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Abstract. Let H C H, 4 = Rlz1,..., x,]q be a vector space, and A be a compact
semialgebraic subset of Pi~'. We shall study some PSD cones P = P(A, H) := {fex ‘
f(a) >0 (Va € A)}. Our interests are (1) to determine the extremal elements of P, (2) to
determine discriminants of P, (3) to describe P as a union of basic semialgebraic subsets,
and (4) to find a nice test set when dim 3 is low. In this article, we present (1), (2), (3)
and (4) for P(R*, H5Y) and P(RY, H5)), where J-Cfl?d ={f €Hpna ‘ f is symmetric and
f(1,...,1) = 0}. We also provide (1)—(4) for P(R%, H5%), where U-C;?d ={feMualf
is cyclic and f(1,...,1) = 0}.

§1. Introduction.
Let H,, g := Rlz1,. .., z,]q (the part of degree d), and H C H,, 4 be a vector subspace.
For a semialgebraic subset A of R™,
PAKH) :={fecH| fla)>0forallac A}
is called the PSD cone on A in . Our interests are:
(I1) To determine all the extremal elements of P := P(A, H).
(I2) To determine all the discriminants of P (see Definition 2.6).
(I3) To describe P as a union of basic semialgebraic subsets using some inequalities.
(I4) Find a nice test set for (A, 3) when dim I is low (see Definition 2.9).
In this article, we present (I1), (12), (I3) and (I4) for PSD cones P3’,, ?Z?j and TZ?; .
We also treat some SOS problems relating these PSD cones. We shall explain these symbols.
Let

nd = {f ceH,q ‘ flxa, ... xpn, 1) = f(21, .. .,xn)},
d = {f €eH,q ‘ f(@oys o Tomy) = f(x1,...,2,) forall o € Gn},
f}C?l’d = {f €eH,q ‘ f(a,a,...,a) =0 for all a GR},
E(P):={f €P| [ is a extremal element of P},
R+::{x€R‘x20},
and }C;?d =3 4N 3'(27(1, ﬂ'Cffd =3, 4N }Cg,d. We denote P, g := P(R", H,, q), fP;d =
PRY, Hoa), Py g = PR, I, 1), Prly = PRY, 3G, ), Py = PR™, 3CY), PrlT =
PRY, g'ci?d)a Pra = PR", j{qcm,d)v fpfjd = P(RY, }C%,d)’ quczo,d = P(R", j'ci(?d% and
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T;?;‘ = P(RY, H-C%?d). The rule of indexing will be clear. “c” means cyclic, “s” means
symmetric, “0” means an equality condition f(a,..., a) =0, and “4” means A = R}.

We have already completed (I1), (I2) and (I3) for the PSD cones ‘J’gfg, ?g?g’ , Py, ?g?j ,
P34 and ?g?gr . See [3], [2]and [1]. For P§°%, see also [13]and [19]. (I4) for P57 is provided
in Example 2.11. (I1) for fP?t3 is given in [4].

In §3, we study P35’ and ?Z?j . (I1)—(14) for P3°, are given in Theorem 3.4, and these

for IPZ?I are given in Theorem 3.8. Here, we present (I3) for P3% and P35 slightly different
style from Theorem 3.4 and 3.8.

Theorem 1.1. Let 01 := ag+aj +as+as, o9 := E a;a;, 03 = E a;ajay,
0<i<j<3 0<i<j<k<3
and o4 := agajasas. Consider a family of quartic symmetric polynomials

flag,a1,az,a3) = 0} + p1o2og + pacs + p3oi03 — (256 + 96p1 + 36p2 + 16ps)oy € 5{2?4

(p1, p2, p3 € R). Then
(1) f(ao,a1,a2,a3) > 0 for all ag,..., az € R if and only if 16 + 6p; + 2py + p3 > 0 and
9p? < 128 + 24p; + 36py + 12ps.
(2) f(ag,a1,as,a3) > 0 for all ag > 0,..., a3 > 0 if and only if “(i) or (ii)” and “(iii) or
(iv)” hold:
(i) p1
(ii) p1
(iii) p1
(iv) p1

—8 and p? < 4ps.

—8 and 4p; + p2 + 16 > 0.

—14/3 and 9p? < 128 + 24p; + 36p2 + 12ps.
—14/3 and 27 4+ 9p; + 3p2 + p3 > 0.

VAN IV IA

Next, we present (I1).

Theorem 1.2. All the extremal elements of fPf& are positive multiples of the following
polynomials:

1
3 (301 —2(t + T)otos + (t + 3)°05 — 2(t* — 9)o103 — 4(t + 3)%04),
9o (a0, a1, a2,a3) == 03 — 20103 — 404,

gt(ao,al,azaas) =

p(ao, a1, az,as) := 0’% — 30103 + 120y4.

Here, t € R. Conversely, these are extremal elements of ?2?4.

g: (t # 1, —3) is characterized by the equality conditions g;(t, 1, 1, 1) = g;(—1, —1, 1,
1) = 0. g is characterized by the equality conditions g1(z, z, 1, 1) =0 for all x € P}. g_3
is characterized by the equality conditions g_s(a, b, ¢, —a —b —¢) =0 for all a, b, ¢ € R.
000 Is characterized by the equality conditions go(0, 0, 0, 1) = goo(—1, —1, 1, 1) = 0.

p is characterized by the equality conditions p(0, 0, 0, 1) =1 and p(s, 1, 1, 1) = 0 for
all s € R.

We say f is characterized by the equality conditions f(xx) =0 (A € A) if

R+-f::{ge?‘g(x,\):Oforall)\EA}.

Note that if f € P is characterized by certain equality conditions, then f is extremal. About
the converse, please read [4].



An elements f € P, o4 is called SOS, if there exists » € N and g1,..., g € Py, g such
that f = g7 + -+ + g2. The set of all the SOS elements in P, 24 are written by the symbol
Yn,24, and is called a SOS cone. In this case, g¢, §oo, P € X4 4, since

3g¢(a,b,c,d) = (a® +0* — & —d* + (t+ 1) (ed — ab))2
4+ (a2 =+ —d®+ (t+1)(bd — ac))’

4 (2= =P+ d® + (t+ 1) (be— ad))

1 2 2
=16 (aro) — ar())” (2(ar(o) + ar(1y) — (t+ )(ar2) + ar)))

goo(a,b,¢,d) = (ab — cd)? + (ac — bd)? + (ad — be)?,
p(a,b,c,d) = (1/2)((a — b)*(c — d)* + (a — ¢)*(b— d)* + (a — d)*(b — ¢)?).

Here (ag, a1, az, ag) = (a, b, ¢, d). Moreover, g;, p ¢ S(Ti?j). Thus we obtain:
Corollary 1.3. ?2?4 C X44, and 8(?2?4) NE(Pyq)=0.

Remember that E(P5%)NE(Ps 4) = 0, because f € E(PF,) is not a square of a quadric
polynomial (see [13]). The following theorem provides extremal elements which do not
appear in [25].

Theorem 1.4. All the extremal elements of fPfl?j are positive multiples of the following
polynomials:

fi* (a0, a1, az.a3) == (1/3) (301 — 2(t + T)ofon +8(t +1)a3
F (12— 6t + 21105 — 16(12 + 3)04) (0<t<5),
fi(a0,ar,a2,a) 1= (1/9) (90 — 6(t + T)otoz + (t +7)%3
1120t — Doyos — 12(t — 1)(3t + 13)04> (t > 5),
p(ao, ai,as, a3) = O'g — 30103 + 1204,
q1(aog, a1, az,a3) = 0%02 - 405 + 30103 = Zaiaj(ai — aj)z,
i<j
1 2
q2(ao, a1, az,a3) := 0103 — 1604 = 1 Z ar(0)ar(1) (Ar(2) — ar(3)) -
TES,
Conversely, these are extremal elements of ﬂ’i?j .
ab (0 <t <1orl<t<5)is characterized by the equality conditions

ab¢1,1,1) = §2°(0,0,1,1) = 0.

f4° is characterized by the equality conditions
62
9 (t,t,1,1) =0 forallt>0 and @ﬁw(l, 1,1,1) = 0.
0

f¢ (t > 5) is characterized by the equality conditions
fo(t,1,1,1) =§£(0,0,u,1) =0,
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where u € R, is any root of 3u? — (t + 1)u + 3 = 0. p is characterized by the equality
conditions
p(0,0,0,1) = po(0,0,0,1) = p(z,1,1,1) =0
for all x > 0. qy is characterized by the equality conditions
q:1(1,1,1,0) = g1(1,1,0,0) = q1(1,0,0,0) = 0.

(o is characterized by the equality conditions qz(s,1,0,0) =0 for all s > 0.

By the above representation, we have p(a?, b?, ¢?, d?), g,(a?, b2, ¢, d?) € Xy5 (i = 1,
2). But for f = §2* and f¢, we obtain:

Proposition 1.5. If0 <t <5 and t # 1, then §#*(a?, V2, c2, d?) ¢ Y45. Ift > 5, then
fg(aga b27 C2; d2) ¢ 24,8'

It is clear that p, q1, q2 ¢ 8(9’;{74). But we have:
Proposition 1.6. Ift > 5, then f§ € S(TZ?I) N 8(?14).

Remember that if f € 8(?3?4), f can be written as f = gg, where g is an imaginal
quadric polynomial.

Proposition 1.7. (1) Ift # —3, then g is irreducible in Cla, b, ¢, d].
(2) If0 < t < 5, then ¢° is irreducible in Cla, b, ¢, d].
(3) Ift > 5, then f§ is irreducible in Cla, b, c, d|.

We should explain about the discriminants of P = P(A, H). Let sg, s1,..., Sy be a
basis of the vector space 3, and let ®g¢: A — - - - PY be the rational map defined by ®g¢(a) =
(so(@):---:sn(a)). X := @gc(A) is called the characteristic variety. Let A(X) = {Dx,...,
D, } be the critical decomposition of X (see Definition 2.3). Each D € A(X) is a smooth
semialgebraic variety, and D has its dual variety DV. Let disc(D) be the defining equation
of the Zariski closure of DY in 3, and let Vac(disc(D)) be the zero locus of disc(D) in H.
If dim (Vac(disc(D)) N OP) = dimP — 1, we say disc(D) is a discriminant of P. For any
f € 0P, there exists D € A(X) such that f € Va¢(disc(D). Assume that a subset B C A
satisfies ®g¢(B) = D. Then, for each f € Vy¢(disc(D)) NIP, there exists a point a € B such
that f(a) = 0. In this case, we shall say that disc(D) is a discriminant corresponding to B.

Theorem 1.8. Let’s denote the elements of 9(2?4 as
flag, a1, az,a3) = pooy + p1oioa + p20s + psoios — (256pg + 96p1 + 36p2 + 16p3)os,

and use (po,. .., p3) as a coordinate system of H5,.
(1) P5° has the following two discriminants:

dy == 128p(2J + 24pop1 + 36pop2 + 12pops — 9p3,  dg := 16py + 6p1 + 2pa + ps.
dy corresponds to {(t, 1,1,1) € R* ‘ teR, t# -3, 1}, and dsy corresponds to a point
(1,1, =1, —1).
(2) TZ?I has the following five discriminants:
dy := 128pj + 24popy + 36pop2 + 12pops — 9pT,  ds := 4popz — i,
dyg = 2Tpg + 9p1 + 3p2 + p3, ds := 16pg + 4p1 + p2, dg := po.
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ds3 corresponds to {(0,0,t, 1) e R? ‘ 0<t< 1}. dy, ds, dg corresponds to points (1, 1,
1, 0), (1, 1, 0, 0), (1, 0, 0, 0) respectively.

We explain about (I4). Let ro := max{2, [d/2]}. For general f € 3(; ;, Riener,
Timofte and Harris proved that f € P5 , if f(z) > 0 for all z € {(z1,...,2,) € R" ‘
#{x1, .., v} < ro}. Moreover, [ € fPf:'d if f(z) > 0 for all z € {(wl,...,xn) e R ‘
#({z1,..., zn} — {0}) <ro}. (See Corollary 1.3 of [22], Corollary 2.1 of [23]. See also [24],
25].
» )In the case f € 3] 4, if f(t,¢,1,1) > 0and f(¢,1,1,1) > 0 for all ¢ € R then f € P] ,.
If f(t,t,1,1) >0, f(t,1,1,1) >0, £(0, £, 1,1) > 0 and £(0, 0, ¢, 1) > 0 for all £ > 0 then
fePih

We prove that the number of test conditions can be decreased as the following theorem
in the cases of P§% and ?Z?; .

Theorem 1.9. (1) If f € K5, satisfies f(—1, —1,1,1) > 0 and f(t, 1,1, 1) > 0 for
allt € R, then f(a, b, ¢, d) >0 for all a, b, ¢, d € R.

(2) If f e U—Cif{l satisfies f(t, 1,1, 1) > 0 and f(0, 0, t, 1) > 0 for all t > 0, then f(a, b,
¢,d) >0 foralla,b,c,deR,.

In §4, we study the PSD cone of cyclic cubic polynomials ?fl?; . (I2) and (I3) for ?Z?;
are given in Theorem 4.1. ?Z?QL has 4 discriminants. Since one of them is very complicated

polynomial, the structure of IPZ?; is not simple. We also need somewhat strange algebraic
numbers to state (I3). This is completely different from cases of P55 and P5%. (I1) and
(14) for Tj??j are as the following:

Theorem 1.10. (1) All the elements of 8(?2?;) is the positive multiple of ¢!
((u:v:w) € D) or ¢f? (t € PY).

(2) If f € 3G 5 satisfies f(1, 1,1, 1) > 0 and f(0, s, t, 1) > 0 for all 5, t € Ry, then
fla,b,¢,d) >0 foralla, b, c,deR,.

u

4.13 respectively. (1) is proved in Theorem 4.15, and (2) is proved in §4.2.
In [4], we have proved that 8(?5?;) C 8(??5,) C &(P4,). But S(TZ?;) ¢ E(PFs).
Relating SOS problem, ¢” satisfies:

UV, W

Definitions of eh7v7w, ¢/ and D! are given in Proposition 4.3, Lemma 4.7 and Theorem

Proposition 1.11. Assume that (uv:v:w) € D, uw > 0, v >0, w > 0 and v # u + w.
Then, eﬁvuw(aQ, bz, C2, dQ) €Psg— 24,6-

In §5, we will give an exact definition of semialgebraic varieties, and prove some basic
general theorems. In this article, we use P3/&4 and P, /S4. These are not real algebraic
variety. P3 /&, does not agree with a real weighted projective space Pg(1,2,3,4). But we
need to treat these with certain variety structure, i.e. semialgebraic varieties. So, the author
think it will be better to give an exact definition of semialgebraic variety. For example, there
exists continuous rational map which is not holomorphic (see Lemma 3.5). Such maps do not
exist in complex algebraic geometry. Some results will be useful for studies of real algebraic
varieties. Especially, Theorem 5.11 and Theorem 5.15 show that semialgebraic geometry
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is very different from complex algebraic geometry. In our theory of algebraic inequalities
in this article, a phenomenon of Theorem 5.15 occurs. For example, ®g4¢: A--- — X may
include some exceptional set even if A = P2 (see Lemma 3.5).

We shall explain a short history of study of PSD cones. Originally, P,, 24 is called a
PSD cone. Hilbert proved, P, o4 = ¥, 24 if and only if n < 2 or 2d = 2 or (n, 2d) = (3, 4)
([17]). History of studies till 1991 are written in §6.6 of [8]. So we don’t explain them again.
Choi and Lam found some extremal forms of P, 24 which don’t belong to ¥,, 24 in [9]. In
[21], Reznick studied the condition that f € P, o4 is included in X, 24. He also studied the
condition that f € P, o4 is extremal. See also [10]. They implies that if f € E(Py, 24), then
Vr(f) is larger set. This fact is formalized in Theorem 2.7 and Proposition 2.9 of [4].

An element f € 3, o4 is called even, if f € R[z%,..., 22]. Choi, Lam and Reznick
studied P¢y = Ppoa NR[zF,. .., 23] in [11]. They studied the condition for Py, C 3y 24.
Note that Py, = ?ffd, as is stated in [12]. Harris proved P§% C Y35 in [15]. But
8(?;3) = E(P56) C E(P36) and E(P54) £ T3 6 (see [4]). The relations Py, ,,; and X5 ,,
are studied by Goel, Kuhlmann and Reznick in [14]. A related study can be found in [7].
Our study of S(TZ?I ) and 8(?2?; ) will give a small contribution for it.

About discriminants of P(A, ), Nie shown some interesting results in [20]. He treated
the case that A is an affine real algebraic variety. In this article, we only treat the cases that
A is a compact semialgebraic variety. But they have very close relation. [6] provides many
nice ideas to treat algebraic inequalities using complex algebraic geometry.

About P3¢, X36, Pa4 and X4 4, very important results are obtained in [5]. It provides
relation with theory of K3 surfaces.

dimHs3 = 20 and dimH, 4 = 35 are somewhat large to proceed precise numerical
analysis. It will not be insignificant to study some lower dimensional subspaces H C H,, 4.

To check many calculations in this article, we will need Mathematica or a similar tool.
The author provides a file for Mathematica in the authors WEB and in arXiv’s anc folder.
It will be useful for experimentation of inequalities.

§2. General theories
2.1. Known results.

By studies in [3], we have better to use P§ ' and Pifl instead of R™ and R’} where
P o= (RYT — {0})/RY = {(zo:+:2,) €PR | w9 >0,..., 2, >0},

The merits are that Pﬁ_l is compact and dimIP’ﬁ_l < dimR". But f € H, 4 is not a
function on Pﬁ_l. So, we must treat J(,, 4 as a signed linear system on ]P’ﬁé_l. We need
some more generalizations. About the exact definition of a semialgebraic variety, please see
§5. We may understand here that a semialgebraic variety (A, R4) is a locally ringed space
with semialgebraic set A and a sheaf of rings R 4 which represent real holomorphic functions
on open subsets of A. We only use R4 to define singularities of A, regular maps between
semialgebraic varieties, and signed linear systems. The author apologizes that Definition 1.7
of [3] must be corrected as the following:

Definition 2.1. Let (A, R4) be a semialgebraic variety, and €Y be the sheaf of germs
of real continuous functions on A.

(1) Let I be an invertible R 4-sheaf. J is called a signed invertible sheaf on A if
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(i) there exists €%-invertible sheaf J such that J ®@x, €% =1 ®eo J, and
(ii) there exists e € J(A) such that e? € J(A) and J(A) = R4 (A) - €%
Then, for f € HY(A, J), there exists g € H°(A, R4) such that f = ge?. We define
sign(f(P)) € {0, £1} by sign(f(P)) = sign(g(P)) for P € A.
(2) Let J be a signed invertible R 4-sheaf. A finite dimensional vector subspace H C H°(A,
J) is called a signed linear system on A. For f € H, we say fis PSDon A if f(P) >0
for all P € A.
3) P=P(A, H):={f €H| f(P)>0forall P X} is called the PSD cone on A in .
Note that P, 4 = ?(Pﬁ_l, 3, q) and ?:,d = ?(]P’i_l, 3, 4) and so on.
(4) BsH :={P € A| f(P)=0for all f €3} is called the base locus of H. When P is
non-degenerate in H, we define BsP := BsH.
If dimBs P < dim A, we can define a rational map ®g¢ : A--- — Pr(HV), using a basis
of H. X = X(A, H) := Cls(Pgc(A4)) (Euclidian closure) is called the characteristic variety
of A.

For example,
Hs1,a = {f(zo,...,zn) ‘ f is a homogeneous polynomial of degree d} U {0}

is a signed linear system on P"f. For f € H, ;1,4 and P € P}, we cannot define the value
f(P) but can define sign(f(P)). If d is even, H,,41 4 is also a signed linear system on Pg.

Proposition 2.2. Let X := X (A, H), and let Y be the convex closure of X in P(F").
Then
P(A, H) =P(X, Hni11) =P(Y, Hny11),
where H 11,1 Is the set of linear polynomials on P(3HV).

Proof. P(A, H) = P(X, Hn1,1) is proved at Proposition 1.13 in [3]. P(X, Hyy1,1) =
P(Y, Hn1,1) is clear since every element of H 41,1 is linear. 0

Assume that a semialgebraic set B is a subset of a complete real algebraic variety V.
The minimal closed algebraic subset which contains B is called the Zariski closure of B and is
denoted by Zary (B). We denote the Euclidian closure of B in V' by Clsy (B) or B. Assume
that Zary (B) = V. The interior of B is defined by Int(B) := V —Clsy (V —B). The boundary
of B is defined by 0B := B — Int(B). Do not confuse with dy B := Clsy (B) — Int(B). Note
that Int(B) and 0B do not depend on the choice of V. But Clsy (B) and dy B depend on
V.

Definition 2.3.(Critical decomposition. See Definition 1.5 of [3]) Let A be a reduced
semialgebraic variety with dim A = n. We shall define A?(A) (i = 0,..., n) by induction
onn. If dmA = 0, then A = {Py,..., P,,} where P; are points. In this case we put
A%A) ={P,..., Py}, and put Ai(A) = () for i # 0.

Assume that n = dim A > 1. Let Zi,..., Z, be all the irreducible components of A
with dim Z; = n. Put 4; := Int(Z; — Sing(A)), and A"(A) := {A;,..., A, }. Note that
Z;NZ;NInt(A) C Sing(A) for i # j.

Let Yi,..., Y} be all the irreducible components of A with dimY; < n — 1, and let
Bj :)/}—(AlLJUAT) Put

B :=Sing(A)UOAU By U---U By.
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Then, we can regard B to be a semialgebraic subvariety of A with the reduced structure.
Note that dim B < dim A. Thus we put A*(A) := A¥(B) for i # n.

We denote A(A) := AY(A)UAL(A)U---UA"(A), and is called a critical decomposition
of A. Each element D € A(A) is called a critical set of A. Note that D is a non-singular
semialgebraic variety with 0D = ().

Example 2.4. Consider the case A = IP’%F. This is homeomorphic to a triangle. Let
P, :=(1:0:0), P, := (0:1:0), and P, := (0:0:1). For two points P, Q € P, we denote the
open line segment connecting P and @ as (PQ). Then, the critical decomposition of ]P’?|r is
AYP2) ={P,, Py, P.}, AY(PL) = {(P,P,), (P,P.), (P.P:)}, A%(P2) = { Int(P%)}.

On the other hand, if A = Pg, then A"(PR) = {Pg}, and A"(PR) = 0 for r # n.

Definition 2.5. (1) Let X be a subset of R” or P}. e € X is said to be extremal in X,
ifa>0,b>0and z, y € X satisfy e = ax + by then x =y = e. Let P be a closed convex
cone which contain no lines. 0 # f € P is called extremal in P, if g, h € X satisfy f =g+ h
then g and h are multiples of f. For both cases Y = X and Y = P, we denote that

E(Y):={yeY|yis extremal in Y}.

(2) For a semialgebraic variety A and a € A — BsJH and a signed linear system JH on
A, we put
H,={feH | fla) =0}, Po:=PNH,=PA, H,).
P, is called the local cone of P at a.
Even if a € BsH, we can define P, as Definition 2.6 of [4]. But we don’t use it in this
article.

Definition 2.6. (See Definition 1.15 and 1.17 of [3]) (1) Let P = P{ and PV be the
set of all the hyperplanes in P. Assume that D C P is a non-singular semialgebraic variety
with 0D = 0 (i.e. A(D) = {D}). For x € D, let Tp , := Tyar(p),» C P be the tangent space
of Zar(D) at x. Then,

DY :={H eP'|H>Tp, for a certain z € D}

is called the dual variety of D. Since D is irreducible and non-singular, DV is irreducible.
Thus DV is a semialgebraic variety.

(2) Under the same notation with Definition 2.1, let 7w : (H — {0}) — P(H) be the
natural surjection. For D € A(X), we denote

F(D) := Clsge(n~ (DY) N IP).

If dimF(D) = dim(9P), then F(D) is called a face component of P or of 0P, and an
irreducible defining equation of the Zariski closure Zar(F(D)) is called a discriminant of P,
and denoted by discp or disc(D).

Especially, if D € AY™X(X) and F(D) is a face component, then F(D) is called a
main component of P, and disc(D) is called a main discriminant of P.

For example, if X = P = A, then P has unique discriminant which is a main discrim-
inant.

In the case D € A%(X), disc(D) is linear. That is, if ®g¢ is defined by basis {so,. .., sy}
of H, and if we represent f € H as f = ppso+ -+ pnsn, and D = (by:---:by) € P(HY),
then disc(D) = bopo + - -+ + bnpN-



Theorem 2.7.(Theorem 1.18 of [3]) We use the same notation as Definition 2.1 and
the above.
(1) Let
= {D € A(X ‘ F(D) is a face component of iP}.

Then 0P = U F(D
DeD
(2) For D € A(X), take a subset B C A such that ®3¢(B) C D and Clsp (®5¢(B)) = D.
Put By := B — Bs ®g¢. Then,

F(D) = Clsyc ( Uz )
(IEBO
(3) Assume that P := P(X, Hy11) is non-degenerate in Hy 1. Take x € D € AT (X).
Then dimP, < N —r.

The author should apologize for that Proposition 1.27 of [3] is not correct. It should be
corrected as (3) of the above theorem. We present a corrected proof of (3).

Proof. (3) For f € 3, let Hy be the hyperplane in P(H") defined by f = 0. Since P
is non-degenerate, dim(U NP) = N + 1 for any Euclidean open neighborhood U of z. Let
L:={feXH|Tp, C Hy}. Note that dimTp, = dimD =r < N + 1, since D is non-
singular. The condition Tp , C Hy means that f passes through independent 7 + 1 points.
Thus, dim £ = dimH — (r+1) = N —r. Since P, =P N L, we have dimP, < N —r. [

Even if we determine all the discriminants of P, the signature of disc(D) may not be
constant in Int(P). To describe P as a union of basic semialgebraic sets of H using some
inequalities, we need some more inequalities to cut off extra parts or to avoid the interior zero
locus Int(P) N Vae(disc(D)). Such inequalities are called separators. Note that discriminants
are unique up to multiplication by non-zero constant, but there may be many possibilities
of the choice of separators.

About extremality of f € P, the following theorem is useful. About the definition of
infinitesimal local cone, please see Definition 2.9 and 2.12 of [4].

Theorem 2.8. (Theorem 2.11, Proposition 2.13 of [4]) Let P = P(A, H). Assume

that dim P > 2.

(1) If f € E(P), then there exists local cones or infinitesimal local cones Pq,..., P, C P
with respect to f which satisfy Py N--- NP, =Ry - f.

(2) Let f € P. If there exists local cones or infinitesimal local cones P1,..., P, C P such
that Py N---NP,. =Ry - f. Then, f € E(P).

In the above theorem, infinitesimal local cones appear for special f € E(P). In ordinary
case, there exists points ay,..., a, € A such that

Ry -f={g9eP|g(a) =---=g(a) =0}

We can choose each a; so that ®g¢(a;) € E(X). Infinitesimal local cones appears when not
less than two zero points of f become infinitely near points.
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Definition 2.9. Let J be a signed linear system on a semialgebraic variety A. A
subset Q2 C A is called a test set for (A, H), if f(a) > 0 for all a € €2, then f(a) > 0 for all
ac A

The following theorem will be trivial.

Theorem 2.10. Let H be a signed linear system on a compact semialgebraic variety
A with dimH > 3, and let X := Cls(®g¢(A)) be the characteristic variety. Take a subset
N C A IfE(X) C Cls(Pg¢(2)), then Q is a test set for H.

Some artices add the following condition for a test set:
(Additional condition) For any a € Q, there exixts f € JH such that f(a) = 0.
Under this definition, £(X) C Cls(P4¢(2)) must be replaced by E(X) = Pgc(Q).

Example 2.11. Consider the case A =P%, H = H§ 5. Then
Q:={(L::1)}u{(0:t:1)ePi |t>0}
is a test set for g 5 (see Theorem 3.1 of [3]). Thus, if f € Hg 5 satisfies f(1, 1, 1) > 0 and
f@0,t, 1) >0 for all t >0, then f(a, b, ¢) >0 for all a, b, c € Ry.
2.2. Some more general theorems.

Let V and W be non-singular semialgebraic varieties with dim V' = n, dim W = m, and
©: V. — W be a regular map. Take a point a € V and put b := ¢(a). We can take open
neighborhoods a € Uy C V and b € Uy C W such that p(Uy) C Uy and that Uy, Uy

have local coordinate systems (x1,..., x,,) and (y1,. .., ¥m) whose origins are a, b. ¢ can be
Ny
represented by functions y; = ¢;(21,..., zn) (j = 1,..., m). Let J, := (8?)
i (z1,...,zn)=a

be the Jacobian matrix of ¢ at a. Note that rank J, does not depend on the choice of (z1,. ..,
xn) and (y1,. .., Ym). We denote

Sing(¢) :={a €V } rank J, < dim¢(V)}.

Proposition 2.12. IfV is a non-singular complete real algebraic variety, then 8(<p(V))
C ¢(Sing(yp)).
Proof. Put r := dim ¢(V'), and assume that rank .J, = r. We may assume that
Ny
det( yf) £0
0 ) 1<izy 1<5<r

e

at a. Let U’ := {(:1:1,..., xn) € Uy ‘ Tppl = 0 = Ty = 0}. If Uy is sufficiently small
iU — o(U’) is an isomorphism. Thus b ¢ d(p(V)). O

Euclidean open set, ¢

When V' and W are open subsets of Py, and ¢ is given by y; = ¢;(zo:---:2,) (j =0,. ..,
r) using homogeneous coordinate system, the condition rank .J, = r can be replaced by

det <(9yj #0.

Ox; > 0<i<r,0<j<r

10



When V has singularities, we put Sing(y) := Sing (@}Reg(v)).

Corollary 2.13. Assume that A is a compact semialgebraic variety, then,

d(¢(A)) C ¢(Sing(p) U Sing(A) UDA).

Proposition 2.14. Let X;E = X(P%, 35 ). If d > 4, then X;:; ~ P2 /Gs.
Proof. We denote the coordinate system of P2 by (a:b:c), and put Sy := a + b+ c.
o v ..
P34 1= Do, }P’Z XS s decomposed as @3 4: ]P’%r — IP’%F/G;», -2 X;tl. By Proposition
2.13, 2.14 and §4.5 in [3], W3 4: P2 1/63 — X354 is an isomorphism. Since Bs Sy N }P’%r =0,
, o X5 O

the multiplication map xS1: HE ; — HE ;0 1nduces an isomorphism X3 yn

In the cyclic case Xflz = X (P, 3, 4), we know that Xf;zl ~ prl/e, if d > n,
here €,, = Z/nZ (see Proposition 1.36 in [3]). When n = 3, Al(X?f'E) has a unique element
CCZ = {<I’ (0:s:1) | s > 0}. We call dlSC(Cg—Z) to be the edge discriminant of P, (see
Definition 2. 7 in [3]). The following Theorem is a replacement of Proposition 2.10, Theorem
5.9 and Theorem 6.8 in [3].

We denote the discriminant of ¢, 2™ + ¢,—12" ' + -+ c12 + ¢ by

Discp(CnyCn—1,---,C1,Cp)-

Theorem 2.15. Let’s denote the coordinate system 01‘1[”2+ by (a:b:¢), and put Sy, =
Smon(a,b,c) :=a™b" +b"c" +cma", Sy, = Sy(a,b,c) :=a" +0" +c", and U = U(a,b,c) :=
abc. Take the basis of H 8.4 SO that so = Sq, s1 = Sa—1,1, 52 = Sd—2,25- - -» Sd—1 = S1,d—15- - -
Here, if i > d, then s; is a multiple of abc. We represent f € Hg ; as f = > pis;. Then, the

edge discriminant of ﬂ’ ", agrees with Discq(po, p1,---,Pd—1, po).

Proof. Let £§% be the local cone of P§E at (0:4:1) € PA. Take f € L5} C F(C;F )
(po > 0 and ¢t > 0) Then f(0,t,1) = 0. Since f(0,z,1) > O for all > 0, the equation
f(0,z,1) = 0 has a multiple root at x = ¢. Thus, the discriminant of f is equal to 0.
Since Siyd_l(O,:z:, )=z (1<i<d-1), S4(0,2,1) = 2% + 1 and U(0,z,1) = 0, we have
f(0,2,1) = poz? 4+ p1z®™t + - + pa_12 + po.

Since Discy and dlsc(ng) are irreducible, we have the conclusion. 0

Theorem 2.16. Consider the cases A = Pﬁfl or Pﬁfl, and H = H; , or U'Cfl?d. Let
P=PA H), X = X(A, H,q), and ® := Ogc: A--- — X. Let o:Pp ' — PR 71/6,, C
Pr(1,2,...,n) be the natural surjection, and V: Pﬁ_l/Gn .-+ — X be the rational map such
that ¥ om = V. Assume that ¥ is a birational map. Let D € A"(X) with r > max{2,
|d/2]}. Then F(D) is not a face component of P.

Proof. Let ro := max{2, [d/2]}, and take D € A"(X) with ro <r <n —1. Assume
that F(D) is a face component of P. Then dim F(D) =n — 1.

(1) Consider the case A = Pp~'.
Let Q= {(21:---:2y) € Ppt ‘ #{x1,..., zn} < 71o}. Here #{x1,..., z,} < 1o means
that at most ro members of x1,..., x, are distinct. (2 is a test set by [22].
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Q is included in a union of some (ro — 1)-dimensional linear subspace of ]P’Hré_l. Take
general f € F(D). There exists a semialgebraic subset E C A such that ®(FE) = D, and
a € E such that f(a) = 0. Since F(D) is a face component, we may assume that the
hyperplane H; C P(HY) corresponding to f, tangents to X only at the unique point ®(a),
if a € F is a general point. This means that if b € A — Bs3 satisfies f(b) = 0, then
®(b) = ®(a). We can choose such f and a.

By Corollary 1.3 of [22] or Corollary 2.1 of [23], there exists b €  such that f(b) = 0.
We denote this b by b(a). a can move a certain r-dimensional subset of E. But dimQ =
ro — 1 < r. Thus, there exists a € E such that ®(b(a)) # ®(a). A contradiction. Thus
F(D) is not a face component of P.

(2) Consider the case A =P} 1.

Let Q' = {(z1:--:2,) € PP | #({z1, - mn} —{0}) < ro}. If f € 3, 4 satisfies
f(a) > 0 for all a € €, then f € fPf;rd by [22]. € is also included in a union of some
(ro — 1)-dimensional linear subspace of Pp .

The left part is same as (1). O

If F(D) is not a face component, then, for each f € F(D), there exist Dy,..., D, €
A(X) —{D} such that f € F(D;)N---NF(D,), and that all F(D;) are face components.

Section 3. Quartic Inequalities of Four Variables

In this section, we shall study P5°; and Ti?j . We write the homogeneous coordinate
system of A = P} or A = IF’i by (a:b:c:d) or (ap:ai:as:as). We regard aypy; = a; for
n € Z. We denote

3 3

- d L P49 q q - PP

Sq = E ai, Tpg:= E a; (@i +aio+ajiis), Sppi= E : a; a,,
i=0 i=0 0<i<j<3

3
R P q q q q q q e
Tpq,q = E af(al  al ,+al jal o +al hals), U :=agaiasas.
=0

A polynomial f € 3 ; or H7 , is called monic, if the coefficient of Sq = ad+---+al_,is
equal to 1. For a subset V' C H7 ;, we denote

V= {fGV‘fismonic}.

We denote as Pg : (ap:---:a,) when we treat P} with a homogeneous coordinate system
(ap:---:ay). Similarly we denote as R™ : (z1,...,z,) when we study R” with a coordinate
system (x1,. .., x,).

3.1. Structure of P} /G,

Let (ag:---:ay) be the homogeneous coordinate system of Pg, and oy = oy (ao,. . ., an)
be the k-th symmetric function of ag,..., a, (0 < k < n+1). The sequence of functions
(01, .., 0nt1) defines the regular map o: Pg — Pr(1,2,...,n+1), where Pr(1,2,...,n+1)
is the real weighted projective space which is defined as the real part of the complex weighted
projective space Pc(1,2, ..., n+1). The image o(P}) is isomorphic to PE /&, 41 as semialge-
braic varieties. Note that P¢ /&, 41 = Pc(1,2,...,n+1), but PR /&, 41 # Pr(1,2,...,n+1).
In general, for two points P, @@ € PR, (PQ) represents an open line segment, [PQ] :=
(PQ)U{P, Q} represents a closed line segment, and PQ represents a line.
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Definition 3.1. Assume that a finite group G acts on a semialgebraic variety A. Let
0: A — A/G be the natural surjection. A closed semialgebraic subset Ay C A is called a
fundamental domain of A/G, if 0(Ay) = A/G and o : Int(Ag) — o(Int(A4p)) C A/G is an

isomorphism.

Example 3.2. (1) Let A = P and G = Z/(n + 1)Z. Then (P2)¢ = {1}, and
Sing(PR/G) = o((PR)¥) = {o(1)}, here 1 = (1:1:---:1) € A. The following A, is a
fundamental domain.

L . . . a0+a1+"'+an71+1205
Ae = {(ao""'a”—l'l)GPR ap<1l,a1<1,... an1 <1 }

(2) Let A=P" and G = Z/(n+ 1)Z. Then (P})¢ = {1}, and
Aj::{(aoz---:an_lzl)G]P’R|0§a0§1,...,0§an_1§1}

is a fundamental domain.

3) Let A=P and G = &,,.1. Then
R +
:{(—1§a0:---:an_1:1)€Ac‘a0§a1§-~§an_1}

is a fundamental domain.

(4) Let A=P7 and G = &,,41. Then
AT = {(aoz---:an_l:l)ePﬁ‘Ogaogalg-ugan_l §1}

is a fundamental domain.

Note that P2/ 6, = Pe(l, 2, ,4) has cyclic quotients singularities at Py := (0:1:0:0),
Py :=(0:0:1:0) and Py := (0:0:0:1).

Proposition 3.3. About the structures of P} /&4 and P3 /S, we have the following:
(1) Let 0:P3 — P3/&, — Pg(1,2,3,4) be the natural map. Then o~ *(B}) = 0,
_1(P6’)—® and o(—1,0,0,1) = PO~ ) o
(2) A*(PE/64) = {D1}, A IP’%/64) = {C1, Ca}, and A°(P}/&4) = {Po, P1, P>}, where
D1, C; and P; are as follows:
Dy = {a (s:t:u:u) € Pr(1,2,3,4) ‘s<t s # u, t#u}
Cy = {o(s:1:1:1) € Pg(1,2,3,4) | s € P}, s # -3, 1},
Co = {o(s:s:1:1) € Pr(1,2,3,4) | -1 < s < 1},
P i=o(1:1:1:1) = (4:6:4: 1) € Pg(1,2,3,4),
Py :=o(—1:=1:1:1) = (0: =2:0: 1) € Pg(1,2,3,4).
(3) A*(PL/64) = {Df, Do} AP /64) = = {Cf, CF, C3, Cu}, and A°(P3/&,) = { P,
P, Py, P5}, where D1 , Dy, C’l, C; and P; are as follows:
Df = {J s:t:1:1) € Pr(1,2,3,4) ’0<s<t, s#1, t;él},
Dy = {o(0:s:t:1) € Pr(1,2,3,4) |0 < s <t <1},
Cf = {o(s:1:1:1) € Pr(1,2,3,4) ‘ 0<s<lors>1},
Cf = {o(s:5:1:1) € Pr(1,2,3,4) | 0<s<1},
Cs:={0o(0:s:1:1) € Pp(1,2,3,4) |0 <s<1lorl<s},
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Cy = {0(0:0:5:1) € Pp(1,2,3,4) | 0 < s < 1},
Py :=0(0:1:1:1) = (3:3:1:0) € Pg(1,2,3,4),
Py :=0(0:0:1:1) = (2:1:0:0) € Pg(1,2,3,4),
Ps :=0(0:0:0:1) = (1:0:0:0) € Pg(1,2,3,4).
(4) disc(D;) = Discy, and C; U Cy C Sing(V( )
Px(1,2,3,4).
(5) ClsC} is isomorphic to a cubic curve on P2 with a cusp at P,.
(6) Co = (PyPy) is isomorphic to an open line segment with ends P, and P;.
(7) P2 /&, is the semialgebraic subset of Pr(1, 2, 3,4) defined by Disc4(1, 01, 02, 03, 04) > 0,
8oy < 30%, and 6404 — 1603 + 160%02 — 160103 — 3ail < 0. Here, o; is the elementary
symmetric polynomials of ag, a1, as, az of degree i.

Discy)), here V(f) is the zero locus of f in

Proof. (1) is clear.

(2) and (3) follows from the critical decompositions of fundamental domains Ay and
AT in the above example.

(4) This follows from conditions that a quartic equation has a double root, a triple root
or two double roots.

(5) Eliminate ¢ from x = o5(t,1,1,1)/01(t,1,1,1)2, y = 03(¢,1,1,1) /o1 (¢, 1,1,1)3, 2 =
o4(t,1,1,1)/o1(t,1,1,1)%, then we obtain 32(z — 3/8)% + 27(z — 3/8)%? — 108(x — 3/8)(y —
1/16) + 108(y — 1/16)> = 0 and 2* = 3y — 12z. This cuve is isomorphic to a cubic curve on
P2, and have a cusp at (z, y, 2) = (3/8, 1/16, 1/256) = P;.

(6) Eliminate t from x = o9(t,t,1,1)/o1(t,t,1,1)2, y = o3(t,t,1,1)/o1(t,t,1,1)3, 2z =
o4(t,t,1,1)/o1(t,t,1,1)*, then we obtain 4z — 8y = 1 and 32 = 2. This is a non-singular
rational curve.

(7) This follow from theory of quartic equations. g(a,b,c,d) := 6404 — 1603 + 160205 —
160103 — ?)(fil is a separator. Note that

gla,a,c,d) = —(c — d)*(8a® — 8ac + 3¢* — 8ad + 2cd + 3d?),
gla,a,a,d) = —3(a — d)*,
Thus, V(g) pass through Cbs. O

3.2 The PSD cone TSO

In this subsection, we shall study P59 := P(P§, H5%). We choose
S ‘= 54 — 4U, S1 = T3,1 — 12U, S9 = 5272 — 6U, S3 = T27171 — 12U

as a basis of }3%. The aim of this subsection is to prove the following theorem.

Theorem 3.4. (1) For a monic f = sg+ps1+qsa2+71s3 € JZC;SL?AL, f(a) >0 for alla € R*
if and only if
p+r>0 and —9p* +12p+12¢+ 12r +8>0.

(2) All the extremal elements of P35’ are positive multiples of g; (t € Py = RU{oo}) or p.
(3) All the discriminants of P59 are discc, = 9p* 4+ 12p+12¢ +12r + 8 and discp, = p+7.
(4) {(t:1:1:1) € P} | ¢t >0} U{(—1:—1:1:1)} is a test set for P37,

This theorem will be proved after Lemma 3.7.
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For f € C[zy,..., zy]qa and K =R or C, we denote
Vi(f) = {a € Pk | f(a) =0}, Vi(f):=Ve(f)NPL.

In some articles, Vi (f) are also denoted by Z(f). The symbol Vi (f) is rather popular in
algebraic geometry.
We define @3 : P§ -« — P by ®5%(a) = (so(a) : s1(a) : sa(s) : s3(a)). Let

X3 = @3 (P) = X (PR, 30y C P((3G))Y),
and let U:P3 /&, -+ — X;f be the rational map such that ®3° 4 =Voo. Let

Cy = Cls(¥ ={®%(t:1:1:1) | t e PR},
02_@02) {<I> (t:t:1:1) | -1 <t <1},
Py :=U(Py) = ( 1:0:0:1) = (2: —2:1:0),
Py =0 (D) = ( 1:—1:1:1) = (0:1:0:1)

P_3:= <D474(—3: 1: 1:1) = (2: —1:1:1).
Moreover let
Ey:= {(a:b:c:d) € Py ’ a,b,c,de€R, a+b+c+d=0},
D} = {(a:b:cic) € Py | a, b, c € R},
Ly = ®%(Fy) and Dy := W(Dy) = ®3%(D}). Note that W(Dy) = ®3%(D}). Since
Bs H5% = {(1:1:1: 1)}, ¥ is not holomorphic at P;.
Note that Bs H3% = {(1:1:1:1)}, and ¥ is not holomorphic at P;.

Lemma 3.5.

(1) @:P}/64 — X3 is continuous map and ¥ : (P} /S, — {P}) — X3Y is a birational
morphism. All the exceptinal set of ®5% : P} --- — P} is Ep.

(2) 9P3 = F(C1) UF(P), and E(XSY) C C1 U {P2}.

Proof. We denote the coordinate system of P((H5 4)¥) = PR by (2o: #1: 22: 23), 5 is
defined by z; = s;(a).

(0) Let Py := (2:3:1:1). When a, b, ¢ — 0,
O30, (L: 14a: 1+4b: 1+c) = (3a®—2ab+3b"—2ac—2bc+3c?)(2: 3: 1: 1)+ (higher terms of a, b, c).

Thus ®5°(1:1:1:1) = U(P,) = Py, and ¥ is continuoius at P;.

(1) We take A, as Example 3.2(3). It is easy to see that @5 ®R C:PP —Plisa
generically finite rational map of degree 24. Thus <I>474 A, — X 1418 generlcally one to
one. Using PC, we have

Tp = det <(‘)si(ao,a1,az,a3)> = 1652(35, — 2511)? H(ai —a;).
0<4,5<3

s
Oa i<y

J, # 0 on Int( o) —{(1:1:1:1)}. Thus ®5%:Int(As) — XY is injective. Since dA, C
EyU U , we have 0X0 = LoyUD;. So, (P36, —{P}) — X3 is a birational
TEG,
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morphism. Let
fjgl@(), T1, %9, 23) = —3xor] + 427 + 6x22i 00 — 24107320 + 140720 — 3223
+ 20237175 — 48z02i2] + 162303 + 3dadal + 16zor 25 + 8x3wd + ddxoxs
— 48:611:2 - 72332 + 12x0x1x3 + 12:50331:63 — 361:1933 — 12x0x2x3 + 20x0x1x21‘3
+ 1201‘0:13%1‘2:@ — 56x?x2$3 — 76x(2)x§:c3 — 32:L‘0:U1x§a:3 64:@:13%:33
— 32uoxixs + 112z 2323 + 144a3ws — 122302 — 402320 02 — 11202525
+ 144x525 — 120322 — 40222122 — 18x0x?22 + 1042322 + 1402002
— 104zgx 2073 + 84251073 + 64202575 + 16212575 — 1520523 + 282223
+ 12x0x1x3 136331563 + 8$0x2x3 — 56m1$29§3 + 32x2:p3 3x0x3 + 84:1:1563
+ a9z — 2023.

Since
2

fi%(s0, 81, 52, 83) = 16(ag + a1 + a2 + as)* H(ai —a;)? Z(ai —a;)? |,
i<j i<j

we have X359 = @f&(EO UD}) C Ve(fi%) C P} by Corollary 2.13. Since f§9 is irreducible,
we have Zar(aX %) = Ve(fi%). Note that f{9 >0 on X3

It is easy to see that Ly is a closed line segment [Py P_3] defined by xg = 2x2, To— X1+
x3 =0 and x1 /29 < —1/2. This also means that Fy is an exceptinal set of <I>

Similarlym C5 is an open line segment (P;P») defined by z¢g = 2z, 29 — xl +x3=0
and z1 /o < 3/2. Note that Lo, Co C 9X39

Next we consider C. Let

go(x0, 1, T2, x3) := (21 — x3)? + 2235 — 3x970.
Then C is the conic defined by zo = x3 and ga(zo, 1, 2, x3) = 0. Note that x4 — x5 >0
on Xj’o4, because sg —s3 =p > 0 on A;.
Let B be the ellise domain on the plane x93 = x3 defined by g2(1, 21, 22,22) < 0, and
let Y be the cone with the base B and the virtex Ps.

(2) We shall show that Y is the convex closure of X3
A point on C; can be written as

P(t) = ®%(t,1,1,1) = (t* + 2t + 3: 3(t + 2): 3: 3)
where t € PL. P(1) = P, and P(—3) = P_3. Let L(t) := (P2P(t)) be an open line segment.

Note that L(—3) = (P2P_3) C Lo, and L(1) = (P,P;) = Cs. A point on L(¢) can be written
as P(t,s) = P(t) + sP, by s > 0. Using PC, we have

50 2(P(t,s)) = —125%(s — 1)%(t + 3)~.

This implies L(t)NX5% = 0, if ¢ # —3, 1. This means X;% CY. Since C'1U{P2} CX;9Cy,
we conclude that Y is the convex closure of X3%. This also implies £(X}%) C C, U {P2}.
Since X§%NIY = C1UCULyU{ P}, we have 35’4 = F(C)UF(Co)UF (P P_3))UF(Py) by
Theorem 2 7(1). But F(Cs) and F((PoP-_3)) are not face components, because dual varieties
of Zar(Cy) and Zar((P,P_3)) are linear subspaces of cH3Y of codimension 2. Thus all the
face components of P5% are F(C1) and F(P,). Therefore dP5°, = F(C1) U F(P). O
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Proof of Theorem 1.9(1). Put Q@ := {(-L:-1:1:1)}u{(t:1:1:1) e P} | t € R} By
Theorem 2.10, it is enough to show that ®3%(Q) D C1 U {P,} = E(X}7). But this is clear.
O

3
We regard H-CZ?B = R*, by identifying f = Zpisi € f}Cj?S and (po, p1, p2, p3) € R We
=0
also use (po, p1, p2, p3) as a coordinate system of f}CSO = R*. We denote the local cone of

P50 at (t:1:1:1) € P by £;°. Note that if f € F(C), there ex1sts t € R such that f(t, 1, 1,
1) =0. Thus f € Lfo. For t = 0o € Py, we denote the local cone of P53 at (1:0:0:0) € IP’3
by £°.

We shall observe g;, goo and p € fPf&. Note that
3g¢(a,b,c,d) = 3sg — 2(t + 1) (51 — 83) + (t* + 2t — 1)s9
= (a®+b* - —d* + (t 1)(ed — a,b))2

+ (a2 =0+ —d®+ (t+1)(bd - ac))’
+(a® = b —c +d2 (t+1)(bc—ad))2,
goo(a,b,c,d) = so = (ab — cd)* + (ac — bd)* + (ad — bc)?,

p(a,b,c,d) = s — 53 = (a — b)*(c — d)2 + (a —¢)*(b—d)* + (a — d)*(b— ¢)*.
Espacially, g¢, oo, P € X4,4.
If f € E(Py4)NXyy, then there exists g € Poy such that f = g2 Therefore g, goo,
p & E(Pyq). But g¢, goo, p ¢ 8(?30 ) as the following Lemma.

2
For f(a,b,c,d) € Rla, b, c,d], we dnote —f by fa, 0 f by faa, and so on.

Lemma 3.6. g; € E(P3Y)) for all t € Py, and p € E(P5%). These are characterized as

the following:

(1) Let t € R—{1, =3}. If f € P, satisfies f(t,1,1,1) =0 and f(—1, —1,1, 1) = 0, then
there exists a > 0 such that f = ag;.

(2) If f € Tf& satisfies f(z, x, 1, 1) = 0 for all € R, then there exists a > 0 such that
f=ag.

(3) If f € P, satisfies f(x, y, z, —x —y —z) = 0 for all z, y, z € R, then there exists
« > 0 such that f = ag_s.

(4) If f € P3° satisfies f(0, 0,0, 1) =0 and f(—1, =1, 1, 1) = 0, then there exists a > 0
such that f = ageo.

(5) If f € ?2?4 satisfies f(0, 0, 0, 1) = 0 and f(z, 1, 1, 1) = 0 for all x € R, then there
exists a € Ry such that f = ap.

Proof. Note that of f € fPf& satisfies f(a,b,c,d) = 0, then f,(a,b,c,d) = 0. Similarly,
if foa(a,b,c,d) =0, then fuqaq(a,b,c,d) = 0. Otherwise, f will be negative at a certain point
near (a, b, ¢, d). f € Hj, can be written as f = poso + p151 + p2s2 + p3s3) by po, p1, P2,
p3) € R.

(1) Take t € R — {1, —3}. Let’s consider a system of equations
Ft,1,1,1) =0, fu(t,1,1,1)=0, f(—1,-1,1,1)=0. (+)
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Let ap,; ‘= 8j<t,1,1,1), al; = (Sj)a(t,l,l,l), az 5 = Sj(l,l,—l,—l), and A := (aw-) S
Ms 4(R). Then, (x) is equivalent to Ap = 0. That is

(t—1)2(#2+2t+3) 3(t—1)2(t+2) 3(t—1)2 3@t—1)2\ [P 0
43 — 1) 9(t2 — 1) 6t—1) 6¢—1) | [P =10
0 —16 0 —16 % 0
p3
Using Mathmatica, we can soon check that Ker A =R-g;. If f € ?j satisfies f(t,1,1,1) =
0, then fq(t,1,1,1) = 0 always holds. Thus, if f € P5% satisfies f(t,1,1,1) = 0 and

f(=1,-1,1,1) = 0, then f = ag; by a certain a > 0.

(2) Consider a system of equations f(0,0,1,1) = 0, f(2,2,1,1) = 0 instead of ().
Then dim Ker A = 2, and gy and ¢ := s; — 285 — s3 is a basis of Ker A. ¢ is not PSD. Since
g1(2,1,1,1) + cg(z,1,1,1) = (z — 1)3(x — 1 + 3¢), g1 + cg is PSD only if ¢ = 0.

(3) Consider f(1,2,3,—6) =0, f.(1,2,3,—6) =0, f(1,2,4,—7) =0.

(4) Consider f(0,0,0,1) =0, f,(0,0,0, 1) =0, f(-1,-1,1,1) = 0.

(5) Consider f(2,1,1,1) =0, £(0,0,0,1) =0, £4(0,0,0,1) = 0.

Each A of the cases ( )—(5) are as follows:

18 26 9 8 1538  —962 769 576
2) A=(24 34 12 10|, (3 A= 148 248 314 516 |,
24 18 0 0 2898 —2002 1449
1 0 0 0 11 12 3 3
4 A=[0o 1 0 o |, () A=[1 0 0 0

0 16 0 —16 0 1 0 0

g: (t € PL) degenerates when ¢t = 1, —3. Note that
g-3= S%(BS;?, — 2T171).

Thus S:(Lo) = R+ g-3.

Since g1(z, x, 1, 1) = 0 for all z € P}, we have ff"(Cg) = Ry - g1. These also implies
that F(Lg) and 97(02) are not a face component of 5%, and we can omit {(z:2:1:1) € P}
! T € R+} from the test set.

Lemma 3.7. £ =R, - g, + R, - p, and the discriminant of F(C;) and F(P,) are

disce, (po, p1, P2, p3) = 8ps — 9pT + 12pop1 + 12pope + 12peps,
discp, (o, p1,p2,P3) = P1 + P3.

Proof. Since P, = (0:1:0:1), discp, (po, p1, P2, P3) = p1 + p3, by Remark 1.28 of [4].

Since g;, p € L£3° (t € PL), we have dim £5° > 2. On the other hand, since dim £5° <
dim P35 = 3, we have dim £;° = dim £} = 2 (t # 1). Since g, p € E(PSY), we have
LO =Ry g, + Ry -pforall t € P}.

Using PC, we can check that g, (V¢ € P}) and p exists on the hypersurface in 9(3?4
defined by 8p3 — 9p? + 12pop1 + 12pop2 + 12peps. This equation is also the defining equation
of the dual variety of C;. So, this is discc, . O
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Proof of Theorem 3.4. By the above lemma, we have
3

:}’(PQ) = {ZPZSZ S %2?4

=0

p1+p3=0,po >0, —9p7 + 12pops + 8p§ > 0} ;

p1+p3=>0,py >0, }

3
F(Ch) = pis; € H
‘v {; o 4| —9p? 4+ 12pop1 + 12pop2 + 12pops + 8p2 = 0

Thus, all the extremal elements of ?f& are g; (t € PL) and p.

Thus, for f = sg+ps1+qse+1s3 € %2?4, f(a) > 0foralla € P§ if and only if p+7r >0
and —9p? + 12p + 12¢ + 12r + 8 > 0.

(4) follow from P35 = F(C1) U F(P,). O

Proof of Theorem 1.1(1), 1.2 and 1.8(1). Let ty := of — 25604, t1 := 0209 — 960y,
to = 0'% — 3604, t3 := 0103 — 1604. Then sq = tg — 4t1 + 2ty + 4t3, s1 = t1 — 2ty — t3,
So = tg — 2t3 and s3 = t3. Using these substitution for g;, goc and p, we obtain Theorem
1.2.

Take f = poso + p151 + p2s2 + p3s3 = qoto + qit1 + gol2 + g3tz € %2?4- Since tg =
So + 481 + 659 + 12583, t1 = S1 + 289 + 5s3, to = so + 2s3 and t3 = s3, we have pyg = qq,
p1 = 4q0 + q1, P2 = 6qo + 2¢q1 + g2, and ps = 12qp + 5q1 + 2¢g2 + q3. Substitute these for p;
in disce, and discp, of Lemma 3.7, we obtain d; and ds of Theorem 1.8(1). Theorem 1.1(1)
follows from these. 0

Proof of Proposition 1.7(1). Let f(z,y) := gi(z,y,1,—x —y — 1)/(t +3)3 for t €
PL — {—3}. If g, is reducible, then f is also reducible. By
0
5/ @) =22z +y+ 1)@ +ay+y? +x+3y+1)

and so on, we have

Sing(Ve(f)) = {(=1: —1:1), (=1:0:1), (0:1: 1) }.
Moreover, these are acnodes. Assume that f = gh. If degg = 1, then # Sing(Ve(f)) = 4
or # Sing(Ve(f)) € Ve(g). This cannot occur. Thus, g and h are irreducible quadric curves

which intersect transversally. Then, # Sing(Vc(f)) = 4. Therefore, V(f) must be an
irreducible rational quartic curve. (]

Proof of Corollary 1.3. &(P5%) C Y44 is already proved. Since, any element of P5%
can be written as a sum of some elements in &(P5%), we have P35 C Ly 4.

Assume that 3f € &(P5%) N E(Pyy) # 0. f is SOS, since E(PFY) C Xy4. Since,
f € &E(P44), we have f € E(X44). Thus, there exists g € Hy o such that f = g2. Then
Vr(g) = Wr(f). Since #Vr(g:) > 2 and #Vg(p) > 2, we have #Vg(g) > 2. Such conic g
satisfies dimg Vir(g) > 1. But, Vg(f) is a finite set. 0

3.3. The PSD cone ?Z?j

In this subsection, we shall study ?Z?I = P(P3, H3%). The aim of this subsection is
to prove the following theorem.
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Theorem 3.8. (I) For a monic

J=80+ps1+qsat+rss€ f}vfi?z;,

(a) > 0 for all a € R% if and only if the following “(1) or (2)” and “(3) or (4)” hold:
1) p<—4 and p* < 4q—8.
2) p>—4and 2p+q+2>0.
3) p< —2/3 and 9p* < 12p + 12q + 12r + 8.
4) p> —2/3 and 3q + 3r > 1.
(IT) AIl the extremal elements of ﬂ’j?j are positive multiples of f¢* (0 < t < 5), §¢
(b<t<o0),p==s2— 83, q1 = 81 — 282 OI (3 = S3.
(III) The following set is a test set for (P3, }CZ?I )

{t1:1:1) e P [t >0} U{(0:0::1) € P3| t >0}

f
(
(
(
(

This theorem will be proved after Lemma 3.16.
Essentially, we use the same symbols as the previous subsection, but there are some

changes. Let A :=P% : (ap: a1: az: as), on = 5% (P%) = X(P3, H5%) C P((35%)Y). As
§3.2, put Dy := ¥(Dy), DF := U(D{) c Dy, P, := (2 3:1:1), Cf = U(CH)U{P} C O,
CFf :==U(CS) C Oy, C;:=U(C;) for i = 3, 4 and P := U(P;) for j = 3, 4, 5. Note that
Py =(1:2:1:1) = 95%(0,1,1,1),
Py = (2:2:1:0) = ©5%(0,0,1,1),
P; = (1:0:0:0) = 3%(0,0,0,1).

Lemma 3.9. Let Z := IP’i)’r/64 — C’f — C’; — {]51, Ps, Py, ]55}.
1) :P3 /6y — XSO+ is continuous bijective map and ¥ : Z — V(7)) is an isomprohism.
( + ]
(2) AO(XEB;F) - {P?n Py, P5}7 Al(Xi,glJr) - {Cf_’ C;_a Cs, 04}7 A2(X221+) - {DOa Di’_},
AXFY) = {Int(X550)}.
Proof. (1) We use tha same symbols with the proof of Lemma 3 5 Note that EgNAf =

(). So, it is enough to show that <I>4 ), is injective on AF N U . It is enough to show
TEG,

Oh;
that ®3°) is injective on P4 N D]. It’s Jacobian is equal to J(x1,x2) := det <8 Z) ,
1<4,5<1

where h;(z1,x2) := s1(z1,22,1,1)/s0(x1,22,1,1) (i = 1, 2). Using PC, we have
Az =Dy = D(x — y)w(z,y)
80(%%171)3 7
1
w(z,y) = g (@+y-2'@+y+2?+ @ -1 B +y)* +28(x+y) +12)
+4(z —y)*(+y—2*((x+y)* +6(z +y) +4)).

Thus J(z, y) > 0 on P2 N D}, and J(z, y) = 0 only at points of the form (x:1:1:1) or
(Liz:1:1) or (z:2:1:1). Thus ¥ : Z — ¥(Z) is an isomprohism.

(2) follows from Proposition 3.3(3) and the proof of Lemma 3.5. O

'](xay> -

Lemma 3.10. (1) 9P5% = F(C;) UF(Cs) UF(Ca) UF(Ps) UF(Py) UF(P).
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(2) Take f € 9—(3?4. If f(x,1,1,1) > 0, f(0,z,1,1) > 0, f(0,0,2,1) > 0 for all z > 0,
then f € H5’,

Proof. (1) Int(ngj), F(Dy) and F(D;") are not face components of iPSO+ by Theorem
2.16. F(Cy) is not also a face component of P OF, because Cy is an open line segment (P,
Py). Thus, we have (1).

(2) Let

Af ={(t:1:1:1) e P | t > 0},
AT -:{ (t:t:1:1) € P3| 0 <t < 1},
={(0:t:1:1) € P} | t > 0},

= {(0:0::1) € P} | t > 0}.
Note that ®3%(AF) D C;f (z = 1 2), and @3 (A, ) D Cj (j =3, 4). By Corollary 1.3 of [22]
or Corollary 2.1 of 23], we can choose AT U AT UAsU Ay as a test set for (P3, H35%)). Since
F(C5) is not a face component of ‘J’Z?j and P € O, Py € Cls(C3) NCls(Cy), we can omit
AJ from the test set. Thus, if f € %2?4 satisfies f(z, 1,1,1) >0, f(0, z, 1, 1) > 0 and f(0,
0, x, 1)ZOforalleO,thenfe?Z?j. (]

In fact, F(C3) is not a face component, and we can omit Az from the test set. But it
will be proved later. We summarize here what C;", Cs and Cy are.

Lemma 3.11.

(1) Zar(Cf‘) is a conic defined by x3 — 2x129 — 3woT2 + 325 = 0, 15 — 23 = 0. Especially,
Zar(Cy") is nonsingular. The ends of C{" are Py and Ps.

(2) Zar(Cs3) has a cusp at Ps3. The ends of C3 are P, and Ps.

(3) Zar(Cy) is a conic defined by x2 — 2235 — xowy = 0 on the plane Vg (x3). The ends of C,
are Py, and Ps.

Next, we shall study f¢* (0 <t <5), f¢ (5 <t < o), p =83 — 83, q1 = 81 — 259, and
g2 = s3. Note that

ab _

¢ (3s0 — 2(t + 1)s1 + 2(2t — 1)s2 + (£* + 3)s3),

— | =

fi = —(9s0 — 6(t + 1)s1 + (t* + 2t + 19)s2 + 2(t* + 5t — 8)s3),

Ne)

and ¢ = f¢. Put f<, := so + 2s3. Since <, = p + 3q2, §S, is not extremal. The author
studied ®§,(t:1:1:1) € F(CY), dividing three cases (a) 0 < ¢t < 1, (b) 1 <t < 5 and (c)
t > 5. The symbol ¢ stands for cases (a) and (b). For u > 0, let

he = 3u?sp — 6u(u® + 1)sy + 3(u* + 4u® + 1)s9 + 2(3u* + 3u® + 2u® + 3u + 3)s3.
If t = (3u? — u+3)/u, then S = 3u?fS. So, hS is not a new polynomial, but it is convenient

to study F(Cy) for the property hS (0, 0, u, 1) = 0.
We shall denote the local cone of ?Z? at the point (t:1:1:1) € P% by L and the

local cone at the point (0:0:¢:1) by £&4.

Lemma 3.12. ¢ (0 <t <5), ¢ (5 <t < 00), p, q1, and qq are extremal elements of
?Z?j . These are characterized as follows:
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(1) Let 0 <t <lorl<t<5. If f Py satisfies f(t, 1,1, 1) =0 and f(0, 0, 1, 1) =0,
then there exists o € R, such that f = af®.

(2) If f € P satisfies foq(1, 1,1, 1) = 0 and f(z, x, 1, 1) = 0 for all 2 > 0, then there
exists a € Ry such that f = af$b.

(3) Assume that t, u € Ry satisfy 3u® — (t+ 1)u+3 = 0. If f € P, satisfies f(t, 1, 1,

1) =0 and f(0, 0, u, 1) = 0, then there exists a« € Ry such that f = aff.

(4) If f € P5°y, satisfies (0, 0,0, 1) =0, fa(0,0,0,1) =0 and f(x, 1,1, 1) = 0 for all
x>0, then there exists o € R, such that f = ap.

(5) If f € P5° satisfies f(0,1,1,1) =0, (0,0, 1,1) =0 and f(0, 0, 0, 1) = 0, then there
exists a« € Ry such that f = aq;.

(6) If f € P3Y satisfies (0, 0, x, y) = 0 for all z, y € Ry, then there exists a € Ry such
that f = (2.

Proof. We shall show that §¢* (0 < 1 < 5), f¢ (t > 5), p, q1 and g2 belong to ?Z?j.

Since
. 1 2e —1)*\* | 2(16 —2)(@ — 1)
tb(o,x,1,1)—3x(aﬁ+2)<<t— (@ +2) ) + (z +2)2 )

we have §¢°(0, z, 1, 1) > 0 if z < 16. On the other hand

1
a0, 2,1,1) = g:,:(18(25 —t)* + (* + 120(5 — t) 4 1575) (z — 16)
+ (405 — t) +120) (z — 16)2 + 3(z — 16)3),
we have §¢°(0, z, 1, 1) > 0 for x > 16. Similarly,

@(g,1,1,1) = (1‘ —t)}(z —1)2 >

(0,0,2,1) = :c—l (( t_2> ;(5—t)(1+t)>20,

f;&:(xulvlvl) (Hf—t) (x_12 0,

£(0,2,1,1) = %(2x+ 1)? << (z (Qx) 4(_61:10)24- 5)) n 24x(z — 1()2$(i4i;)(3x+2)> >0,

§(0,0,2,1) = ;(3:1; —(t+ 1)z +3)* >0,
h¢(0,0,2,1) = 3(x — u)?*(ux — 1)? >0,
qi(z,1,1,1) = 3z(z — 1) > 0,

q1(0,2,1,1) = 2z(z — 1)* > 0,
q1(0,0,2,1) = z(x — 1)*> > 0,

q2(z,1,1,1) = 3(z — 1) > 0,
q2(0,2,1,1) = x(x +2) > 0,

q2(0,0,z,1) =

Thus §¢°, f;, q1, 92 € fPSOf
The left part can be proved similarly as the proof of Lemmma 3.6.
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(1) Consider a system of equations f(¢,1,1,1) = 0, f.(¢,1,1,1) = 0, f(0,0,1,1) =0
instead of (*) in Lemmma 3.6. Then Ap = 0 become

(t— 122 +2t+3) 3¢t—1)2t+2) 3(t—1)2 3@¢t—1)2\ [P0 0
( A3 — 1) 9(t2 — 1) 6(t—1) 6(t—1) ) p1 ( ) .

2 9 1 0 b2
P3

Using Mathematica, we can check Ker A = R - §2° if t # 1. f,(¢,1,1,1) = 0 follows from
f(t,1,1,1) = 0if f e PO

( ) Consider faaa(]-a 1,1, 1) =0, f(oa 0,1, ]-) =0, fa(0707 1, ]-) =0.

(3) This case is slightly complicated. Let t = (3u? — u + 3)/u and consider the system
of equations f((3u? —u+3)/u,1,1,1) =0, fo((3u? —u+3)/u,1,1,1) =0, f(0,0,u,1) =0.
Then Ap = 0 become

(t—1)2(#2+2t+3) 3(t—1)2(t+2) 3(t—1)2 3@t—1)2\ [P 0
( 483 — 1) 9(t2 — 1) 6(t—1) 6(t—1) ) P1 ( ) .

ut +1 u(u? +1) u? 0 p2
p3

Using Mathematica, we can check Ker A =R - §¢.
(4) Same with (5) of Lemmma 3.6.
(5) Consider f(0,1,1,1) =0, f(0,0,1,1) =0, f(0,0,0,1) = 0.

(6) Consider f(0,0,0,1) =0, f(0,0,1,1) =0, f(0,0,1,2) = 0.
Each A of the cases (2), (5), (6) are as follows:

24 18 0 0 3 6 3 3
2 A=[2 2 1 0], G) A=[2 2 1 0], (6
0 2 0 2 1000

Lemma 3.13.
(1) 2 e F(CH)NF(Py) and L =Ry -f8 + R, -pfor0<t<lorl<t<5.
(2) ¢ € F(CNTF(Cy) and LE* =R -f5+Ry-p fort > 5. Moreover, LI+ = R, -hS+R, o
foru >0 with t = (3u? —u + 3) /u.
(3) G&"C’l)ﬂ.‘?(Pg)ﬁff"(PQ
(4) fs =5 = f§ € F(C1) N F(Ca) NF(Py).
(5) 5, € F(C1)NF(Cy) N F(P5).
(6)
(7)
(8)

o O O
N——

S

I
~
—_

i
—_
Ol\DO
B O

p € F(Cr)NF(P3) NF(Fs).

q1 € F(P3) NF(Py) N F(Ps).

q2 € F(Ca) N F(Py) N F ().

Proof. 1f F(D) (D € A(Xi?j)) is a face component of ?Z?j, then dimF (D) =
dim(@?i%) = dim f]’fl?j —1=3. So, if D1, Do, D3 are distinct elements of A(XZ,OZ'), and
F(D;) (i =1, 2, 3) are face components, then dim (F(D;) N F(Ds)) = 2 and dim (F(D1) N
F(Dy) N F(Ds)) = 1.

Now, we shall prove (1)—(8).

(1) Assume that 0 <t < 1 or 1 < ¢t < 5. By previous lemma, we have §* € L& NF(P,)
for 0 <t < 5. Since dim £ = 2, we have L&' =R, -f% + R, -p € F(C1),
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(2) Let u > 0 and t = (3u® — u + 3)/u > 5. By previous lemma, f¢ € F(C1) N F(Cy).
Since dim £5* =2, L4+ =R, - h¢ + R, - q2. As (1), we have L& =R, - f¢ + R, - p.

(3)—(8) can be proved similarly. O

Note that f¢* € F(C5), because §¢°(z, z, 1, 1) = 0 for all z € R. By Lemmma 3.6(2),
we have F(Cy ) = R, - f¢b. This also implies that F(Cy ) is not a face component.
Using the above lemma, we shall determine the structure of the face components F(C;"),

F(Cy), F(Ps), F(Py) and F(Ps).

Lemma 3.14. For f, g € K3, let Fan(f, g) := Ry - f + Ry - g be the fan whose edges
are f andg Put
=Ry - {f°]0<t <5} CHY, We=Ry - {ff[t>5} UR:-fS.
Then the fo]lowmg hold.
(1) 0F(C;) = W U We U Fan(fS,, p) U Fan(p, fab).
(2) 0F(Cy) =WeuU Fan(f5, q2) U Fan(qz, f<).
(3) 0F(P3) = Fan(f&®, q1) UFan(qy, p) UFan(p, f&°). That is, F(P3) is a triangle cone with
edges &%, q; and p.
(4) 0F(Py) = W U Fan(fs, q2) U Fan(qa, q1) U Fan(qy, §2°).
(5) F(Ps) is a triangle cone with edges p, q1 and qz. Note that f&, € Fan(p, qz2), and Fan(p,
fo) = F(P5) N F(Ch), Fan(fs,, 92) = F(P5) N F(Cy).

ab web fs
9:(01):< f57foovp>
3:(04) = <f57 foo7 CI2>
(i a2 F(Ps) = (75", a1, p)
F(Py) = (j&, fs, g2, q1)
S F(Ps) = (p, q1, q2)
p

Fig.3.1. P

By the above lemma, we know that 89’3(” is enclosed by F(C;"), F(Cy), F(P3), F(Py)
and F(P;). We don’t need F(C3). See Fig.3.1. Thus, we have:

Lemma 3.15. 9P = F(Cf) U F(Cy) UF(Ps) UF(Py) UF(P5), and E(XJ5") C
C{ UCyU{P3, Py, Ps}. Especially, F(C3) is not a face component of TSO+.

Proof of Theorem 1.9(2). Put Q, := A] U A4. By Theorem 2.10, it is enough to show
that ®3%(Q1) D Cf UC, U {Ps, Py, Ps}. But this is clear. O
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Geometrically, C3 — {P5, Py, Ps} is included in the interior of the convex closure of
ngﬁ So, any f € fPSO+ cannot satisfy f(0, z, 1, 1) =0 for x > 0, x # 1.

Theorem 1.4 is also proved from the above results.

Finally, we shall study discriminants discp = disc(D) for D = O}, Cy4, P3, P, and Ps.
We use (po, p1, P2, p3) as a coordinate system of 9(2?4 as before. (po, p1, p2, p3) corresponds

3

to Zpisi € f}C‘f&

i=0

Lemma 3.16.
disc(CY") = 8170 9pT + 12pop1 + 12popa + 12pops,
diSC(C4) = p% + 4])0])2,
disc(P3) = po + 2p1 + p2 + 3,
disc(Py) = 2po + 2p1 + po,
disc(Ps) = po.

Proof. disc(ClJr) = disc(C1), since Zar(C’f) = Zar(Ch).

3
If P = (co:ciieaics) € AO(?Z?I) then disc(P ZczpZ Thus we have disc(F;)
=1

(i =3, 4, 5).

We shall study disc(Cy). Take f = (1/3u®)b¢ + vgy € F(Cy) (u > 0, v > 0). The
coefficients of f are p1/po = —2(u? + 1)/u, pa/po = (u* + 4u? + 1)/u?, p3/po = 2(3u* +
3u + 2u? + 3u + 3)/(3u?) + v. Eliminate u and v from these relations. Then we have
disc(Cs) = —8pj — pf + 4pops = 0. [

Proof of Theorem 3.8. This proof is almost completed. What we should do is only to
observe the signature of discriminants. Then, we find that we can use p+ 4 and p + 2/3 as
separators to describe ?c0+ as a union of basic semialgebraic sets as (1)—(4) of Theorem

3.8(1). 0

Proof of Theorem 1.1(2), 1.4 and 1.8(2). This is same as the proof of Theorem 1.1(1),
1.2 and 1.8(1). 0

Proof of Proposition 1.7(2), (3).(2-1) Consider the case 0 <t < lor 1 <t < 5. Let
F(z,y,2) =3z, y, z — 2 —y, —2), and f(z,y) := F(z,y,1). If {2 is reducible, then f
is also reducible. Consider the real curve I' := Vg(F) C P4. Note that f(y, x) = f(z, y).
Since

f(x,0) = f(0,2) =8(t+ 1)(2* —z+1)* > 0,
F(1,0,2) = F(0,1,2) = 8(t + 1)(2* — 2+ 1)* > 0,
I' has at least three connected components I'y, I'y, I'y in the 1-st, 2-nd and 4-th quadrant.

I'y, 'y, 'y are all bounded. This implies I' cannot contain a line. Moreover, I cannot be a
union of two quadric curves. Thus V¢ (F) must be an irreducible curve.
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(3) Consider the case t > 5. Let G(z,y,2) := 9f¢(z, y, z — x — y, —2), and g(z,y) =
G(x,y,1). Then,
g(z,0) = g(0,2) = (t+7)*(2* —x +1)* >0,
G(1,0,2) =G(0,1,2) = (t+ 71)*(z* — 2z +1)? > 0,
g(1,1) = g(1,-1) = g(—1,1) = —32(t* + 2t — 11) < 0.
Thus V¢ (G) must be an irreducible curve.

(2-ii) Consider the case t = 1. Assume that {{* is reducible. Since

1
lllb($7y7 17 1) = g(w - y)2(3[E2 + Q.I'y + 3y2 —8r — 8y + 8)7
4 must be product of two real quadrics. But this is impossible. since (f¢*)qa(1,1,1,1) = 0.

0

Proof of Proposition 1.5. For f; = (0 <t<lorl<t<5)or f =f¢ (t >5), let
Fi(a,b,c,d) := fi(a?, b2, ¢%, d*), and consider the zero point set Z; :== Vi(F;) C P3.

Let u be a positive root of t = (3u? —u + 3)/u if t > 5, and u := 1if 0 < t < 5.
Remember that f;(1,1,1,1) = fi(t,1,1,1) = £;(0,0,u,1) = 0. Let s := v/t and v := \/u.
Then Fy(£1, £1, £1, 1) = Fy(+s, £1, £1, 1) = F(0, 0, £v, 1) = 0. Thus, if 0 < £ < 1 or
1<t <5, then #7;, = 52. If t > 5, then #7;, = 64.

Assume that F; € ¥4g5. Then, there exists r € N and g;,..., g, € Hy 4 such that
Fi=g¢2+---+g2 Ifa€ Z;, then gi(a) = --- = g,(a) = 0, since F;(x) > 0 for all x € P3.
Note that dim Hy 4 = 35. So, let’s find 35 points a; € Z; (1 < i < 35) such that there exists
no g € Hy 4 — {0} which satisfy g(a;) =0 for all 1 <37 < 35.

Let a; := (1:1: —1: —1), ag := (1: 1: 1: s), a3 := (—s:1:1:1), a4 := (1 —s:1:1), a5 =
(1:1: —s:1), ag := (1:1:1: —s), a7 = (s:—1:1:1), ag := (s:1:=1:1), ag := (3.1.1.— ),
app = (—1l:is:1:1), a;; == (Lis:—1:1), a;p == (l:s:1:—1), aj3 = (—1:1:5:1), =
(I:=1:s:1), ay5 := (1: 1:s: =1), ayg := (—1:1: 1:8), a7 := (Ll: —1:1:s), ayg := (1: 1: — 5)
ajg = (s:1:—1:=1), agy = (s: —1:1:=1), ag; = (s:—1:—1:1), agy = (—1:s:1:—1),

(—l:s:—1:1), agy = (Lis:—1:—1), ags = (—1l:—1l:s:1), ags = (l:—1l:s:—1),
)
)-

agy = (—lilisi—1), agg := (Ll:—1:—1:s), agg := (—1l:1:—1:s), agy := (—1:—1:1:9),
azy := (v:1:0:0), agy := (v: 0: —1:0), agz := (v:0:0: —1), ag4 := (0:v:1:0), ags := (0: v:0: 1
Take 35 monomials ey,.. ., ess as a basis of Hy 4, and denote g = cieq + - -+ c35e35 € Ha 4.
Let A = (a;,;) be 35 x 35-matrix such that a; ; = e;j(a;). Then

det A = +549755813888 t13/2(t — 1)23(t 4 3)6
(1 4+t —2u)(tu +u — 2)(3u® —ut —u —1).

Note that 3u? —ut —u—1= 3u® —ut —u+3)—4=-4#0,tu+u—2=3u?>+1> 0 and
u > 0. There exist no real solutions 1+t — 2u = 0, t = (3u? — u + 3)/u. Thus det A # 0 if
t >0 and ¢t # 1. This implies there exists no g € Hys 4 — {0} which satisfy g(a;) = 0 for all
1<¢<35. O

Proof of Proposition 1.6. Let t > 5. We shall show that f§ S(TI 4)- This is equivalent
to bS, € 8(?14) for all u > 0.
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35
Let eq,..., egs be all the monomials in Hy 4, and denote f € Hy 4 as f = Zciei
i=1
(¢; €R). Let t := (3u®? —u+3)/u. Let K be the subspace of all the f € 3, 4 which satisfies
the following 34 equalities:

fa(1,1,1,1) =0, f5(1,1,1,1) =0, f(t,1,1,1) =0,  fa(t,1,1,1) =0,
fb(talalal): ) f(17t7171):07 fa(latalal):()? fb<1at7171)207
fe(L,t,1,1) =0, f(1,1,t,1)=0,  fo(1,1,£,1)=0, fp(1,1,¢,1) =0,
fo(1,1,6,1) =0, f(1,1,1,8) =0,  fu(1,1,1,8) =0, fy(1,1,1,¢) =0,
fe(1,1,1,t) =0,  f(0,0,u,1) =0,  f(0,0,u,1) =0, f(0,%,0,1) =0,
fo(0,2,0,1) =0, f(0,u,1,0)=0,  fp(0,u,1,0)=0, f(u,0,0,1) =0,

fa(u70’0’]‘) :07 f(uﬂoﬂ]"o) :0’ f(u’]"O’O) :0’ fa(u’]"oﬂo) :0’
£(0,0,1,u) =0,  f(0,1,0,u) =0, f(0,1,u,0)=0, f(1,0,0,u) =0,

f(1,0,u,0) =0,  f(1,u,0,0) =0.
The system of these equation can be written as Ac = 0 by a certain 34 x 35-matrix A,
ie. K = Ker A. Add the vector (1, 0,..., 0) to the bottom of A, and make 35 x 35-matrix
B. Then

det B = +t(t + 3)(t — 1)®u'?(u?® — 1) (u? + 1)2(12u* + 12u® + 21u® + 10u + 9) # 0.
Thus dimKer A = 1, and Ker A = R - hS. This implies hS € 8(?14). O

It seems that §2° ¢ 8(3’14) for t < 5. But the author does not have proof.

Section 4. Cubic Inequalities of Four Variables

4.1. Structure of ?Z?;

In this section, we shall study ?j?; = P(P%, H3%). We use similar symbols with §3.
To state the main theorem of this section we need to fix some symbols. Put

3
S3 1= E ai, Sa10 = E aiait1, Sao0a = g azaiiz,
1=0
. 2 .
S1,2,0 = E aja;+3, Si1,1:= g ;i1 1Gi42,
i=0 i=0
here we regard a;+4 = a; for all ¢ € Z. We choose sg := S3 — S1,1,1, 51 := 52,10 — S1,1,1»
Sg = 52’0’1 — 517171, S3 — 51’270 — 51’1,1 as a basis of 9{401(,)37 and define (I)Z??) . ]P)i e —

P3 by ®%(a) = (so(a) : s1(a) : sz(a) : ss(a)). The coordinate system of A = P} is
denoted by (ag:a1:as:ag) or (a:b: c:d), and the coordinate system of P((35%)") is denoted

by (zo:x1:xe:x3). We represent f € 9'C43 as f = poso + - + p3s3 (p; € R), and the

coordinate system of 9-C4’3 is denoted by (po, p1, p2, p3). If f € ?Z?;r, then sg > 0. When

po = 1, we say f is monic. When py = 0, we say f lies at infinity. We denote
ﬂv’j?; = {f € ?C(H ‘ fis monic}.
The characteristic variety is written by X{%" := ®%(P3). Let
A ={(ap:a1:a2:1) €P} |0<a; <1 (i=0, 1, 2)},
={(abra:b) € P} | a, bRy},

{ao ai:as:ag) GIP’ ‘a0+a2—a1+a3}
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By = {(0:s:t:1) € P} | s >0,¢>0, (s,t) # (1,0), t #s+ 1},
Bio':{()'s:t:u)E]ID | (s:t:u) € P},
S = 0% (Bo) C X5%",
_{cI> (0:0:4:1) € P3| £ >0} € X555,
L= {®%(0:4:0:1) € P} | t > 0} € X555,
Py :=(1:0:0:0) = @303(0 0:0:1) € X%,
Py = (1:0:1:0) = {®%(a: b:a:b) € P} | a, b € Ry} € X%,
Py :=(2:1:0:1) € X£03+'
We denote F(P;), F(C), F(S) by Fp,, Fc and Fs. As we will prove in Lemma 4.4,

‘J’i?gr =TFsUFcUTFp UFp,, So, we need two discriminants discc and discg which are
defining equations of Zar(F¢) and Zar(Fg). discg is somewhat complicated polynomial.

discc(po, p1,ps) = 27pg + 4popt + 4pop3 — pips — 18pgp1ps = Discs(po, p1,p3: Po),
ds(po,p2,q,7)
= (po — p2 — @)*(13p§ — 2pop2 + P3 + 2p0q + 2p2q)°
(104p§ + 100pp2 — 4pop3 + 36p5a + 36pop2q — pod” — p2q° + 8¢°)
+ (17173pg — 121pSps — 5639pgp3 + T651psps — 3489pips + 469p2pS
— 45pop$ + ph 4 6250pSq + 10028p0p2q + 3142pp3q — 1368p3pSq — T46pipsq
— 20popiq — 6pSq + 898p3 g% + 7230pipaq® + 1748p3p2q> — 1572p2p3q>
— 86popaq” — 26p3q” + 2780pyq° — 368pgp2q” + 1448psp3q” — 496popsq”
+ 28p3q® + 518p3q* + 1018p2pag® — 190pepiq™ + T8paq* + 164p2g°
+ 168pop2q° + 4p3q°)r”
+ (2495pg — 317pgp2 — 1886p;p5 + 842pgp5 — 81pops + 3ps + 1768p4q
+ 4Apip2q — 988pp3q + 380popiq — 12p5q + 291piq” + 897pgp2q” — 463pop3q”
+83piq® + 226p3¢” + 92pop2q® — 38p3q° — poq* — p2g*)r
+ (95pg + 65pgp2 — 43pop3 + 3p3 + 98p5q — 20popag — 6p3q — 4pog?)r®
+ (—3po + p2)r®,

. 1
discs(po, p1,p2,p3) == st(poapmm + p3,p1 — P3).

Since disce(po, p1,p3) has an obstacle branch in the first quadrant p; /pg > 0, ps/po > 0, we
put
_ [disce(1,x,2) (ifx <0orz<0)

de(w,z) =4 (if 2 > 0 and z > 0)
to avoid complexity. de(z,z) > 0 implies disco(1,z,2) > 0 or ‘o > 0 and z > 0’. Thus,
dc(z, z) > 0 defines a convex domain, but disce (1, x, z) > 0 does not. The following n(z,y)
is a nice separator whose property is explained in Lemma 4.10.

n(z,y) := 61 4 62z + 56y + 3222 + 30y — 61>

+ 923 + 42y — 6xy? — 169> + 2t — 4x?y? — 62> + ¢t — 2392

We also need two constants k1, k2. Let k1 := 0.0129074031 - - - be a root of
8178082032° — 5468070842° + 129155640z — 1334201623 + 55608022 — 101762 4 64 = 0,
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and ko 1= 0.0318925844 - - - be a root of
430425372% — 45145142° — 1887692* — 386842> + 411922 — 1142 + 1 = 0.

The aim of this section is to prove the following theorem.

Theorem 4.1. (I) Take a monic f = sg + p151 + pas2 + p3ss € flifjfg. Then, f(a) >0
for all a € Ri, if and only if one of the following holds:
(1) p2 = —1 and 8(p1 + p3) > (p1 — p3)>.
(2) 1< D2 < 3, diSCS(l,pl,pg,pg) >0 and Clc(pl,pg) > 0.
(3) p2 >3, K1(p1 + p3) + Kkap2 > 1, discs(1,p1,p2,p3) > 0, and dc(p1,p3) > 0.
(4) p2 > 3, k1(p1 + p3) + Kep2 < 1, n(p1 + p3,p2) > 0, discs(1,p1,p2,p3) > 0, and
dc(p1,p3) > 0.
(5) p2 >3, k1(p1 + p3) + kap2 <1, n(p1 + p3,p2) < 0, and dc(p1,p3) > 0.
(IT) Let’s denote f = posg + p151 + pase + psss. Then, all the discriminants of ﬂ’j?;r are
discs(po, p1,p2, p3), disco(po, p1,p3), discp, = po, and discp, = po + pa.
(II) If f € HS% satisfies f(0, s, t, 1) >0 for all s, t € Ry, then f € P%.

This theorem will be proved after Lemma 4.8.

Proposition 4.2.
13
50((107 ai, az, a3) = 5 Z(CL? + (1?+1 + CL?_|_2 - 3aiai+1ai+2) >0,
i=0
s2(ao, a1, az,a3) = (ao — a1 + a2 — az)(apaz — aias),

83(a07 a, az, a3) = 81(&0, as, az, a1)7

1 3

so=52= 3 Z(a? +ad + al,, — 3atai1o) > 0,
i=0
3
S0 + 259 = Z(CL%@HQ + a?ﬂ + aia?+2 —3aZa;y1ai42) > 0,
i=0
3
_ 2 2 2
281 + 89 = Z(ai Qi1 + Qi1 Gip2 + aj0a; — 3a;a541a542) > 0,
i=0
3
283 + 8o = Z(CL,‘CL?_H + ai+1a?+2 + ai+2a? — SaiaHlaHg) > 0,
i=0
13
e Z(a? +a} +aj,, —3ata;11) >0,
0

i

Wl

w |l

1
3 (a? + a§+1 + a?+1 - 3aia?+1) >0,
i=0
51+ 83 = (ap + az)(ar — a3)® + (a1 + as)(ag — az)* > 0.

S0 — 83 =

Proof. These follow from direct calculations. 0
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Thus XZ?; is a subset of a cube defined by —1/2 < s1/s9 < 1, —1/2 < s9/s9 < 1,
—1/2 < s3/s¢9 < 1. Note that s1, s and s3 are not PSD. For example s;(1/100, 1/2, 1/10,
1) = —229/20000 < 0. The rational map ®§% : P3 --- — Xiozj splits as

. ‘IJCO
o Py T PR/ (2/47) =3 X
It is easy to see that W% : P3 /(Z/4Z)--- — X Z?; is a birational map, but is not holomorphic
at a singular point 7(1:1: 1: 1). We shall provide more precise structure of Xff?; at Lemma

4.4. The following e (ag,a1,az,a3) € H% (s, t € R) has a possibility to be an extremal
element. But there exists (s, t) such that e, is not PSD.

Proposition 4.3. For (u:v:w) € P2 — {(1:0:1)}, let

90 (u, v, w) = —v(uwv?® — (u+w)(u? +w*)v + uw(u — w)?),
gt (u, v, w) == uv* — w(u+ 2w)v® — 2uw(u — w)v? — u(2u® + v?w — 3w)v + w(u® — w?)?,
g2 (u, v, w) = v(v? + (2u® = 3uw 4 2w?)v? — (u+ w)(u® + W) + (u — w)?(u? — uw + w?)),
gg(”) v, w) =0 (w7 v, u)v
3
how(@) =) gl (u,0,w)si(a)
=0

For simplicity, put g;(s,t) := g(s, t,1) and e, ;(a) := e/, | (a). Then the following hold:

(1) el =l = (u—w)(v? = (u+w)?)((u—w)? + 2(u + w)v 4+ v?)(s1 — s3).

(2) e?@,o = teg,t,l — (= 1)(t* + 1)%s2.

(3) Assume that s >0,t>0,t# s+ 1, go(s,t) >0 and es+ € ?j?;r. If f e TZ(EF satisfies
f(0,s,t,1) = 0, then there exists a > 0 such that f = aes . Especially, ¢5; € S(TZ?QL).

(4) Assuzge that s =0,t > 0,t # 1 and ¢o¢ € ?Z?SJF. If fe ?Z?;r satisfies f(0,0,¢,1) =0
and %J"(O,O,t7 1) = 0, then there exists o > 0 such that f = aeo:. Especially,
e, € E(PL).

(5) Assume that u > 0, v > 0, and ¢, € Tj?;. Iffe Tj?; satisfies f(0,u,v,0) = 0

0

and %f(O,U,U,O) = 0, then there exists o > 0 such that f = 048371170' Especially,
eZ,U,O € 8(?401,0;)

(6) Ift = s+ 1, then

essr1(a,b,¢,d) = (s + 1)(s* + 1)*(a—b+c—d)*(a+b+c+d) (%)
= (5 + 1)(82 + 1)28071((17 b7 ¢, d)

If f e f}’fl?gr satisfies f(0,0,1,1) = 0 and f(0,1,2,1) = 0, then there exists a > 0 such
that f = aeg,1. Especially, ¢s 541 € 8(?2?;).

(7) If go(s, t) <O, then es; ¢ S(TZ?;) and —es; ¢ 8(?2?;‘).

(8) e1,0 = ¢}, is a zero polynomial.

Proof. Denote f,(a,b,c,d) = (ja (a,b,c,d) and so on.

(1), (2) and (8) follows from direct calculation.
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(3) Assume that f = poso + p1s1 + p2sa + p3ss € TZ?; satisfies f(0,s,t,1) = 0. Then
f5(0,5,¢,1) = 0 and f.(0,s,¢t,1) = 0 hold. Let ap; = s;(0,s,t,1), a1; = (s5)5(0,0,¢,1),
as; = (55)¢(0,s,t,1), and A = (a; ;). Then

S34+t3—st+1 t(s>—s+t) s(l+s—t) t(st—s+1)
A= 352 —t (25 — 1)t 2s —t+1 tt—1)
3t2 — s s2 — s+ 2t —S 2st —s+1
Let B be the square matrix add (1,0,0,0) above A. Then det B = (t — s — 1)go(s,t) # 0.
Note that ¢;; € Ker A. Thus, Ker A =R - ¢, ;.

(4), (5) Same with (3).

(6) (%) follows from direct calculation. Assume that f € fPZ?;F satisfies f(0,0,1,1) =0
and f(0,1,2,1) = 0. Then f(0,0,1,1) = 0, f,(0,0,1,1) = 0 and f,(0,1,2,1) = 0. then
fc(0,0,¢,1) = 0 holds. By the same method as (3), we have the conclusion.

(7) We may assume ¢ # s+ 1. If eg; € S(TZ(EF), then go(s,t) = ¢54(0,0,0,1) > 0. On
the other hand, ¢s,(0,0,1,1) = (s+1)(t —s—1)?((s — 1)+ %) > 0. Thus —es; ¢ 8(?2?;).

O

The condition that es; € S(ZPZ?; ) will be determined at Theorem 4.13.

Lemma 4.4. Let 1 = (1:1:1:1) e P2, Z := A} — {1} — U 7(E2 U E3) and
TEL/AL

ff%(l'o,ﬂfl,xmx?))
= (23 — xoxyw3 + 23)? — 2o (23 — ;o123 + 23) (22 + 327 — 4y w3 + 323)
+ 23 (25 (2] — 2123 + 23) + 2z0123 (21 + T3)
+ o] — Tadzs + 9x%$§ — 7:01:1:§ + xg)
+ 23 (2z027 — zo(42] + 123 + 223) + (21 + 33) (2] — 3z123 + 23))
+ x3(z3 + 2123 + 73).

Then, the following hold:

(1) @%: AF - = X E?S’L is a birational map whose all the exceptional sets are ®§%(Ey) =
Py and ®%(E3) = P3. ®5%:Z — ®{%(Z) is an isomorphism. Bs ®{% = {1} and we
can regard ®§% (1) as the closed line segments [P, Ps].

(2) Zar(@Xﬁ?j) C Ve(f3), ®5%(Bo) = OXE?SJF and S is non-singular.

(3) A%XEY) = {P1, P}, ANXSy) = {C, (P1P)} and A?(X{5) = {S}.

(4) Let L'Jfgj;t:l) be the local cone of?i?gr at (0:s:t:1). Take (0:s:t:1) € By. Ifes is PSD,
then e, ; € S(IPZ?;) and

cO+
L(O:s:t:l)

If e5; is not PSD, then Lfgizt:l) =0.

= R+ 2R

Proof. (1), (2) and (3) Bs®5% = {1} is trivial. Since ®§%(1,14+b,1+¢,1+d) =
2(P+(b—d)?)+(b—c+d)? : 2+ (b—d)? : (b—c+d)?, c®+ (b—d)?)+ (higher degree terms),
we can regard ®§%(1,1,1,1) is a line segment [P, Ps].

$%(E2) = Py and ®§%(FE3) = Py are obtained by the direct calculation.
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Af is a fundamental domain of ®§%. It is easy to see that ®§%:P3 — P3 is a generically
finite map of degree 4. The Jacobian of @i??) is equal to

Jp:=—(a—b+c—d)?(a—c)?+(b—d)»*(a+b+c+d).
Thus Jp # 0 on Z. Therefore ®§%: Z — ®{%(Z) is an isomorphism. This also implies
SCoX{y, Ccoxy Lc 8X§03+, and {Py, P, Ps} C 0X%'.
We obtain ff? by eliminating a, b, ¢ from z; = s;(a, b, c, 0) (i =0, 1, 2, 3). Using PC,
we fave
<0 (@Zo?)(a b,c,d)) = abed(a —b+c—d)*(a+b+c+d)*((a—c)* + (b—d)*)*

Thus 9X5% C Ve(f§%), and ®§%(By) = OXE?;. Since Jp # 0 on By, we have Sing(S) = (.

Since C = { (t3 —|— 1:t2:0:1) } t> 0}, C is a cubic curve desined by x3 + 23 = zox123,
x9 =0 and (z1 + x3)/xo > 0. Note that C has a node at P; (¢t =0 and o0). But P; (t =1)
is a non-singular point of C.

Since L = {(t* +1:0:¢(t+ 1) } t>0}, L is a line segment (P P,] desined by
3+ 23 = ror123, T2 = 0 and 0 < xz/xo <1.

Thus Sing(X5%) = C U (P1P;) U {Py, P}, This implies (3).

(4) follows from Proposition 4.3(4). O

It is easy to draw a graph of XX’O?)+ using Mathematica. But it may present incorrect
impression. It seems that X :1:03+ is a convex set. But it is not true. The following observation

show us that X£03+ is not convex near (1:0:0:0). Cut (‘9XCO+ by the plane Vg(x1 —xz3). Note
that

(1, z,y, )fa:(2x—3y—1)(2x + 2%y —y — 2?27 — ).
The graph of VR(233 + 2%y — y3 — 22 + 29% — y) is not convex near (z,y) = (0,0). Thus
Xj?j is not convex. This also implies that es; ¢ ?i?; for some (0:s:¢:1) € By.

It is also possible to obtain e, ; by the method explained in Remark 1.28 of [3].

'féf%(:po, x1,T2,r3) and

dx;
hi(s,t) == f;(®55(0,s,t,1)),
ge(s,t) == st(t —s — 1) (s +t+ 1)((s — 1)? + %)%

Let fi(zo,x1,22,23) 1=

Then h;(s,t) = gc(s,t)gi(s,t) (i =0, 1, 2, 3). Thus we have e;; = Zgi(s,t)si. We define

a rational map G° : By --- — }P’(f]{j%) by

GS(O:s:t: 1):= (gg(s,t):gl(s,t):gg(s,t):gg(s,t)).
Note that (0:1:0:1) € BsG. If ¢5; € ?Z?;r, then G°(0,s,t,1) = ¢5; € Fg. We can
extend G to G¥ : 9P} -+ — P(H%) by G¥(2:9:1:0) = GF(y:1:0:2) = G5(L:0:a:y) =
G3(0:z:y:1) == G5(0, z, y, 1).

Lemmma 4.5. (1) 8?20; =Fp UFp, UFsUTFc.
(2) By is a test set of ?C?+. In other words, if f € H§% satisfies f(0,s,t,1) = 0 for all
$>0,t>0, then f(a) >0 for al]aE]Ri.
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Proof. (1) 0P% = |J F(D) by Theorem 2.7(1). Let Ds := Int(X{%") €
DeA(X%h
A3(X§f)3+). Sice Zar(D3) = Py, F(D3) is not a face component.
Zar (F((P1P2))) is two dimensional plane defined by py = p = 0. Thus, F((P1P,)) is
not a face component. Thus we have the conclusion.
(2) By Lemma 4.4(2) and Theorem 2.10, we have the conclusion. O

Note that (III) of Theorem 4.1 follows from the above proposition.

Lemma 4.6. We regard as i]-CCOJr = R* by identifying (po, p1, p2, p3) € R* with

3
Zpisi € }CZ?;. Then,
i=0

) = Ve(po). Thus Fp, = {f € P ‘ f is at infinity }.
2) Zar (Fp,) = Ve(po + p2).

i ( g1(s,t), g2(s,t), g3(s,t)) =0 for all s, t € R.

(s,t), g3(s,t), ga(s, ),gl(s,t)):OforaHs,teR.

disce).

N
o
]
=
Q
——r
Il
E

Proof. (1) and (2) are trivial.

(3) and (4) follow from direct calculation.

(5) follows from study of iP . See §3 of [3].

(6) follows from (3). 0

Now, we shall observe Fp,. In the definition of ¢s;, Remember that ¢; o = 0. In
other word, g;(1, 0) = 0 (i = 0, 1, 2, 3). This ¢, corresponts to Fp,. Put g/>(c) :=

. gi(ch+1,h) . . .
}LIE%T Then Q(IJD (c) =1, Qf() c(c—2), 92 *(c) = —1a9§ (c) = clc+2).

Lemma 4.7. For c € R, let
el = 50+ c(c — 2)s1 — 89+ c(c+ 2)s3,
and ef2 := s + s3. Then the following hold:

() P2egfpzﬂgfsandgfpzﬁgfsﬂgfpl:R+-e502
()83"p2c.’7"5

(3) Fp,NFs=V (po + p2, 8po(p1 +p3)—(p1—p3)2)-
(4) ez € E(PLS) for all c € PL.

Proof. (0) We shall show that ¢ € f]’fl?;r for all ¢ € P}.
Let ca(u,v) := (u—1)2 +v(u+1) and ¢1(u,v) = 2(u — )v(v —u —1). co(u,v) >0 for
u >0, v > 0. Then,
2 2, .22
P ¢1(u, v) (ut1D)((u=1)" +0%)
2(0 1) = > 0.
e.2(0,u,v,1) = vea(u, v) (c—l— 300 (1, v)> + e, 0) >

Thus, f2 is PSD for c € R. ¢z = 51 + s3 is PSD by Proposition 4.2.
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(1) Since ez = %irr%ech+1,h/4h2, we have ¢f2 € Fg. Since ¢f2(1,0,1,0) = 0, we
—

C

have ¢f2 € Fg. Tt is easy to see that ef?2 € Fp and dim(Fp, N Fe N Fp,) = 1. Thus
9:p2 ﬂgrsﬂg:pl :R_;_-QOPE.
(2) We shall determine (Fp, N Fe) — Fp,. Note that

discs (po, p1, —Po, p3) = 2po((po — p1)* + (po — p3)?) (8po(p1 + p3) — (11 —p3)2)3-
Thus let
Vo = {(1,p1,—1,p3) € f}vci?g | 8(p1 + p3) — (p1 — p3)? = 0}.
Then Vg = {(1, ¢(c—2), =1, ¢(c+2)) | c € R}. Each point in Ve corresponts to ef2. Since
Ry -VC UR, -ef2 is a conic closed convex cone, it must agree with F¢, and 0F ¢ is generated
by ef2 (c € PL).
(3) follows from (1) and (2).

(4) Put Dp, := {(po: p1:p2:p3) € P} | po + p2 > 0, 8po(p1 + p3) 2 (p1 — p3)?}. Then
P(Fp,) = Dp,, and ¢.? € 0F p,. Any point of 0Dp, is an extremal point of Dp,.

To characterize ¢, we need an infinitesimal local cone. Let m: X — A = P2 be the

blowing up at (1:0:1), and put ¢’(z,y, 2) := ¢2(z2, yz + 1, 2, 1)/2%. Then ¢&(z,y,0) =
2(cx +y — t)%. This zero locus Vx (cz +y — t, 2) characterizes ef?.

Next we shall study Fg N Fe. Remember that disco is the edge discriminant of X§'§
and X5%". Let

@C = {(173773/72) € :’]icz(’);‘ ‘ Yy > —1 and dc(l‘,Z) = O}

Then D¢ is a closed convex set such that ii’jogr C D¢, and (8?2?; ) NInt(De) C Vr(discs)
by Lemma 4.6. We need the following polynomial to describe the cusp loci of Vr(discg).
fo(a,y) == 4(x +1)* + (y — 3)%,
frs(z,y) =2z +y—1,
fos(x,y) == y® +4x(y +1) — 2y + 13,
P (2, y) = 260403739669 + 153581431744z + 1022555530082 + 57589066562
+ 2375407488z — 2980119168x° + 4722332162° — 11572224027
+173076482° — 438272x° + 409620 4 89440948796y + 32061417248y
+ 81381248642y — 1752888547223y — 20670654722y — 82857254425y
+ 1188607488x%y — 1123184642y — 1559347228y — 1269762y + 819220y
— 223071977286y> — 16231383328xy% — 128333419362%y? + 4037706534423
+ 5505244544219 + 4819181440251 — 26456396825y% + 2189271042712
+ 948224025y + 17612822 4 409621%y2 + 30713189004y> + 8960225536xy>
+ 1770304998422y — 217047462423y — 70851334402 y> — 4728214912253
— 185639219225y — 1124966402y — 39280642°y® — 1351682y
+ 61229381323y* — 326714272002y — 16135419808z2y* — 1936345478423 y*
+ 234743820821 y* + 6684509442°y* 4 11330055682 y* + 4736409627 y*
+ 146432028y — 40004520712y° + 141147909762y° — 9212529922y°
+ 908177529623y + 7117734421y + 6799189762°y° — 1122984962%4°
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— 6821888z y° 4 10688483692y° — 13985488002y + 34571021122%y°
— 113581990423 y° + 5528793621y® — 1345775362°y® — 1862528025 y°
— 870429832y" + 226903552zy” — 7331863042%y" — 486104322>y"
— 35363712z%y" — 121089282 y" — 108565637y° — 133149760xy>
+ 172510422y + 66465602°y® — 28113922%y® + 41474041° + 924099221°
+ 564947222y — 2633623y° + 2233722y'0 + 14165442y + 8494422 y10
+ 121340yt + 168962y + 517y!2.

Note that

discs(1,2,9,2) = frs(2,9)* fos (z,y)? (1623 — 2%y + 18zy — 2 — y* + 18z + 25y + 26).

Lemma 4.8. Regard f}C C P(H$%), and consider on ﬂtff& (1, 2,y,2) 2R3, Then
{QoyuLPUuCi"UCs" U CgusP U Cy**P C Sing (Ve (discs(1, z,y,2))) N fPZO;r c HSL 3

where Qo, L* and C;**? are defined as follows:

(1) Qo= Val(fg,) NVa(z+1) = (1,-1,3,-1) € IPS C HY,

(2) L? is the half line defined by © = z, fr(z,y) =0 andy > —1 in f}vffl??). But L* 08332?; =
{Qo}. y

(3) Let C* be the hyperbolic curve on a plane defined by x = z and fc:(x,y) = 0 in 35,
But C* NP = {Qo}.

(4) Let © = a;(y) be all the four real roots of [ (z,y) = 0 when we regard y to be a
constant where y > 3 and a1 (y) < as(y) < asz(y) < as(y). Note that a1(3) = aa(3) =
a3(3) = au(3) = 1. Then, the following four branches are cusps of S.

O = {(1,01(y), 5, au(y)) € “Co\y>3}

C5" = {(1, aa(y), y, as(y)) € H | y > 3},
C5"” = {(1,a5(y), v, a2(y)) € H5% | y > 3},
CC‘”” {(1,04(),y,01(y)) € Fy | y > 3}

Proof. Let f(z, y, z) :=discs(1, z, y, z) and f, := gi and so on. Sing (Vi (discs(1, z,

Y, z))) can be obtained by solving the system of equations f(z, y, 2) = fa(z, v, 2) = fy(z,
y, 2) = f.(x, y, z) = 0. But it is next to impossible to proceed this calculation. Instead of
it, we eliminate z from f,(z, y, z) =0, fy(z, y, 2) =0, and f.(z, y, 2) = 0. During this
elimination process, we obtain fo,(%,y), frs(z,v), fo:(z,y) and f"**(z,y). Using PC, we
can check {Qo} U L* U CT"*P U C5"* U C5"*P U Cy**F C Sing (Vi (discs(1,z,y,2))). O

Sing (Vi (discs(1,2,y,2))) may has other loci. But we will see that
Sing (Ve(discs(1,z,y,2))) N 85’2?5“ C{Qotu TP UCs" P UCs" P uUCy"?,

during discussion from now.

Proof of Theorem 4.1. We take the section of ?CO+ by the hyperplane
H, = { 1l,x,y,2) € U—C473 } Yy :r}.
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We regard H, as (z, z)-plane. Put
D, = H, NP = {(z,2) € Hy | (1,z,7,2) € P,
De :=DcNH, = {(;U,z) € H, ’ do(x,z) > 0},
Ve :=08Dc = {(2,2) € H, | de(x,2) =0},
V§ = {(z,2) € H, | discs(1,z,7,2) =0} — (C* U L*) N H,.
(O-1) If r < —1, then D, = (), by Lemma 4.6(2).

(0-2) If r = —1, then the condition of (1) of Theorem 4.1 determines the set 5’20; NH_q,
because of Lemma 4.7.

-._ X f?f =0 A
Ve
Ptan
Py
T+z=-2
X = >
N Singurarity L* N L, Py =P :’fa?fx ’
Singurarity d*nH, e discc =0
Fig.4.1 : The case -1 <r <3 Fig.4.2 : The case r=3

(I) When —1 < r < 3, V¢ is as Fig.4.1. Two points C* N H, and L° N H, are all the
isolated singularities of Vr(discs) N Hs. V§ is a smooth curve in D¢ and enclose a convex
set ?Z?;r N H,. Thus,

D, = {(z,z) € R? | discs(1,2,7,2) > 0 and de(z, 2) > 0}.
Thus, the conditions of (2) of Theorem 4.1 determines j)Z’O;r NH,.

(IT) Consider the case r = 3. Let
P2, 2) = a® —daPz + Tat2? — 82323 T2t — da2® + 20
— 17425 — 3422*z — 508z 2% — 5082223 — 34222* — 17425
— 4142* — 712232 — 13322222 — 712223 — 4142%
— 80023 — 432022z — 4320222 — 80023
— 659222 — 1651222 — 659222 — 163842 — 163842 — 11776.

Then discs(1,2,3,2) = —2(z + 2z + 2)2f§ (z,2). As Fig 4.2, Ve(f5) tangents Vo at three
points Pg%", P33 and P3%' = P3%' (these symbols will be explained in (III)). Moreover
Ve(f5') € Dc. Thus,

Djy = {(x,2) € R* | discs(1,2,3,2) > 0 and dc(z,z) > 0},

and the conditions of (2) of Theorem 4.1 determines JV’ZOJ N Hs.
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Note that Vk(f5) N Ve(z + 11.851831---) = (), and Vi (f5) N Vk(z — 20) sonsists of two
points for zg > —11.851831 - - -.

(I1T) Consider the case r > 3. Then, V§ has just four cusps P;*" := C;7**" N H,
(i(r), as—i(r)) (i =1, 2, 3, 4). Since V{§ is symmetric with respect to the line Vi (z — z),
it is enough to consider the part z > .

We observe Fs NFe N :}”C203 Let
Ly :={(0:0:w:1) GIP’i‘wE [0, 00]},
Ly = {(0:w:0:1) € P} | w € [0,00]},
L. = {(0:2:4:0) 6Pi| z:y) € PL}.
Note that aCISPi (Bo) = L,UL,ULS,.
We define a rational map G° : P} ... — P(H{%) just before Lemma 4.5. Since
go(w,0) =0, G5(L,) N UzCi?g = (. Since G°(0: 2:y:0) = G°(0:0: /y: 1), we have G¥(L,) =
G®(L,). Since

diSCC (90(07w)7 g1 (va)7 93(07w)) = 07
we have G°(L,) C Vg(disco) N Ve (discs). Put Ct" .= G5(L,).
Similarly, we define a rational map G’ : P3 --- — P(H{%) by

G'(0,2,y,1) := (go(,) : g3(2,y) : g2(2,1) : 912, 9)).
Let C'%" := G'(L;). Then C'" U C™"™ C Vi(disce) N Vr(discs).
Put H>3 := {(1,z,1,2) e HY, | r>3}. Weregard H>3 CU-C43 C P(35%). We shall
determine C%" N H23 Let 0 := O 2055977425 - - - be the real root of 3 + 2 + 3t — 1 = 0.
Then, all the real roots of ¢2(0, t)/go(0, t) = 3 are t =1, §. We put

= {G'(0,0,w, 1) € P(HG%) Clan,  ptan .= Ctan 0 |, € PP,
csn = {G5(0,0,w,1) € P(HS) | w > 1} C Ctn, P = O8N H, € PY
Ctn = {G'(0,0,w,1) € P(H%) | w > 1} C Con, Pl = G N H, € PYS,
Cien = {G%(0,0,w,1) € P(}Ci?s) |0<w <6} cOPn, P = Cf N H, € P
Then C!*" N H>3 = C{*" U C%™ and O N H>3 = C5™ U C5*". Note that Fg N 3"(; N
{G5(0,0,w,1) e P(HG%) | § <w <1} =0.

Lemma 4.9. C{** U Cr U CP U O C Zar(Fs NFe) N H>s.
Proof. Clear. 0

Put C°%sP .= Clsﬁco (CT"°P U C5™P U 5" U C7"P). Let’s determine CE™ N C4sP,
Since Ct" = G(L,) C VR(dISCC) N Vr(discg), and

1-2 241)2 - 3_9
GS(O,O,wjl):(lz w? DT mw w ),

we put G5 (w) := (1 —2w?)/w?, GJ(w) := (w? +1)? —w)/w and GF (w) := (w® - 2)/w =
G?(1/w).

Lemma 4.10. 7(z,y) = 61 + 62z + 56y + 3222 + 30xy — 6y? + 923 + 42%y — 62y* —
16y> + z* — 422y — 62y> + y* — 23y? has the following properties:
(1) If (1:z:y: 2) € CE22 U C2" | then n(xz + z, y) = 0.
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(2) Let r > 3. On a plane H,, the zero locus n(x + z,7) = 0 is the union of two lines. One
is the line Pf3"P}%*, and the other is the line P P%". n(x + z,7) < 0 between these
two lines, and n(x + z,r) > 0 outside.

Proof. (1) follows from n(G5 (w) + G2 (w), G5 (w)) = 0.
(2) n(xz,7r) = 0 has just two real roots for » > 3, and n(y — 3,y) < 0 for y < 3. 0

Note that

(w— 1)*(w? + 1)*(w?* — 6w? — 8w + 1)2 f3g(w)
22 ’

(G w), Gy w)) = -
here f3s(w) is a polynomial of degree 38 whose real roots are two negative numbers w =
—8.590880 - - -, —2.4445756 - --. Let 7 := 0.1150--- and 75 := 2.9343 - - - be the real roots of
w* —6w? —8w+1=0, and

= 9200:m) _ 9007030574 . L rgi= 920:72) _ 3 4msaraor. ..

ry =

RZICEY 90(0,72)
be the real roots of r* — 28r3 — 90r2 — 92r 4 16353 = 0. Then, all positive the roots
of f§"7(GS(w), Gf(w)) =0are w = 1, 7, 7o. In the case w = 1, G%(0,0,w,1) =
(1: =1:3: =1) = Qo. Thus, C;*" N C*P consists of three points Qo, P = P =
G5(0,0,71,1), and P = PP = G9(0,0,72,1). Similarly, C1*" N C“**P consists of three
points Qo, Py = PP = G'(0,0,71,1), and Py = P3P = G'(0,0,72,1).

r r9,3

Lemma 4.11. In f]ifj?g ~ R3: (2,9,2), k1(z + 2) + Koy = 1 defines the plane which
passes through P8 ptay = ptan and ptan

r1,12 * re,22 4 1rg,3 ri1,4°

Proof. Note that P = P"\” = (a1(r1), r1, aa(r1)) and so on.
91(0,71) + ¢3(0,71)
90(0,71)
91(0,72) + g3(0,72)
90(0, 72)
Solve 1 (GE (w) + G (w)) 4 k2G5 (w) = 1 for w = 71 and 7. Then, we obtain

as(ry) +as(ry) = :Gf(Tl)"‘Gf(ﬁ),

= G (1) + G (72).

ap(re) + ag(re) =

s17 — 1% + 207 — t
st — 253t — 2513 +t4 — 452t + 5512 — 243 + 252 — 25t — s+ 1
= 0.0129074031 - - -,

K1 ‘=

—st?2+2t2 +5— 2t
s — 283t — 2st3 + t4 — 452t + Hst?2 — 23 4252 — 25t — s+ 1
= 0.0318925844 - - -

Ro =

where s = 71 + 7o, t = T17». Let v, 6 be all the imaginal roots w* — 6w? — 8w + 1 = 0, and
put so := v+, to := 5. Then s+ 85 =0, tto =1, t +to+ s+ 50 = —6, ts9 + sty = 8.
When we eliminate s, t, s1, t; from these relations, we have

817808203k5 — 546807084k° + 129155640k] — 13342016k3 4 556080k2 — 10176k, + 64 = 0,
43042537k5 — 45145145 — 188769k5 — 38684k35 + 4119x3 — 114Ky + 1 = 0. O
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Now, we shall complete the proof of Theorem 4.1. To prove (3), (4), (5) of Theorem
4.1, we put

D) .= {(z,2) € H, } k1(z 4 2) + kor > 1, discs(1, 2,7, 2) > 0, de(z,2) > 0},
ki(z+2)+rer <1, n(x+2z,1)>0,

discs(1,z,7r,2) > 0, do(x,2) >0 } ’

D) = {(z,2) € H, | k1(z + 2) + kar < 1, p(z + 2, 1) <0, do(z, 2) > 0}.

DW .= {(m,z) € H,

A
z
Vet \ vt
- tan cl
Tangent P P
VT,a
S
} — Py = (on(r), au(r))
Vs Pr5 = (aa(r), as(r))
S
ﬁ\f Tangent P *
A ’
Ve Vg©
Fig.4.3 : The case 3 <r <r; Fig.4.4 : The case 3<r<nr

As Fig. 4.3, we divide the part z > a4(y) of Vg at P.7*, and denote the right part by
V& and the left part by V&', We mean Vi®* N Ve? = {P:1°"}. Similarly, let Vg™ be the
smooth interval between P75 and Py 3™ of VE. We mean P, P € Vi,

(III-1) If 3 < r < 7y, then P4 = (o (r), as(r)) € Int(D¢), and VE* tangents to Ve
at Pf3", as Fig. 4.3. This implies that Pi3" € (0F¢) N (0Fs). We divide the curve segment

r,1

Vg at the point Pf", and denote the upper part by

Vit = {(z,2) € H, | discg(z,r,2) =0, de(,2) > 0, 2 > 2(Pi")},
where z(P) is the z-coordinate of the point P € H,. Then V' = FgnN VL Every
P € Vy® — Vi is obtained as P = G(0: s:t:1) for a certain (s, t) € C? — By.

Let V§’2 be the symmetric set of Vg’l with respect to the line z = z on H,..
Similarly, (az(r), as(r)) € Int(D¢), and VI tangents to Vo at Pf3*, as Fig. 4.4. Let

V= {(z,2) € H, | discs(z,r,2) =0, do(z,2) > 0, 2(PI%) < 2 < (P!}
be the interval of V5™ between P and P4 Then Vi? = FsNVE©. By Lemma 4.10,

discs(1,z,7,2) =0, do(x,z) > 0, }

7‘,1 7”,2 ,,,.’3 o vCO"‘
Ve UVt Uy = {(1,96,7“72) € 9Pys n(z+z,7)>0
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So, D, = D¥ U DW U DY,

I11-2) If r = ry, then P2 = (ay1(r1), aq(r tan = (ay(r1), ai(r1)) € (0Fc) N
( ) 1, r1,1 1\"1) 4\"1))>» 1,4 4\"1), 1\l C
(0Fs). The line defined by 1(x + 2) + ko1 = 1 agrees with the line P P2, Others are
similar as (III)-1.

(ITI-3) Consider the case r1 < 1 < ra. About VST’3 the situation is same as (III-1).

The situation of Vg’l and V§’2 changes. If r > rq, then (ai(r), au(r)) ¢ Dc. and
Ptan ¢ Do oas Fig. 4.5. In this case, Vo and V' intersect at a point Q¢ transversally. So,

1 S T

FsNVy® agrees with the following new V§’4 in this case.
Veti={(w,2) € H, | discs(z,r,2) = 0, do(,2) 2 0, = > 2(Qf)},
be the interval of V§* upper than Q2. Let V§’5 be the symmetric set of V§’4 with respect
to Vk(z — 2z). Then,
o discg(1,x,7,2) =0, do(x,z) > 0,
VEtuvet = {(1@,7“, z) € 0P s ) o(@,2) } ,
Pl ki(r+z2) FRer>1

discs(1,z,7r,2) =0, do(x,z) > 0, }
n(x+2,7)>0, Kk (z+2)+rer <1/’

V§’3 = {(1,3:,1”, z) € 85’2?;‘

So, D, = D¥ U DY U DY,

(az(r), as(r))

Ve

Fig.4.5 : The case r > r, Fig.4.6 : The case r > ry

(III-4) If 7 = 7y, then P = (aa(r2), as(ra)), P = (a2(rs), as(r)) € (0Fc) N
(0Fs). Others are similar as (III-3).

(II1-5) If r > 7o, then (az(r), as(r)) ¢ De, and P, P! ¢ De as Fig.4.6. In this
case, Vo and V§“ intersect at two points Q¢', Q%2 transversally. So, Fg NV agrees with

the following new V§’6 in this case.
V§’6 = {(x,z) € H, ‘ discg(x,r,2) =0, do(x,2z) > 0, Z(Q?) <z< Z(Qf,g)}
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be the interval of V& between Q¢! and Q. Then
VErtuvEtuvE® = {(1,z,r,z2) € 85’2?; | discg(1,z,7,2) =0, do(z, 2) > 0}.
If r > 7o, then k(2 + 2) + kKor > 1 holds for any (z, z) € De. Thus D, = D) in this case.

By (III-1)—(III-5) and Lemma 4.11, we conclude that the conditions of (3), (4), (5) of
Theorem 4.1 determine TZ?; when r > 3. 0

Next we observe 0F p,. Note that ¢s; € Fp, when go(s,t) = 0.

Proposition 4.12. Let

>

e(t) =t — 3¢5 — 27t% — 64t + 2,
hu(t) == +t3 2% — 3t + 1,
hua(t) i=t* — 7t3 + 132 — 20t + 2,

hop(t) i=t* — 43 + 3t — 6t + 2.
Take the real roots of these polynomials as follows:

Vi ( hg {£& :=0.0308472031- - -, & := 7.631998798 - - - },

Vi (hy, {m :=0.2882309962 - - -, puq := 14587325322 - - },
VR(h = {11 :=0.1070225045 - - -, vy := 5.2319384324 - - - },
Ve (hup) = {vs :=0.3713081034 - -, v := 3.586633132 - - }.

Moreover, put sy := 1/u4 and pg3 :=1/py. Then the following hold:
(1) 81+ s3+cse € TZOJ, if and only if 0 < ¢ < 16. Moreover s; + s3 + 16s2 = (1/64)e1 4
and s1 + sg = QPQ
(2) s1 4+ csg and s3 + ¢sy are PSD, if and only if & < ¢ < &,.
(3) There exists a; > 0 (i =1, 2, 3, 4) such that
Curn = 1(s1 +&182), ey = (83 + &152),
Cug s = 3(83 + &252), €y, = a(s1 +E282).
(4) Fp, is given as the following. Normalize f € Fp, as f = xs1 + ysa2 + (1 — x)s3, and
correspond this f to the point (z, y) € R?. Let
D(Py) = {(z,y) €R® | wsy +ysz + (1 —x)s3 € Fp, },
Ve = {(x,y) e R? ‘ 0<z<1,4<y<8, discs(0,z,y,1 —x) = 0},
Véi={(z,y) eER*|0<2<1,0<y<4, discs(0,z,y,1 —z) =0} U{(1/2,0)}.
Then, D(Py) is a convex domain enclosed by V&, V& and lines x = 0, x = 1. We can
identify D(Py) with P(Fp,) C P(H5%).

Proof. (1) Let f; := s1+s3+tsg, wy(u) := u+1/u, vi(t,u) := ﬁ(t—i&—wf(u)),
and 7¢(t,u) == —wys(u)® + 2(3t + 2)ws(u) — (t — 2)%. Then
u?r(t,u
fr(0,u,v,1) = (u+ 1) (v —vp(t,u)? + 4(1;05?1))

Note that wy(u) > 2.
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Consider the case w¢(u) >t + 2. Then vs(t,u) < 0 and f;(0,u,v,1) is monotonically
increasing with respect to v in v > 0. Thus f;(0,u,v,1) > f:(0,u,0,1) = tu(u + 1) > 0.

Consider the case 2 < wy(u) < t+ 2. Then r¢(t,u) > re(t,1) = t(16 — t). Thus,
fi(0,u,v,1) > 0if 0 <t <16. If t <0 or t > 16, then vs(¢,2) > 0 and f;(0,1,vs(¢,1),1) =
re(t,1)/8 =t(16 —t)/8 < 0.

Thus f, € P35 if and only if 0 < ¢ < 16.

Since f16(0,1,v,1) = 2(v — 4)? and g¢1(1,4) = 64, we have fig = e1,4/64.

(2) Let g; == s1 +tsa, vg(t,u) :=u(t+1—u)/2, and r4(t,u) := —u® + (2t +2)u? — (t —
1)%u + 4t. Then

9:(0,u,v,1) = (v — vg(t,u))2 + %rg(t,u).

If u>t+1, then (0, u,v,1) > g+(0,u,0,1) = tu(u+ 1) > 0.

Assume that 0 < uw < t 4 1. Observe the cubic function r4(t,u). The roots of
(0/0u)ry(t,u) =0 are ug := (2(t+1) £ Vt* + 14t +1)/3. Note that 0 <u_ <t +1 < uy.
Thus min g;(0,w,v,1) = minry(t,u) = re(t,u_). If g, € 8(?2?;) then r4(t,u_) = 0 and the
cubic equation r4(¢,u) = 0 has a double root at u = u_. Then Discs(—1, 2t + 2, —(t — 1),
4) = 0. Note that Discz(—1, 2t + 2, —(t — 1)?, 4¢) = 16t - he(t). Thus t = & or & if
gt € S(TPZE);).

We can also see that g; is PSD if and only if & < ¢ < &. Since discg(0, 1, ¢, 0) =
—t?he(t), g+ € Fg if and only if ¢ = & and &.

Since discg (0, z,y, z) = discs (0, z,y, z) and s3(a,b, ¢, d) + tsa(a, b, c,d) = s1(b,a,d, c) +
tso(b,a,d, c), s3+ tsg is PSD if and only if & <t < &.

(3) Assume that t = &; or &. Then 74(&;, up) = 0 for Jug € R and h¢(§;) = 0. Eliminate
t from 74(t,u) = 0 and he(t) = 0, we obtain

hy(u)?(u* — 16u® + 48u® — 384u + 512) = 0.

u = up must be a multiple root of the above equation. Thus h,(ug) = 0, and ug = p1 or pa.
Let vy 1= vg(&1, 1) and vy == vy (€2, pa). Then ge, (0, p1,v1,1) = 0 and ge, (0, pra,v4,1) = 0.
Thus g¢, € Ry - ey, ., and ge, € Ry - ¢, by Proposition 4.3(5). Eliminate ¢ and u from
v =vg(t,u), he(t) =0 and hy(u) =0, we obtain hy q(v1) = hyq(va) = 0.

Let h; := s1 +tso. Then hy(0,u,v,1) = u3g:(0,1/u,v/u,1). po = 1/pg and pz = 1/ s
are roots of u4hu(1/u). Let v := vi/p1 and vo = vy/pg. Then he, (0, po,v9,1) = 0
and he, (0, pa,v4,1) = 0. Thus he, € Ry - ¢y, ., and he, € Ry - ¢y, ,,. Eliminate u from
v =uvy(t,1/u), he(t) =0 and h,(1/u) = 0, we obtain hy ,(v2) = hyp(v3) = 0.

(4) For f = poso + p1s1 + pasa + psss € HG%, disc(Py) = po and disc(P2) = po + po.
By Lemma 4.5, 0Fp, C Fp, UFgs U Fe. disc(Py) = 0 corresponds to y = 0. Thus, D(P;)
must be included in the upper half space y > 0. Since discc(0, z, (1 — z)) = —z%(1 — x)?
and (1/2, 1) € D(Py), D(Py) is included in the stlipe 0 < z < 1. V¥ and VI are curves as
Fig 4.7. Thus, we have the conclusion. 0
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Let

D! = {(w:v:w) € PA | el w € 8(?2?;‘)} = {(wv:w) €P | e, € ?Z?;‘ ,

e

~ disce (96 (u,v,v), gt (u,v,w), gh(u,v,w))
(0, w) 3= ww?(u+w —v)?((u—w)2 +v2)2
dS (s,t) :== d"(s,t,1).

dS"(u,v,w) is a homogeneous polynomial of degree 10. Let L, := Vi (w) C P2 be the line
segment at infinity. For (uw:v:w) € P2 — L, let s := u/w, t := v/w and regard P3 — L,
to be the the first quadrant of the (s, t)-plane R%. The point (s,¢) = (1,0) ¢ D" because
¢10 = 0. For completion of D, it is better to put ef2 = s1 + s3 at (s, t) = (1, 0). In the
quadrant s > 0 and ¢ > 0, the curve Vi := Vg(dS (s,t)) has two connected components V.
and V. Similarly, Vi := Vk(go(s,t)) has two connected components V) and V%. V{ and
Vé are included in t < s + 1, and V4, V4 are included in ¢ > s + 1.

VENVE = {(p1,1n), (p2,v2)}, and VENVE = {(us,v3), (pa,v4)}. Divide VY and
V{ by the points (p1,v1) and (u2,v2), and define V(lji and Vcl;’i (i =0, 1, 2) as Fig. 4.8.
Similarly, we divide V% and V% by the points (p3,v3) and (j4,v4), and we define Vg’i and
Vg’i (1=0, 1, 2) as Fig. 4.8. The segment Vé:l corresponds to Vé, and Vg’l corresponds to
V.

Ch
de

Theorem 4.13.
DI = {(urv:w) € P | 96 (u,v,w) >0, v> 0 and one of the following (1) or (2) holds.}.

(1) d&"(u,v,w) > 0.
(2) gi(u,v,w) >0 and gk (u,v,w) > 0.

Proof. We already proved that if ef} , , is PSD then ¢} , , € S(TZ?; ). By Proposition

ULV, W

4.3, gh(u,v,w) > 0 is required.
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(i) Consider the case gf(u,v,w) > 0.
Let p; = g'(u,v,w)/gl(u,v,w) (i = 1, 2, 3). " is PSD, if and only if (py,

ULV, W

p2, p3) satisfy the condition of Theorem 4.1. If ¢ is PSD, then e” € Fs and

discs(L, p1,p2,p3) = 0. Conditions about 7(py + p3,p2) and w1 (p1 + p3) + kop2 — 1 do
not have special sence in this case. Thus, e} , , is PSD, if and only if do(p1,ps) > 0. That
is, disca(1,p1,p3) > 0 or ‘p; > 0 and p3 > 0'. disce(1,p1,p3) > 0 is equivalent to u > 0,
w >0 and dS"(u,v,w) > 0. Thus, we have the conclusion.

(ii) Consider the case g&(u,v,w) = 0.

In this case, Vé and V¢ of Proposition 4.12 appears in OD". By Proposition 4.12,
VL U VY is determined by go(s,t) =0, gi(s,t) > 0 and gs(s,t) > 0. O

By the avobe theorem, e¢p; is PSD, if and only if 7 < ¢t < 7. Similarly, 621,0 =
teg 1 — (2 —1)(t* + 1)?s2 is PSD, if and only if 1/m <t < 1/7.

We shall observe D" precisely. Fs N Fp, and Fg N Fp, are determined already. We
observe the part of D" corresponding to Fs N Fc.

Let LL be the line segment defined by s = 0 and 71 < t < 7, and put Vi, =
VAP U LL UVAY. Since Vi, € V(disce) NADE, if (s,t) € Vi, there exists p € PL such
that ¢,.(0,0,p,1) = 0. We denote this p by p(s,t) = p(s:t:1). Note that p(0,71) = 71,
p(u1, 1) = 0. If (s,t) € V(ljo, p(s,t) is monotonically decreasing from 7, to 0 with respect
to s. Similarly, p(0,72) = 72, p(us, v3) = +o00, and of (s,t) € Vé“o, p(s,t) is monotonically
increasing from 75 to +oo with respect to s. If (s,t) € L., then p(s,t) = t. So, each p € [0,
+0o0], there exists unique (s, t) € VJ, such that p(s,t) = p. That is, e5+(0,0,u,1) = 0.
Note that (s,t) = (0,71) corresponds to Py = P:*}, and (s,t) = (0,72) corresponds to
P, = e

When w = 0, let L{ be the interval of L,, = V4 (w) between (1:71:0) and (1:72:0).
Note that V2 N Ly, = (1:71:0) and V&% N Ly, = (1:72:0). Put V3, := V&> U LY U V2.
Note that p(ua,vs) =0, p(1:¢:0) = 1/t, and p(ps, vs) = +00. So, each p € [0, +o0], there
exists unique (u:v:w) € V&, such that p(u:v:w) = p.

LL, corresponts to C%*", and LY, corresponts to C20. Pf3™ moves on the interval of L¢
defined by 1/m < wv/u < 1. Q% moves on Vcl,’z. P moves on the interval of LY, defined by
1 <t <71 Q¢ moves on Vg’o.

If (s,t) € Vé’o U V(lj2 U Vg’o U VC%’Q and p = p(s,t), then s and p satisfy the following
relation:

(0* +1)%(p" = 8p° — 6p” + 1)s"

+(Bp 4+ 1)(=p” = 3p° = 2p" = 6p° — 14p° + 6p" —2p° — 6p> — 5p + 1)5°
—2(p" +12p% + 26p" — p® + 4p° — p* +26p° +12p” 4 1)
+(p+3)(p° —5p° —6p" —2p° +6p° — 14p* — 6p> — 2p> —3p — 1)s

+ (0 +1)%(p* —6p*> —8p+1) = 0.

Especially, we have the following:

Proposition 4.14. For t € [0, +oc]. let LS C Fe be the local cone of ngf at
(0:0:¢:1) € P3.. Take (u;:v;:w;) € Vi such that p(u;:viw;) =1 (i =1, 2). Then

C _ h h
Lt _RJF'Q 1,V1,W1 +]R+'e

u U2,v2,w2 "
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Theorem 4.15. All the elements of&'(?fl?;) is the positive multiple of ¢}l , , ((u:v:w)
€ DP) or ef® (t € P}).

Proof of Proposition 1.11. Let ey,..., ezp be all the monomials in 34 3. Assume that
(s:t:1) € D! s> 0,t > 0and t # s+ 1. Put u:= /s, v := \/t and E,(a,b, c,d) := e 4(a?,
b?, 2, d?). Vr(Es,) contains at least 27 isolated points. Among Vi(Es), we choose the
following 20 points: a; = (1:1:1:1), ag = (—1:1:1:1), ag = (1: —1:1:1), ag = (1:1: —1:1),
as = (1:1:1:-1), ag = (1:1: —1:-1), a; = (1:—=1:1: 1), ag = (1:—1:—1:1), ag =
(0:w:v: 1), ajp = (1:0:wiw), ag = (v:1:0:u), ajg = (u:v:1:0), a;3 = (0:wv:—1), ayg =
(=1:0:w:w), a5 = (v:—1:0:u), a;g = (w:v:—1:0), a;7 = (0:u: —v: 1), azg = (1:0: u: —v),
ajg = (—v:1:0:u), agg = (u: —v:1:0). Let a; ; :=e;(a;) and A := (a;;). Then

det A = £104857657t%(t — s — 1)*((s — 1)* + t%)* # 0.
Thus, there exists no g € 34 3—{0} such that g(a;) =0forall 1 <i <20. Thus E;; ¢ 34.
0

It seems that if (s,t) € V' UV U VE2 U vEP uvEt UVy? — (LL U LY), then
est € S(TIS). If (s,t) € Int(DF)ULLULY, then es, ¢ S(IPZS). This suggests that 8(?13)
is not so simple.

If (s,t) € VAUV UVE  UVE? — (LL U LE) — {(uivi) | i = 1, 2, 3, 4}, then
es.t(a?,b%,c?, d?) has 35 isolated zeros, because ¢5+(0,0,7,1) = 0 by r = p(s,t) > 0, t # 1.
So, ¢s.+(a?,b%, c%,d?) will be an extremal element of P4 ¢ which is irreducible.

4.2. Structure of P}

We have not complete any of (I1), (12), (I3) for ?ZE. But, we shall give (I4) and some
information about X Z+3

We choose s := 53—51,1,1, S1 = 52,1,0—51,1,1, S92 = 52,0,1 —51,1,1, 53 := 51,2,0—51,1,1,
s4 := S11,1 as a basis of H 3, and define ®F 5 : P2 — P4 by @5 3(a) = (so(a) : s1(a) :
sa(a) : s3(a) : sa(a)). Put X5 = @ 5(P3). ©§% : P} /(Z/4Z)--- — Xi?;r split as

N\ r
U0 P /(Z/AZ) =3 X X%

Proposition 4.16. Let
C
fi3(wo, 21,72, 23, 74)
.3 3 2 2 2 2
=2 — Tor1x3 + X3 + 72 + X125 + X323 + LT3 — ToT 1Ty — ToX2X3 — T1L2L3
+ x4 (ac% + 5x% + x% + 5x§ — 2x0x1 — 2x0%2 — 2Tox3 + 20122 — 6123 + 2302&03).

Then Zar(XjE) ={x € P | fi3(x) =0, fi%(x) > 0} with the coordinate system x; =
si(ag:---:a3) (i =0,...,4). This cubic hypersurface Vr(f{3) has an isolated singularity at
®F3(1:1:1:1) = (0:0:0:0: 1).

Proof. Using PC, we have f{3(so, s1, S2, 83, 84) = 0. Define pr : Xﬂ;--~ — Xj?;
by pr(zo:---:x4) = (xg:---:x3). This is a birational map. By Lemma 4.4, we have the
conclusion. (]

Proposition 4.17. X4C:§ does not have the main component.
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Proof. Assume that X{% has the main component. Note that S(TZ?; ) = E(PH)N
35 Let f be an element of the main component such that f € &(P5h) — E(P55). Then,
there exists a = (a: b: ¢: 1) € Int(P3) such that f(a) = 0. (a, b, ¢) # (1, 1, 1), since f ¢ f}’j?;.
Put b := (b:c: 1:a) € Int(P3). Note that a # b. Then the line ab is a bitangent line of the
cubic surface V¢ (f) € PL. But a cubic surface has no bitangent line. A contradiction. O

Proof of Theorem 1.10. Let By := {(0:s:t:1) € P4 | 5, t € Ry }, and Q := {(1:1: 1: 1) }U
By. By Theorem 2.10, it is enough to show &(X{%) C ®§ 5(€2). Take any x € E(X{%). Then,
there exists D € A(XZE) such that x € D and that Fp is a face component. By the above
proposition, D C Ong U Sing(XZE). If x € OXZ:Q, then x € ®§5(By). If x € Sing(ng),
then x = ®f 5(1:1:1: 1) by Proposition 4.16. O

For test set, we can prove the following by the same idea.

Proposition 4.18. Assume that f(z1,..., 7,) € 3,3, and there exists a € Int(P"} ")

such that f(a) = 0 and 88 f(a) =0 for all i = 1,..., n. Then f € P/, if and only if
T ’

f(b) >0 for all b€ 0P .

Proof. Assume that f(c) < 0 for a certain ¢ € Int(P’}'). We may assume that f take
a minimal value at c¢. Put g(t) := f((1 — t)a + tc). Then, a cubic polynomial g(¢) takes
minimal values at t =0 and ¢t = 1. A contradiction. O

Section 5. Philosophy of Semialgebraic Variety.

5.1. Real algebraic quasi-variety.

Till §4, we used the notion of (quasi-) semialgebraic varieties without exact definition.
In this section, we shall discuss how its definition should be, at least for theory of PDS
cones. Before to give it, we must discuss what a real algebraic variety is.

Usually, we say (X, Ox) is an algebraic variety over R when (X, Ox) is an integral
separated scheme of finite type over R. X (R) denotes the set of R-rational points, and
Xc := X Xgpecr Spec C. By this definition, X and X¢ are irreducible and reduced. To treat
possibly reducible or non-reduced varieties, we shall call a separated scheme of finite type
over Spec(R) to be an algebraic quasi-variety. This notion is not convenient for algebraic
inequalities. For example, there exists infinitely many algebraic varieties X over R such that
X(R) = R%. X may not be affine even if X(R) = R?.

The definition of a real algebraic variety is given in §3.2 in [8]. According to this defini-
tion, every real algebraic variety is reduced but may be reducible (i.e. not irreducible). To
keep consistency with complex algebraic geometry, we shall add a restriction that real alge-
braic varieties must be irreducible and separated. To treat possibly non-reduced varieties,
we shall give alternative definition of real algebraic quasi-varieties as the following:

Definition 5.1.(Real algebraic quasi-variety) (I) A locally ringed space (X, Rx) is

called a real algebraic quasi-variety, if there exists a separated scheme (Y, Oy) of finite type
over Spec R which satisfies the following:
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(1) There exists an injective morphism ¢: (X, Rx) — (Y, Oy) as locally ringed spaces,
and ¢ induces a homeomorphism X — Y (R) as topological spaces with respect to Zariski
topology and Euclidean topology.

(2) Take any affine open subset V' C Y. Let np be the maximal ideal of Oy (V) corre-
sponding to a closed point P € Y. For an arbitral non-empty subset U C V N ¢(X), we
put

SU = ﬂ (Oy(V) —np).
PeU
If U is an Euclidean open set, then ¢* : S;;'Oy (V) — Rx (¢~1(U)) is an isomorphism
of R-algebra. Thus, each maximal ideal m C Rx(¢=1(V)) corresponds to a point
Pe. V) cCX.
(3) Take an arbitral affine open subset V' C Y. Then

{feOy(V)|f(P)=0foral PecV(R)}

is a nilpotent ideal of Oy (V).

In this case, Y is said to be a R-scheme which represents X. If we can choose Y such
that Y is irreducible and reduced, then we shall call X to be a real algebraic variety (See
Notation 0.1 of [18]).

U C X is called an affine open subset of X, if there exists an affine open subset Uy C Y
such that U = =1 (Uy (R)). Zariski open (resp. closed) subsets are defied similarly. The
Euclidean topology of X is the topology induced from the analytic topology of Y¢. Y (R) is
also denoted as Y¢(R). When V' C Y is an affine open subset and B C V(R) is a subset
such that Clsy ) (Int(B)) = Clsy g)(B), we put

SB = m (Oy(V) —np),
PeB
and Ry (1 71(B)) := " (S5'Oy(V)). By this definition, (X, Rx) can be also regarded as a
locally ringed space with respect to the Zariski topology and the Euclidean topology. We
usually omit to write ¢. For example, we write X = Y (R).

Note that if (X, Rx) is a (possibly reducible) separated real algebraic variety in the
sense of [8], there exists a reduced scheme (Y, Oy ) which satisfies the above conditions.
Contrary, if (X, Rx) is a reduced real algebraic quasi-variety as Definition 5.1, then (X,
Rx) is a real algebraic variety in the sense of [8]. Definition 5.1 may not be so clear, the
author wishes someone will give more nice definition.

5.2. Semialgebraic quasi-variety.

Definition 5.2.(Semialgebraic quasi-variety) A locally ringed space (A, R4) is called
semialgebraic quasi-variety, if there exists a real algebraic quasi-variety (X, Rx) and a finite
affine open covering {V;}7_, of X which satisfies the following:

(1) There exists an injective morphism ¢: (4, R4) — (X, Rx) as locally ringed spaces,
and ¢ induces a homeomorphism A — ¢(A) as Euclidean spaces. Moreover, ((A) is a
semialgebraic subset of X, i.e. t(A)NV; is a semialgebraic subset of V; for each ¢ = 1,.. .,
r.

(2) Zarx(A) = X.
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(3) Take an arbitral i € {1, 2,..., 7}, and take any Euclidean open subset U C ¢=1(V};). Put
R; := Ry, (V;). For a point P € «(U), let mp be the maximal ideal of R; corresponding
to P, and let

Sy = ﬂ (RZ —mp) C R;.
PeU
Then ¢* : S;;'R; — R4 (U) is an isomorphism of R-algebra.
Moreover, if X is a real algebraic variety, then A is said to be an semialgebraic variety.

In this case, the field of fractions Q(R4(U;)) is called the field of rational functions, and is

denoted by Rat(A) := Q(Ra(U5)).

The Zariski topology and the Euclidean topology on A are defined naturally. A semi-
algebraic quasi-variety A is called irreducible if it is irreducible with respect to the Zariski
topology. A is said to be reduced if R4 p has no nilpotent elements except 0 for every

P e A. dim A is defined by dim A = Ilgleza( Krull dimRy4 p. A is called connected if it is

connected with respect to Euclidean topology. Note that A may not be connected even if
A is irreducible. A is called affine, if we can choose X to be isomorphic to a closed Zariski
subset of R"™ for a certain n.

Notions about singularities of A are defined using R4 p. Note that if ¥ is a R-scheme
which represents X, then R4 p = Oy, p. We denote

Sing(A) := {P €A } Ra,p is not a regular local ring},
Reg(A) := Int(A) — Sing(A).

A regular map or holomorphic map (resp. isomorphism) between semialgebraic quasi-
varieties is defined as a morphism (resp. isomorphism) of locally ringed space.

We can choose a real algebraic quasi-variety X and a separated scheme Y of finite type
over R so that Y¢ is complete and Y represents X. Then, we say X is a real envelope of A,
and Yg is a complex envelope of A.

X and Y¢ are not unique for A, but it is easy to see that:

Proposition 5.3. Let A be a semialgebraic quasi-variety, Yo and Y{ be complex
envelopes of A. Then Y¢ and Y{ are birational equivalent. If A is a semialgebraic variety,
then Rat(A) @r C = Rat(Y¢).

This follows from Proposition 5.10 given later.

By this proposition, if v(Yg) is a certain birational invariant of complex algebraic va-
rieties, then we can define v(A) := v(Y¢) to be an invariant of A. Especially, when A is
non-singular semialgebraic variety, we can choose Y to be non-singular projective, and we
can define h'(A) := dimc H* (Y, Oy,.) and P,,(A) := dim¢c H°(Y¢, Oy, (mKy.)) for m > 0.
Using P,,,(A), we can define the Kodaira dimension k(A),

Remark 5.4. (1) Reg(A) # 0 if A is reduced.

(2) Reg(A) is not always dense in A with respect to the Euclidean topology. For
example, consider the case that A has an isolated singularity as a connected component.

(3) If P € Reg(A) NInt(A) and dim A = n, then there exists an Euclidean open
neighborhood P € U C A such that U is homeomorphic to an open subset of R™.

(4) By our definition, an isolated singular locus of A is included in Int(A). But Sing(A)
sometimes acts as if it is a boundary. So it will be safe to discuss Int(A) N Reg(A).

48



In complex algebraic geometry, a subscheme is a closed subscheme of an open subscheme.
But to define semialgebraic subvarieties, we must be careful. For example, any semialgebraic
subset B of a real algebraic variety A, must be able to be treated as semialgebraic quasi-
subvariety of A.

Definition 5.5.(Image of a regular map) Let A, B be semialgebraic quasi-varieties,
and ¢: A — B be a regular map. Let C' := ¢(B). By Tarski-Seidenberg theorem, C' is a
semialgebraic subset of B. We define R¢ as the following:

We may assume A and B are affine, since definition of R¢ is local. Let R4 := R4 (A),
Rp := Rp(B), and ¢p*: Rg — R4 be the homomorphism induced by ¢. We put R :=
Rp/Kerp*. Note that R defines Zarg(C). For a point P € C, there exists the unique
maximal ideal mp C R corresponding to P. Put S := ﬂ (R —mp), and Rc := S™'R.

pPeC
Note that R¢ is a Rg-module. The structure sheaf of C is defined by R¢ := }?ivc which is
the coherent Rg-module defined by Rc¢.

(C, R¢) is called the image of ¢, and simply denoted by C = p(A).

Definition 5.6.(Semialgebraic quasi-subvariety) Let A, B be semialgebraic quasi-
varieties. A morphism ¢ : (B, Rg) — (A4, Ry4) is called an immersion, if ¢ induces
an isomorphism B — ¢(B).

If B is a semialgebraic subset of A, and the inclusion map B — A is an immersion,
then B is called a semialgebraic quasi-subvariety of A.

If A is a semialgebraic quasi-variety, and B C A be a semialgebraic subset. Then, there
exists a unique sheaf of rings Rp such that (B, Rp) is a semialgebraic quasi-subvariety of
(A, Ry) and (B, Rp) is reduced. Rp is called the reduced structure of B C A.

Assume that A, B, C are non-singular semialgebraic varieties such that A = B U C,
and P € BNC. It may happen that Rp p 2 R p. It is easy to see that R4 p agree with
one of Rp p and R¢ p.

Definition 5.7.(Fibre product) Let A, B, C be semialgebraic quasi-varieties, and
fiA— C, g: B— C be regular maps. The fiber product A x¢ B is a semialgebraic set

AxcB={(a,b) e Ax B f(a) =g(b)}
with a structure sheaf Ry @x. Rp.

Definition 5.8.(Inverse image) Let A, B be semialgebraic quasi-varieties, and ¢: A —
B be a regular map. Let C' C B be a semialgebraic quasi-subvariety. The inverse image
o H(C) is defined as the fiber product ¢~ !(C) := A xg C.

Definition 5.9.(Birational map) Let A, B be semialgebraic quasi-varieties. If there
exists Zariski open subsets U C A and W C B such that Zara(U) = A, Zarg(W) = B
and there exists a regular map ¢:U — W, then we say that there exists a rational map
p:A--- — B. Moreover, if o:U — W is an isomorphism, we say that ¢:A--- — B is a
birational map, and A and B are birational equivalent.

Proposition 5.10. Let A, B be semialgebraic quasi-varieties, and let X, Y be complex
envelopes of A, B.
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(1) If there exists a rational map p: A--- — B, then there exists a rational map ®: X¢ -+ —
Yc such that ®|4 = .
(2) In (1), if ¢ is a birational map, then ® is a birational map.

Proof. (1) We may assume ¢ is a regular map. Take a point P € Int(A) such that
Q@ = ¢(P) € Int(B), and take an affine open subset W C Y such that Q C W.

We can choose fi,..., fr € Ry g such that we can regard f; € Oy (W) and Oy (W) =
Clfi,..., fr]- Put g; := ¢*(f;) € Ra,p. We can find an affine open subset U C X¢ such
that ¢1,..., g, are holomorphic (regular) on U, and that U N X is dense in X and U N A is
dense in A. Then, ¥*:Rp — Ry induces ¥*: Oy (W) — Ox(U). ¥* induces a rational
map ¢&: X ... > Y.

(2) is easy. O

5.3. Some properties of semialgebraic quasi-varieties.

A notion of semialgebraic quasi-varieties brings some merits to Real Algebraic Geome-
try.

Theorem 5.11. Every semialgebraic quasi-variety is affine. In other words, if A is a
semialgebraic quasi-variety, then there exists n € N and an immersion t: A — R™.

Proof. Let A be a semialgebraic quasi-variety. We can take a real envelope X of A.
Take an affine open covering {Vi,..., V;.} of X. Fix a 1 < j <r. We may assume Vj is a
closed subset of R™. Let (z1,..., ¥,) be the coordinate system of R", and s; := 1/(z? + 1),
ti == x;/(z? +1). For P € X —V;, we put s;(P) = 0 and t;(P) = 0. Then s; and
t; are regular functions on X. The set of functions Fj := {si, t; ‘ 1 <i< n} defines
a map ®;: X — R?". This ®; is a regular map as semialgebraic quasi-varieties, and
®;|y,: V; — R*" is an immersion. Note that ®;(X) is a semialgebraic quasi-variety but is
not always algebraic quasi-variety. Put F':= FyU---UF,. and N := #F. F defines a regular
map ®: X — RY, and F is an immersion as semialgebraic quasi-varieties. (]

Remark 5.12. A real algebraic variety is an affine semialgebraic variety, but is not
always a real affine variety. For example, R? — {(0,0)} is not a real affine variety.

Corollary 5.13. Let A be a semialgebraic quasi-variety (or a real algebraic quasi-
variety) and put Ra := R4 (A). Then, Ry is the sheaf obtained as Ry4.

Note that R4 is a Noetherian ring, but is not finitely generated over R if dim A > 1.
Each maximal ideal of R4 corresponds to a certain point of A.

Corollary 5.14. Let A be a semialgebraic quasi-variety (or a real algebraic quasi-
variety) and F be a quasi-coherent R a-module. Then, H'(A, F) =0 for all i > 0.

Proof. There exists an immersion ¢: A — R™. As Definition 5.5, there exists a closed real
algebraic quasi-subvariety X C R™ such that X is real envelope of A. Let Rx := Rx (X) and
Ry :=R4(A). We can present as R4 = SZIR x by a certain multiplicatively closed set S4.
Since R4 is an Rx-module, F is a quasi-coherent Rx-module. Thus, F is a quasi-coherent
Rrm-module. Thus we have

H'(A, F)2H'R™ F)=0
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(see [16] Chap.III, Theorem 3.5). O

By the way, birational geometries of complex and real algebraic varieties are very differ-
ent. In a complete complex algebraic variety, exceptional subsets are special subsets. This
is not true for complete real algebraic varieties.

Theorem 5.15. Let A be a semialgebraic quasi-variety, E C A be a closed semialge-
braic subset such that E = Zars(E) ; A. Then there exists a semialgebraic quasi-variety
B and a regular surjective morphism p: A — B such that P := ¢(F) is a point and that
Yla—g : (A— FE) — (B — P) is an isomorphism, i.e. ¢ is a contraction of E to a point P.

Proof. We may assume A C R™. Let f1,..., f- be defining polynomials of Zarg. (FE) in
R(z1,. .., z,]. Consider a map ®:R™ — R™ defined by linear system with the base {z;f; ‘
1<i<n,1<j5< r}. ® is a regular map. Put B := ®(A) and ¢ := ®|4: A — B. Then, B
and ¢ satisfy the conclusion of the Proposition. 0
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