inclusion relations Io(df
∗) ⊃ I ′

o(df
∗) ⊃ Reco(df

∗) are
satisfied.

Proof. Any tangent vector v ∈ I ′
o(df

∗) satisfies ‖v‖df∗ = ‖v‖ by definition.
Since ‖df∗(v)‖df∗ = ‖v‖df∗ is valid for every v ∈ To(T (R)), we have

‖df∗(v)‖df∗ = ‖v‖ ≥ ‖df∗(v)‖.
However, the inverse inequality is satisfied in general, and hence the above
inequality turns to be equal. This shows the first inclusion Io(df

∗) ⊃ I ′
o(df

∗).
For the second inclusion, we first note that Io(df

∗) ⊃ Reco(df
∗) holds by

the same argument as in Theorem 6.7. Then, since Reco(df
∗) is completely

invariant under df∗, any tangent vector v ∈ Reco(df
∗) satisfies ‖(df∗)n(v)‖ =

‖v‖ for every n ∈ N. This implies that ‖v‖df∗ = ‖v‖ and hence v belongs to
I ′
o(df

∗). ¤
We have two kinds of partition of To(T (R)) by disjoint subsets: Λ(df∗) :=

Reco(df
∗) and its complement Ω(df∗) := To(T (R)) − Λ(df∗); Io(df

∗) and its
complement Do(df

∗) := To(T (R)) − Io(df
∗). We have seen that Λ(df∗) ⊂

Io(df
∗) and we can see that Λ(df∗) ⊂ C(df∗) ∼= {0} × B(Γ∞) in the same

way as before. However, we have not known yet the answers to the following
questions in the case where f is non-amenable.

(1) Does Io(df
∗) include Λ(df∗) properly ?

(2) Does C(df∗) contain Io(df
∗) ?
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(3) Does C(df∗) intersect Do(df
∗) ?

Conjecture 6.9. For a holomorphic non-amenable self-cover f ∈ Cov(R), the
intersection Ω(df∗) ∩ Io(df

∗) is a non-empty subset in C(df∗).
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