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Abstract. Let H ⊂ Hn,d := R[x1,. . ., xn]d be a vector space, and A be a compact
semialgebraic subset of Pn−1

R . We shall study some PSD cones P = P(A, H) :=
{
f ∈ H

∣∣
f(a) ≥ 0 (∀a ∈ A)

}
. Our interests are (1) to determine the extremal elements of P, (2) to

determine discriminants of P, (3) to describe P as a union of basic semialgebraic subsets,
and (4) to find a nice test set when dimH is low. In this article, we present (1), (2), (3)
and (4) for P(R4, Hs0

4,4) and P(R4
+, H

s0
4,4), where Hs0

n,d :=
{
f ∈ Hn,d

∣∣ f is symmetric and

f(1, . . . , 1) = 0
}
. We also provide (1)—(4) for P(R4

+, H
c0
4,3), where Hc0

n,d :=
{
f ∈ Hn,d

∣∣ f
is cyclic and f(1, . . . , 1) = 0

}
.

§1. Introduction.

Let Hn,d := R[x1,. . ., xn]d (the part of degree d), and H ⊂ Hn,d be a vector subspace.
For a semialgebraic subset A of Rn,

P(A, H) :=
{
f ∈ H

∣∣ f(a) ≥ 0 for all a ∈ A
}

is called the PSD cone on A in H. Our interests are:
(I1) To determine all the extremal elements of P := P(A, H).
(I2) To determine all the discriminants of P (see Definition 2.6).
(I3) To describe P as a union of basic semialgebraic subsets using some inequalities.
(I4) Find a nice test set for (A, H) when dimH is low (see Definition 2.9).

In this article, we present (I1), (I2), (I3) and (I4) for PSD cones Ps0
4,4, P

s0+
4,4 and Pc0+

4,3 .
We also treat some SOS problems relating these PSD cones. We shall explain these symbols.
Let

Hc
n,d :=

{
f ∈ Hn,d

∣∣ f(x2, . . . , xn, x1) = f(x1, . . . , xn)
}
,

Hs
n,d :=

{
f ∈ Hn,d

∣∣ f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn) for all σ ∈ Sn

}
,

H0
n,d :=

{
f ∈ Hn,d

∣∣ f(a, a, . . . , a) = 0 for all a ∈ R
}
,

E(P) :=
{
f ∈ P

∣∣ f is a extremal element of P
}
,

R+ :=
{
x ∈ R

∣∣ x ≥ 0
}
,

and Hc0
n,d := Hc

n,d ∩H0
n,d, H

s0
n,d := Hs

n,d ∩H0
n,d. We denote Pn,d := P(Rn, Hn,d), P

+
n,d :=

P(Rn
+, Hn,d), P

s
n,d := P(Rn, Hs

n,d), P
s+
n,d := P(Rn

+, H
s
n,d), P

s0
n,d := P(Rn, Hs0

n,d), P
s0+
n,d :=

P(Rn
+, Hs0

n,d), Pc
n,d := P(Rn, Hc

n,d), Pc+
n,d := P(Rn

+, Hc
n,d), Pc0

n,d := P(Rn, Hc0
n,d), and
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Pc0+
n,d := P(Rn

+, H
c0
n,d). The rule of indexing will be clear. “c” means cyclic, “s” means

symmetric, “0” means an equality condition f(a,. . ., a) = 0, and “+” means A = Rn
+.

We have already completed (I1), (I2) and (I3) for the PSD cones Pc+
3,3, P

c0+
3,3 , Pc0

3,4, P
c0+
3,4 ,

Ps
3,4 and Ps0+

3,5 . See [3], [2]and [1]. For Pc0
3,4, see also [13]and [19]. (I4) for Pc+

3,3 is provided

in Example 2.11. (I1) for P+
3,3 is given in [4].

In §3, we study Ps0
4,4 and Ps0+

4,4 . (I1)—(I4) for Ps0
4,4 are given in Theorem 3.4, and these

for Ps0+
4,4 are given in Theorem 3.8. Here, we present (I3) for Ps0

4,4 and Ps0
4,4 slightly different

style from Theorem 3.4 and 3.8.

Theorem 1.1. Let σ1 := a0+a1+a2+a3, σ2 :=
∑

0≤i<j≤3

aiaj , σ3 :=
∑

0≤i<j<k≤3

aiajak,

and σ4 := a0a1a2a3. Consider a family of quartic symmetric polynomials

f(a0, a1, a2, a3) = σ4
1 + p1σ

2
1σ2 + p2σ

2
2 + p3σ1σ3 − (256 + 96p1 + 36p2 + 16p3)σ4 ∈ Hs0

4,4

(p1, p2, p3 ∈ R). Then
(1) f(a0, a1, a2, a3) ≥ 0 for all a0,. . ., a3 ∈ R if and only if 16 + 6p1 + 2p2 + p3 ≥ 0 and

9p21 ≤ 128 + 24p1 + 36p2 + 12p3.
(2) f(a0, a1, a2, a3) ≥ 0 for all a0 ≥ 0,. . ., a3 ≥ 0 if and only if “(i) or (ii)” and “(iii) or

(iv)” hold:
(i) p1 ≤ −8 and p21 ≤ 4p2.
(ii) p1 ≥ −8 and 4p1 + p2 + 16 ≥ 0.
(iii) p1 ≤ −14/3 and 9p21 ≤ 128 + 24p1 + 36p2 + 12p3.
(iv) p1 ≥ −14/3 and 27 + 9p1 + 3p2 + p3 ≥ 0.

Next, we present (I1).

Theorem 1.2. All the extremal elements of Ps0
4,4 are positive multiples of the following

polynomials:

gt(a0, a1, a2, a3) :=
1

3

(
3σ4

1 − 2(t+ 7)σ2
1σ2 + (t+ 3)2σ2

2 − 2(t2 − 9)σ1σ3 − 4(t+ 3)2σ4
)
,

g∞(a0, a1, a2, a3) := σ2
2 − 2σ1σ3 − 4σ4,

p(a0, a1, a2, a3) := σ2
2 − 3σ1σ3 + 12σ4.

Here, t ∈ R. Conversely, these are extremal elements of Ps0
4,4.

gt (t ̸= 1, −3) is characterized by the equality conditions gt(t, 1, 1, 1) = gt(−1, −1, 1,
1) = 0. g1 is characterized by the equality conditions g1(x, x, 1, 1) = 0 for all x ∈ P1

R. g−3

is characterized by the equality conditions g−3(a, b, c, −a − b − c) = 0 for all a, b, c ∈ R.
g∞ is characterized by the equality conditions g∞(0, 0, 0, 1) = g∞(−1, −1, 1, 1) = 0.

p is characterized by the equality conditions p(0, 0, 0, 1) = 1 and p(s, 1, 1, 1) = 0 for
all s ∈ R.

We say f is characterized by the equality conditions f(xλ) = 0 (λ ∈ Λ) if

R+ · f :=
{
g ∈ P

∣∣ g(xλ) = 0 for all λ ∈ Λ
}
.

Note that if f ∈ P is characterized by certain equality conditions, then f is extremal. About
the converse, please read [4].
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An elements f ∈ Pn,2d is called SOS, if there exists r ∈ N and g1,. . ., gr ∈ Pn,d such
that f = g21 + · · ·+ g2r . The set of all the SOS elements in Pn,2d are written by the symbol
Σn,2d, and is called a SOS cone. In this case, gt, g∞, p ∈ Σ4,4, since

3gt(a, b, c, d) =
(
a2 + b2 − c2 − d2 + (t+ 1)(cd− ab)

)2
+
(
a2 − b2 + c2 − d2 + (t+ 1)(bd− ac)

)2
+
(
a2 − b2 − c2 + d2 + (t+ 1)(bc− ad)

)2
=

1

16

∑
τ∈S4

(
aτ(0) − aτ(1)

)2(
2(aτ(0) + aτ(1))− (t+ 1)(aτ(2) + aτ(3))

)2
,

g∞(a, b, c, d) = (ab− cd)2 + (ac− bd)2 + (ad− bc)2,

p(a, b, c, d) = (1/2)
(
(a− b)2(c− d)2 + (a− c)2(b− d)2 + (a− d)2(b− c)2

)
.

Here (a0, a1, a2, a3) = (a, b, c, d). Moreover, gt, p /∈ E(Ps0+
4,4 ). Thus we obtain:

Corollary 1.3. Ps0
4,4 ⊂ Σ4,4, and E(Ps0

4,4) ∩ E(P4,4) = ∅.

Remember that E(Pc0
3,4)∩E(P3,4) = ∅, because f ∈ E(Pc0

3,4) is not a square of a quadric
polynomial (see [13]). The following theorem provides extremal elements which do not
appear in [25].

Theorem 1.4. All the extremal elements of Ps0+
4,4 are positive multiples of the following

polynomials:

fabt (a0, a1, a2, a3) := (1/3)
(
3σ4

1 − 2(t+ 7)σ2
1σ2 + 8(t+ 1)σ2

2

+ (t2 − 6t+ 21)σ1σ3 − 16(t2 + 3)σ4

)
(0 ≤ t ≤ 5),

fct(a0, a1, a2, a3) := (1/9)
(
9σ4

1 − 6(t+ 7)σ2
1σ2 + (t+ 7)2σ2

2

+ 12(t− 1)σ1σ3 − 12(t− 1)(3t+ 13)σ4

)
(t ≥ 5),

p(a0, a1, a2, a3) := σ2
2 − 3σ1σ3 + 12σ4,

q1(a0, a1, a2, a3) := σ2
1σ2 − 4σ2

2 + 3σ1σ3 =
∑
i<j

aiaj(ai − aj)
2,

q2(a0, a1, a2, a3) := σ1σ3 − 16σ4 =
1

4

∑
τ∈S4

aτ(0)aτ(1)
(
aτ(2) − aτ(3)

)2
.

Conversely, these are extremal elements of Ps0+
4,4 .

fabt (0 ≤ t < 1 or 1 < t ≤ 5) is characterized by the equality conditions

fabt (t, 1, 1, 1) = fabt (0, 0, 1, 1) = 0.

fab1 is characterized by the equality conditions

fab1 (t, t, 1, 1) = 0 for all t ≥ 0 and
∂2

∂a20
fab1 (1, 1, 1, 1) = 0.

fct (t > 5) is characterized by the equality conditions

fct(t, 1, 1, 1) = fct(0, 0, u, 1) = 0,

3



where u ∈ R+ is any root of 3u2 − (t + 1)u + 3 = 0. p is characterized by the equality
conditions

p(0, 0, 0, 1) = pa(0, 0, 0, 1) = p(x, 1, 1, 1) = 0
for all x ≥ 0. q1 is characterized by the equality conditions

q1(1, 1, 1, 0) = q1(1, 1, 0, 0) = q1(1, 0, 0, 0) = 0.

q2 is characterized by the equality conditions q2(s, 1, 0, 0) = 0 for all s ≥ 0.

By the above representation, we have p(a2, b2, c2, d2), qi(a
2, b2, c2, d2) ∈ Σ4,8 (i = 1,

2). But for f = fabt and fct , we obtain:

Proposition 1.5. If 0 < t ≤ 5 and t ̸= 1, then fabt (a2, b2, c2, d2) /∈ Σ4,8. If t > 5, then
fct(a

2, b2, c2, d2) /∈ Σ4,8.

It is clear that p, q1, q2 /∈ E(P+
4,4). But we have:

Proposition 1.6. If t > 5, then fct ∈ E(Ps0+
4,4 ) ∩ E(P+

4,4).

Remember that if f ∈ E(Ps0
3,4), f can be written as f = gg, where g is an imaginal

quadric polynomial.

Proposition 1.7. (1) If t ̸= −3, then gt is irreducible in C[a, b, c, d].
(2) If 0 ≤ t ≤ 5, then fabt is irreducible in C[a, b, c, d].
(3) If t > 5, then fct is irreducible in C[a, b, c, d].

We should explain about the discriminants of P = P(A, H). Let s0, s1,. . ., sN be a
basis of the vector space H, and let ΦH:A→ · · ·PN

R be the rational map defined by ΦH(a) =(
s0(a): · · · : sN (a)

)
. X := ΦH(A) is called the characteristic variety. Let ∆(X) =

{
D1,. . .,

Dr

}
be the critical decomposition of X (see Definition 2.3). Each D ∈ ∆(X) is a smooth

semialgebraic variety, and D has its dual variety D∨. Let disc(D) be the defining equation
of the Zariski closure of D∨ in H, and let VH(disc(D)) be the zero locus of disc(D) in H.
If dim

(
VH(disc(D)) ∩ ∂P

)
= dimP − 1, we say disc(D) is a discriminant of P. For any

f ∈ ∂P, there exists D ∈ ∆(X) such that f ∈ VH(disc(D). Assume that a subset B ⊂ A
satisfies ΦH(B) = D. Then, for each f ∈ VH(disc(D))∩∂P, there exists a point a ∈ B such
that f(a) = 0. In this case, we shall say that disc(D) is a discriminant corresponding to B.

Theorem 1.8. Let’s denote the elements of Hs0
4,4 as

f(a0, a1, a2, a3) = p0σ
4
1 + p1σ

2
1σ2 + p2σ

2
2 + p3σ1σ3 − (256p0 + 96p1 + 36p2 + 16p3)σ4,

and use (p0,. . ., p3) as a coordinate system of Hs0
4,4.

(1) Ps0
4,4 has the following two discriminants:

d1 := 128p20 + 24p0p1 + 36p0p2 + 12p0p3 − 9p21, d2 := 16p0 + 6p1 + 2p2 + p3.

d1 corresponds to
{
(t, 1, 1, 1) ∈ R4

∣∣ t ∈ R, t ̸= −3, 1
}
, and d2 corresponds to a point

(1, 1, −1, −1).
(2) Ps0+

4,4 has the following five discriminants:

d1 := 128p20 + 24p0p1 + 36p0p2 + 12p0p3 − 9p21, d3 := 4p0p2 − p21,

d4 := 27p0 + 9p1 + 3p2 + p3, d5 := 16p0 + 4p1 + p2, d6 := p0.
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d3 corresponds to
{
(0, 0, t, 1) ∈ R4

∣∣ 0 < t < 1
}
. d4, d5, d6 corresponds to points (1, 1,

1, 0), (1, 1, 0, 0), (1, 0, 0, 0) respectively.

We explain about (I4). Let r0 := max{2, ⌊d/2⌋}. For general f ∈ Hs
n,d, Riener,

Timofte and Harris proved that f ∈ Ps
n,d if f(x) ≥ 0 for all x ∈

{
(x1, . . . , xn) ∈ Rn

∣∣
#{x1,. . ., xn} ≤ r0

}
. Moreover, f ∈ Ps+

n,d if f(x) ≥ 0 for all x ∈
{
(x1, . . . , xn) ∈ Rn

∣∣
#
(
{x1,. . ., xn} − {0}

)
≤ r0

}
. (See Corollary 1.3 of [22], Corollary 2.1 of [23]. See also [24],

[25].)
In the case f ∈ Hs

4,4, if f(t, t, 1, 1) ≥ 0 and f(t, 1, 1, 1) ≥ 0 for all t ∈ R then f ∈ Ps
4,4.

If f(t, t, 1, 1) ≥ 0, f(t, 1, 1, 1) ≥ 0, f(0, t, 1, 1) ≥ 0 and f(0, 0, t, 1) ≥ 0 for all t ≥ 0 then
f ∈ Ps+

4,4.
We prove that the number of test conditions can be decreased as the following theorem

in the cases of Ps0
4,3 and Ps0+

4,3 .

Theorem 1.9. (1) If f ∈ Hs0
4,4 satisfies f(−1, −1, 1, 1) ≥ 0 and f(t, 1, 1, 1) ≥ 0 for

all t ∈ R, then f(a, b, c, d) ≥ 0 for all a, b, c, d ∈ R.
(2) If f ∈ Hs0

4,4 satisfies f(t, 1, 1, 1) ≥ 0 and f(0, 0, t, 1) ≥ 0 for all t ≥ 0, then f(a, b,
c, d) ≥ 0 for all a, b, c, d ∈ R+.

In §4, we study the PSD cone of cyclic cubic polynomials Pc0+
4,3 . (I2) and (I3) for Pc0+

4,3

are given in Theorem 4.1. Pc0+
4,3 has 4 discriminants. Since one of them is very complicated

polynomial, the structure of Pc0+
4,3 is not simple. We also need somewhat strange algebraic

numbers to state (I3). This is completely different from cases of Pc0+
3,3 and Pc+

3,3. (I1) and

(I4) for Pc0+
4,3 are as the following:

Theorem 1.10. (1) All the elements of E(Pc0+
4,3 ) is the positive multiple of ehu,v,w

((u: v:w) ∈ Dh
e ) or e

P2
t (t ∈ P1

R).
(2) If f ∈ Hc

4,3 satisfies f(1, 1, 1, 1) ≥ 0 and f(0, s, t, 1) ≥ 0 for all s, t ∈ R+, then
f(a, b, c, d) ≥ 0 for all a, b, c, d ∈ R+.

Definitions of ehu,v,w, e
P2
t and Dh

e are given in Proposition 4.3, Lemma 4.7 and Theorem
4.13 respectively. (1) is proved in Theorem 4.15, and (2) is proved in §4.2.

In [4], we have proved that E(Pc0+
3,3 ) ⊂ E(Pc+

3,3) ⊂ E(P+
3,3). But E(Pc0+

4,3 ) ̸⊂ E(P+
4,3).

Relating SOS problem, ehu,v,w satisfies:

Proposition 1.11. Assume that (u: v:w) ∈ Dh
e , u > 0, v > 0, w > 0 and v ̸= u + w.

Then, ehu,v,w(a
2, b2, c2, d2) ∈ P4.6 − Σ4,6.

In §5, we will give an exact definition of semialgebraic varieties, and prove some basic
general theorems. In this article, we use P3

R/S4 and P+/S4. These are not real algebraic
variety. P3

R/S4 does not agree with a real weighted projective space PR(1, 2, 3, 4). But we
need to treat these with certain variety structure, i.e. semialgebraic varieties. So, the author
think it will be better to give an exact definition of semialgebraic variety. For example, there
exists continuous rational map which is not holomorphic (see Lemma 3.5). Such maps do not
exist in complex algebraic geometry. Some results will be useful for studies of real algebraic
varieties. Especially, Theorem 5.11 and Theorem 5.15 show that semialgebraic geometry
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is very different from complex algebraic geometry. In our theory of algebraic inequalities
in this article, a phenomenon of Theorem 5.15 occurs. For example, ΦH:A · · · → X may
include some exceptional set even if A = P3

R (see Lemma 3.5).

We shall explain a short history of study of PSD cones. Originally, Pn,2d is called a
PSD cone. Hilbert proved, Pn,2d = Σn,2d if and only if n ≤ 2 or 2d = 2 or (n, 2d) = (3, 4)
([17]). History of studies till 1991 are written in §6.6 of [8]. So we don’t explain them again.
Choi and Lam found some extremal forms of Pn,2d which don’t belong to Σn,2d in [9]. In
[21], Reznick studied the condition that f ∈ Pn,2d is included in Σn,2d. He also studied the
condition that f ∈ Pn,2d is extremal. See also [10]. They implies that if f ∈ E(Pn,2d), then
VR(f) is larger set. This fact is formalized in Theorem 2.7 and Proposition 2.9 of [4].

An element f ∈ Hn,2d is called even, if f ∈ R[x21,. . ., x2n]. Choi, Lam and Reznick
studied Pes

n,2d := Pn,2d ∩R[x21,. . ., x2n] in [11]. They studied the condition for Pes
n,2d ⊂ Σn,2d.

Note that Pes
n,2d

∼= Ps+
n,d, as is stated in [12]. Harris proved Pes

3,8 ⊂ Σ3,8 in [15]. But

E(P+
3,3)

∼= E(Pe
3,6) ⊂ E(P3,6) and E(Pe

3,6) ̸⊂ Σ3,6 (see [4]). The relations Ps
n,2d and Σs

n,2d

are studied by Goel, Kuhlmann and Reznick in [14]. A related study can be found in [7].
Our study of E(Ps0+

4,4 ) and E(Pc0+
4,3 ) will give a small contribution for it.

About discriminants of P(A, H), Nie shown some interesting results in [20]. He treated
the case that A is an affine real algebraic variety. In this article, we only treat the cases that
A is a compact semialgebraic variety. But they have very close relation. [6] provides many
nice ideas to treat algebraic inequalities using complex algebraic geometry.

About P3,6, Σ3,6, P4,4 and Σ4,4, very important results are obtained in [5]. It provides
relation with theory of K3 surfaces.

dimH4,3 = 20 and dimH4,4 = 35 are somewhat large to proceed precise numerical
analysis. It will not be insignificant to study some lower dimensional subspaces H ⊂ Hn,d.

To check many calculations in this article, we will need Mathematica or a similar tool.
The author provides a file for Mathematica in the authors WEB and in arXiv’s anc folder.
It will be useful for experimentation of inequalities.

§2. General theories

2.1. Known results.

By studies in [3], we have better to use Pn−1
R and Pn−1

+ instead of Rn and Rn
+ where

Pn
+ := (Rn+1

+ − {0})/R×
+ =

{
(x0: · · · :xn) ∈ Pn

R
∣∣ x0 ≥ 0,. . ., xn ≥ 0

}
.

The merits are that Pn−1
R is compact and dimPn−1

R < dimRn. But f ∈ Hn,d is not a
function on Pn−1

R . So, we must treat Hn,d as a signed linear system on Pn−1
R . We need

some more generalizations. About the exact definition of a semialgebraic variety, please see
§5. We may understand here that a semialgebraic variety (A, RA) is a locally ringed space
with semialgebraic set A and a sheaf of rings RA which represent real holomorphic functions
on open subsets of A. We only use RA to define singularities of A, regular maps between
semialgebraic varieties, and signed linear systems. The author apologizes that Definition 1.7
of [3] must be corrected as the following:

Definition 2.1. Let (A, RA) be a semialgebraic variety, and C0
A be the sheaf of germs

of real continuous functions on A.
(1) Let I be an invertible RA-sheaf. I is called a signed invertible sheaf on A if
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(i) there exists C0
A-invertible sheaf J such that I⊗RA

C0
A = J⊗C0

A
J, and

(ii) there exists e ∈ J(A) such that e2 ∈ I(A) and I(A) = RA(A) · e2.
Then, for f ∈ H0(A, I), there exists g ∈ H0(A, RA) such that f = ge2. We define
sign(f(P )) ∈ {0, ±1} by sign(f(P )) = sign(g(P )) for P ∈ A.

(2) Let I be a signed invertible RA-sheaf. A finite dimensional vector subspace H ⊂ H0(A,
I) is called a signed linear system on A. For f ∈ H, we say f is PSD on A if f(P ) ≥ 0
for all P ∈ A.

(3) P = P(A, H) :=
{
f ∈ H

∣∣ f(P ) ≥ 0 for all P ∈ X
}
is called the PSD cone on A in H.

Note that Pn,d = P(Pn−1
R , Hn,d) and P+

n,d = P(Pn−1
+ , Hn,d) and so on.

(4) BsH :=
{
P ∈ A

∣∣ f(P ) = 0 for all f ∈ H
}
is called the base locus of H. When P is

non-degenerate in H, we define BsP := BsH.
If dimBsP < dimA, we can define a rational map ΦH : A · · · → PR(H

∨), using a basis
of H. X = X(A, H) := Cls(ΦH(A)) (Euclidian closure) is called the characteristic variety
of A.

For example,

Hn+1,d :=
{
f(x0, . . . , xn)

∣∣ f is a homogeneous polynomial of degree d
}
∪ {0}

is a signed linear system on Pn
+. For f ∈ Hn+1,d and P ∈ Pn

+, we cannot define the value
f(P ) but can define sign(f(P )). If d is even, Hn+1,d is also a signed linear system on Pn

R.

Proposition 2.2. Let X := X(A, H), and let Y be the convex closure of X in P(H∨).
Then

P(A, H) = P(X, HN+1,1) = P(Y, HN+1,1),
where HN+1,1 is the set of linear polynomials on P(H∨).

Proof. P(A, H) = P(X, HN+1,1) is proved at Proposition 1.13 in [3]. P(X, HN+1,1) =
P(Y , HN+1,1) is clear since every element of HN+1,1 is linear.

Assume that a semialgebraic set B is a subset of a complete real algebraic variety V .
The minimal closed algebraic subset which contains B is called the Zariski closure of B and is
denoted by ZarV (B). We denote the Euclidian closure of B in V by ClsV (B) or B. Assume
that ZarV (B) = V . The interior of B is defined by Int(B) := V −ClsV (V −B). The boundary
of B is defined by ∂B := B − Int(B). Do not confuse with ∂VB := ClsV (B)− Int(B). Note
that Int(B) and ∂B do not depend on the choice of V . But ClsV (B) and ∂VB depend on
V .

Definition 2.3.(Critical decomposition. See Definition 1.5 of [3]) Let A be a reduced
semialgebraic variety with dimA = n. We shall define ∆i(A) (i = 0,. . ., n) by induction
on n. If dimA = 0, then A = {P1,. . ., Pm} where Pi are points. In this case we put
∆0(A) = {P1,. . ., Pm}, and put ∆i(A) = ∅ for i ̸= 0.

Assume that n = dimA ≥ 1. Let Z1,. . ., Zr be all the irreducible components of A
with dimZi = n. Put Ai := Int(Zi − Sing(A)

)
, and ∆n(A) :=

{
A1,. . ., Ar

}
. Note that

Zi ∩ Zj ∩ Int(A) ⊂ Sing(A) for i ̸= j.
Let Y1,. . ., Yk be all the irreducible components of A with dimYj ≤ n − 1, and let

Bj := Yj − (A1 ∪ · · · ∪ Ar). Put

B := Sing(A) ∪ ∂A ∪B1 ∪ · · · ∪Bk.
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Then, we can regard B to be a semialgebraic subvariety of A with the reduced structure.
Note that dimB < dimA. Thus we put ∆i(A) := ∆i(B) for i ̸= n.

We denote ∆(A) := ∆0(A)∪∆1(A)∪ · · ·∪∆n(A), and is called a critical decomposition
of A. Each element D ∈ ∆(A) is called a critical set of A. Note that D is a non-singular
semialgebraic variety with ∂D = ∅.

Example 2.4. Consider the case A = P2
+. This is homeomorphic to a triangle. Let

Px := (1: 0: 0), Py := (0: 1: 0), and Pz := (0: 0: 1). For two points P , Q ∈ P2
+, we denote the

open line segment connecting P and Q as (PQ). Then, the critical decomposition of P2
+ is

∆0(P2
+) =

{
Px, Py, Pz

}
, ∆1(P2

+) =
{
(PxPy), (PyPz), (PzPx)

}
, ∆2(P2

+) =
{
Int(P2

+)
}
.

On the other hand, if A = Pn
R, then ∆n(Pn

R) =
{
Pn
R
}
, and ∆r(Pn

R) = ∅ for r ̸= n.

Definition 2.5. (1) Let X be a subset of Rn or Pn
R. e ∈ X is said to be extremal in X,

if a > 0, b > 0 and x, y ∈ X satisfy e = ax+ by then x = y = e. Let P be a closed convex
cone which contain no lines. 0 ̸= f ∈ P is called extremal in P, if g, h ∈ X satisfy f = g+ h
then g and h are multiples of f . For both cases Y = X and Y = P, we denote that

E(Y ) :=
{
y ∈ Y

∣∣ y is extremal in Y
}
.

(2) For a semialgebraic variety A and a ∈ A − BsH and a signed linear system H on
A, we put

Ha :=
{
f ∈ H

∣∣ f(a) = 0
}
, Pa := P ∩Ha = P(A, Ha).

Pa is called the local cone of P at a.
Even if a ∈ BsH, we can define Pa as Definition 2.6 of [4]. But we don’t use it in this

article.

Definition 2.6. (See Definition 1.15 and 1.17 of [3]) (1) Let P = PN
R and P∨ be the

set of all the hyperplanes in P. Assume that D ⊂ P is a non-singular semialgebraic variety
with ∂D = ∅ (i.e. ∆(D) = {D}). For x ∈ D, let TD,x := TZar(D),x ⊂ P be the tangent space
of Zar(D) at x. Then,

D∨ :=
{
H ∈ P∨ ∣∣ H ⊃ TD,x for a certain x ∈ D

}
is called the dual variety of D. Since D is irreducible and non-singular, D∨ is irreducible.
Thus D∨ is a semialgebraic variety.

(2) Under the same notation with Definition 2.1, let π : (H − {0}) → P(H) be the
natural surjection. For D ∈ ∆(X), we denote

F(D) := ClsH(π−1(D∨) ∩ ∂P).
If dimF(D) = dim(∂P), then F(D) is called a face component of P or of ∂P, and an
irreducible defining equation of the Zariski closure Zar(F(D)) is called a discriminant of P,
and denoted by discD or disc(D).

Especially, if D ∈ ∆dimX(X) and F(D) is a face component, then F(D) is called a
main component of P, and disc(D) is called a main discriminant of P.

For example, if X ∼= Pn
R = A, then P has unique discriminant which is a main discrim-

inant.
In the case D ∈ ∆0(X), disc(D) is linear. That is, if ΦH is defined by basis {s0,. . ., sN}

of H, and if we represent f ∈ H as f = p0s0 + · · ·+ pNsN , and D = (b0: · · · : bN ) ∈ P(H∨),
then disc(D) = b0p0 + · · ·+ bNpN .
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Theorem 2.7.(Theorem 1.18 of [3]) We use the same notation as Definition 2.1 and
the above.
(1) Let

D :=
{
D ∈ ∆(X)

∣∣ F(D) is a face component of P
}
.

Then ∂P =
⋃

D∈D

F(D).

(2) For D ∈ ∆(X), take a subset B ⊂ A such that ΦH(B) ⊂ D and ClsD
(
ΦH(B)

)
= D.

Put B0 := B − BsΦH. Then,

F(D) = ClsH

( ⋃
a∈B0

Pa

)
.

(3) Assume that P := P(X, HN+1,1) is non-degenerate in HN+1,1. Take x ∈ D ∈ ∆r(X).
Then dimPx ≤ N − r.

The author should apologize for that Proposition 1.27 of [3] is not correct. It should be
corrected as (3) of the above theorem. We present a corrected proof of (3).

Proof. (3) For f ∈ H, let Hf be the hyperplane in P(H∨) defined by f = 0. Since P

is non-degenerate, dim(U ∩ P) = N + 1 for any Euclidean open neighborhood U of x. Let
L :=

{
f ∈ H

∣∣ TD,x ⊂ Hf

}
. Note that dimTD,x = dimD = r ≤ N + 1, since D is non-

singular. The condition TD,x ⊂ Hf means that f passes through independent r + 1 points.
Thus, dimL = dimH− (r + 1) = N − r. Since Px = P ∩L, we have dimPx ≤ N − r.

Even if we determine all the discriminants of P, the signature of disc(D) may not be
constant in Int(P). To describe P as a union of basic semialgebraic sets of H using some
inequalities, we need some more inequalities to cut off extra parts or to avoid the interior zero
locus Int(P)∩VH(disc(D)). Such inequalities are called separators. Note that discriminants
are unique up to multiplication by non-zero constant, but there may be many possibilities
of the choice of separators.

About extremality of f ∈ P, the following theorem is useful. About the definition of
infinitesimal local cone, please see Definition 2.9 and 2.12 of [4].

Theorem 2.8. (Theorem 2.11, Proposition 2.13 of [4]) Let P = P(A, H). Assume
that dimP ≥ 2.
(1) If f ∈ E(P), then there exists local cones or infinitesimal local cones P1,. . ., Pr ⊂ P

with respect to f which satisfy P1 ∩ · · · ∩ Pr = R+ · f .
(2) Let f ∈ P. If there exists local cones or infinitesimal local cones P1,. . ., Pr ⊂ P such

that P1 ∩ · · · ∩ Pr = R+ · f . Then, f ∈ E(P).

In the above theorem, infinitesimal local cones appear for special f ∈ E(P). In ordinary
case, there exists points a1,. . ., ar ∈ A such that

R+ · f =
{
g ∈ P

∣∣ g(a1) = · · · = g(ar) = 0
}
.

We can choose each ai so that ΦH(ai) ∈ E(X). Infinitesimal local cones appears when not
less than two zero points of f become infinitely near points.
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Definition 2.9. Let H be a signed linear system on a semialgebraic variety A. A
subset Ω ⊂ A is called a test set for (A, H), if f(a) ≥ 0 for all a ∈ Ω, then f(a) ≥ 0 for all
a ∈ A.

The following theorem will be trivial.

Theorem 2.10. Let H be a signed linear system on a compact semialgebraic variety
A with dimH ≥ 3, and let X := Cls(ΦH(A)) be the characteristic variety. Take a subset
Ω ⊂ A. If E(X) ⊂ Cls(ΦH(Ω)), then Ω is a test set for H.

Some artices add the following condition for a test set:
(Additional condition) For any a ∈ Ω, there exixts f ∈ H such that f(a) = 0.

Under this definition, E(X) ⊂ Cls(ΦH(Ω)) must be replaced by E(X) = ΦH(Ω).

Example 2.11. Consider the case A = P2
+, H = Hc

3,3. Then

Ω := {(1: 1: 1)} ∪
{
(0: t: 1) ∈ P2

+

∣∣ t ≥ 0
}

is a test set for Hc
3,3 (see Theorem 3.1 of [3]). Thus, if f ∈ Hc

3,3 satisfies f(1, 1, 1) ≥ 0 and
f(0, t, 1) ≥ 0 for all t ≥ 0, then f(a, b, c) ≥ 0 for all a, b, c ∈ R+.

2.2. Some more general theorems.

Let V and W be non-singular semialgebraic varieties with dim V = n, dimW = m, and
φ:V → W be a regular map. Take a point a ∈ V and put b := φ(a). We can take open
neighborhoods a ∈ UV ⊂ V and b ∈ UW ⊂ W such that φ(UV ) ⊂ UW and that UV , UW

have local coordinate systems (x1,. . ., xn) and (y1,. . ., ym) whose origins are a, b. φ can be

represented by functions yj = φj(x1,. . ., xn) (j = 1,. . ., m). Let Ja :=

(
∂yj
∂xi

)∣∣∣∣
(x1,...,xn)=a

be the Jacobian matrix of φ at a. Note that rank Ja does not depend on the choice of (x1,. . .,
xn) and (y1,. . ., ym). We denote

Sing(φ) :=
{
a ∈ V

∣∣ rank Ja < dimφ(V )
}
.

Proposition 2.12. If V is a non-singular complete real algebraic variety, then ∂
(
φ(V )

)
⊂ φ

(
Sing(φ)

)
.

Proof. Put r := dimφ(V ), and assume that rank Ja = r. We may assume that

det

(
∂yj
∂xi

)
1≤i≤r, 1≤j≤r

̸= 0

at a. Let U ′ :=
{
(x1,. . ., xn) ∈ UV

∣∣ xr+1 = · · · = xn = 0
}
. If UV is sufficiently small

Euclidean open set, φ
∣∣
U ′ :U

′ −→ φ(U ′) is an isomorphism. Thus b /∈ ∂
(
φ(V )

)
.

When V andW are open subsets of Pr
R, and φ is given by yj = φj(x0: · · · :xr) (j = 0,. . .,

r) using homogeneous coordinate system, the condition rank Ja = r can be replaced by

det

(
∂yj
∂xi

)
0≤i≤r, 0≤j≤r

̸= 0.
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When V has singularities, we put Sing(φ) := Sing
(
φ
∣∣
Reg(V )

)
.

Corollary 2.13. Assume that A is a compact semialgebraic variety, then,

∂
(
φ(A)

)
⊂ φ

(
Sing(φ) ∪ Sing(A) ∪ ∂A

)
.

Proposition 2.14. Let Xs+
3,d := X(P2

+, H
s
3,d). If d ≥ 4, then Xs+

3,d
∼= P2

+/S3.

Proof. We denote the coordinate system of P2
+ by (a: b: c), and put S1 := a + b + c.

Φ3,d := ΦHs
3,d

: P2
+ → Xs+

3,d is decomposed as Φ3,d:P2
+

σ−→ P2
+/S3

Ψ3,d−→ Xs+
3,d. By Proposition

2.13, 2.14 and §4.5 in [3], Ψ3,4:P2
+/S3 −→ Xs+

3,4 is an isomorphism. Since BsS1 ∩ P2
+ = ∅,

the multiplication map ×S1:H
s
s,d −→ Hs

s,d+1 induces an isomorphism Xs+
3,d+1 → Xs+

3,d.

In the cyclic case Xc+
n,d := X(Pn−1

+ , Hc
n,d), we know that Xc+

n,d
∼= Pn−1

+ /Cn if d ≥ n,

here Cn = Z/nZ (see Proposition 1.36 in [3]). When n = 3, ∆1(Xc+
3,d) has a unique element

Cc+
3,d :=

{
Φc

3,d(0: s: 1)
∣∣ s > 0

}
. We call disc(Cc+

3,d) to be the edge discriminant of Pc+
3,d (see

Definition 2.7 in [3]). The following Theorem is a replacement of Proposition 2.10, Theorem
5.9 and Theorem 6.8 in [3].

We denote the discriminant of cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0 by

Discn(cn, cn−1, . . . , c1, c0).

Theorem 2.15. Let’s denote the coordinate system of P2
+ by (a: b: c), and put Sm,n =

Sm,n(a, b, c) := ambn + bmcn + cman, Sn = Sn(a, b, c) := an + bn + cn, and U = U(a, b, c) :=
abc. Take the basis of Hc

3,d so that s0 = Sd, s1 = Sd−1,1, s2 = Sd−2,2,. . ., sd−1 = S1,d−1,. . ..
Here, if i ≥ d, then si is a multiple of abc. We represent f ∈ Hc

3,d as f =
∑
pisi. Then, the

edge discriminant of Pc+
3,d agrees with Discd(p0, p1, . . . , pd−1, p0).

Proof. Let Lc+
0,t be the local cone of Pc+

3,s at (0: t: 1) ∈ P2
+. Take f ∈ Lc+

0,t ⊂ F(C+
n,d)

(p0 > 0 and t > 0). Then f(0, t, 1) = 0. Since f(0, x, 1) ≥ 0 for all x > 0, the equation
f(0, x, 1) = 0 has a multiple root at x = t. Thus, the discriminant of f is equal to 0.
Since Si,d−1(0, x, 1) = xi (1 ≤ i ≤ d − 1), Sd(0, x, 1) = xd + 1 and U(0, x, 1) = 0, we have
f(0, x, 1) = p0x

d + p1x
d−1 + · · ·+ pd−1x+ p0.

Since Discd and disc(Cc+
3,d) are irreducible, we have the conclusion.

Theorem 2.16. Consider the cases A = Pn−1
R or Pn−1

+ , and H = Hs
n,d or Hs0

n,d. Let

P := P(A, H), X := X(A, Hn,d), and Φ := ΦH:A · · · → X. Let σ:Pn−1
R −→ Pn−1

R /Sn ⊂
PR(1, 2, . . . , n) be the natural surjection, and Ψ:Pn−1

R /Sn · · · → X be the rational map such
that Ψ ◦ π = Ψ. Assume that Ψ is a birational map. Let D ∈ ∆r(X) with r ≥ max{2,
⌊d/2⌋}. Then F(D) is not a face component of P.

Proof. Let r0 := max{2, ⌊d/2⌋}, and take D ∈ ∆r(X) with r0 ≤ r ≤ n − 1. Assume
that F(D) is a face component of P. Then dimF(D) = n− 1.

(1) Consider the case A = Pn−1
R .

Let Ω :=
{
(x1: · · · :xn) ∈ Pn−1

R
∣∣ #{x1,. . ., xn} ≤ r0

}
. Here #{x1,. . ., xn} ≤ r0 means

that at most r0 members of x1,. . ., xn are distinct. Ω is a test set by [22].
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Ω is included in a union of some (r0 − 1)-dimensional linear subspace of Pn−1
R . Take

general f ∈ F(D). There exists a semialgebraic subset E ⊂ A such that Φ(E) = D, and
a ∈ E such that f(a) = 0. Since F(D) is a face component, we may assume that the
hyperplane Hf ⊂ P(H∨) corresponding to f , tangents to X only at the unique point Φ(a),
if a ∈ E is a general point. This means that if b ∈ A − BsH satisfies f(b) = 0, then
Φ(b) = Φ(a). We can choose such f and a.

By Corollary 1.3 of [22] or Corollary 2.1 of [23], there exists b ∈ Ω such that f(b) = 0.
We denote this b by b(a). a can move a certain r-dimensional subset of E. But dimΩ =
r0 − 1 < r. Thus, there exists a ∈ E such that Φ(b(a)) ̸= Φ(a). A contradiction. Thus
F(D) is not a face component of P.

(2) Consider the case A = Pn−1
+ .

Let Ω′ :=
{
(x1: · · · :xn) ∈ Pn−1

+

∣∣ #({x1,. . ., xn} − {0}
)
≤ r0

}
. If f ∈ Hs

n,d satisfies

f(a) ≥ 0 for all a ∈ Ω′, then f ∈ Ps+
n,d by [22]. Ω′ is also included in a union of some

(r0 − 1)-dimensional linear subspace of Pn−1
R .

The left part is same as (1).

If F(D) is not a face component, then, for each f ∈ F(D), there exist D1,. . ., Dr ∈
∆(X)− {D} such that f ∈ F(D1) ∩ · · · ∩ F(Dr), and that all F(Di) are face components.

Section 3. Quartic Inequalities of Four Variables
In this section, we shall study Ps0

4,4 and Ps0+
4,4 . We write the homogeneous coordinate

system of A = P3
R or A = P3

+ by (a: b: c: d) or (a0: a1: a2: a3). We regard a4n+i = ai for
n ∈ Z. We denote

Sd :=

3∑
i=0

adi , Tp,q :=

3∑
i=0

api (a
q
i+1 + aqi+2 + aqi+3), Sp,p :=

∑
0≤i<j≤3

api a
p
j ,

Tp,q,q :=

3∑
i=0

api (a
q
i+1a

q
i+2 + aqi+1a

q
i+3 + aqi+2a

q
i+3), U := a0a1a2a3.

A polynomial f ∈ Hs
n,d or Hc

n,d is called monic, if the coefficient of Sd = ad0 + · · ·+ adn−1 is
equal to 1. For a subset V ⊂ Hc

n,d, we denote

V̆ :=
{
f ∈ V

∣∣ f is monic
}
.

We denote as Pn
R : (a0: · · · : an) when we treat Pn

R with a homogeneous coordinate system
(a0: · · · : an). Similarly we denote as Rn : (x1, . . . , xn) when we study Rn with a coordinate
system (x1,. . ., xn).

3.1. Structure of P3
R/S4

Let (a0: · · · : an) be the homogeneous coordinate system of Pn
R, and σk = σk(a0,. . ., an)

be the k-th symmetric function of a0,. . ., an (0 ≤ k ≤ n + 1). The sequence of functions
(σ1,. . ., σn+1) defines the regular map σ:Pn

P −→ PR(1, 2, . . . , n+1), where PR(1, 2, . . . , n+1)
is the real weighted projective space which is defined as the real part of the complex weighted
projective space PC(1, 2, . . ., n+1). The image σ(Pn

R) is isomorphic to Pn
R/Sn+1 as semialge-

braic varieties. Note that Pn
C/Sn+1

∼= PC(1, 2, . . . , n+1), but Pn
R/Sn+1 ̸∼= PR(1, 2, . . . , n+1).

In general, for two points P , Q ∈ Pn
R, (PQ) represents an open line segment, [PQ] :=

(PQ) ∪ {P , Q} represents a closed line segment, and PQ represents a line.
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Definition 3.1. Assume that a finite group G acts on a semialgebraic variety A. Let
σ:A → A/G be the natural surjection. A closed semialgebraic subset A0 ⊂ A is called a
fundamental domain of A/G, if σ(A0) = A/G and σ : Int(A0) −→ σ(Int(A0)) ⊂ A/G is an
isomorphism.

Example 3.2. (1) Let A = Pn
R and G = Z/(n + 1)Z. Then (Pn

R)
G = {1}, and

Sing(Pn
R/G) = σ

(
(Pn

R)
G
)
= {σ(1)}, here 1 = (1: 1: · · · : 1) ∈ A. The following Ac is a

fundamental domain.

Ac :=

{
(a0: · · · : an−1: 1) ∈ Pn

R

∣∣∣∣ a0 + a1 + · · ·+ an−1 + 1 ≥ 0,
a0 ≤ 1, a1 ≤ 1,. . ., an−1 ≤ 1

}
.

(2) Let A = Pn
+ and G = Z/(n+ 1)Z. Then (Pn

R)
G = {1}, and

A+
c :=

{
(a0: · · · : an−1: 1) ∈ Pn

R
∣∣ 0 ≤ a0 ≤ 1,. . ., 0 ≤ an−1 ≤ 1

}
is a fundamental domain.

(3) Let A = Pn
R and G = Sn+1. Then

As :=
{
(−1 ≤ a0: · · · : an−1: 1) ∈ Ac

∣∣ a0 ≤ a1 ≤ · · · ≤ an−1

}
is a fundamental domain.

(4) Let A = Pn
+ and G = Sn+1. Then

A+
s :=

{
(a0: · · · : an−1: 1) ∈ Pn

R
∣∣ 0 ≤ a0 ≤ a1 ≤ · · · ≤ an−1 ≤ 1

}
is a fundamental domain.

Note that P3
C/S4

∼= PC(1, 2, 3, 4) has cyclic quotients singularities at P̃0 := (0: 1: 0: 0),
P̃ ′
0 := (0: 0: 1: 0) and P̃ ′′

0 := (0: 0: 0: 1).

Proposition 3.3. About the structures of P3
R/S4 and P3

+/S4, we have the following:

(1) Let σ:P3
R −→ P3

R/S4
⊂−→ PR(1, 2, 3, 4) be the natural map. Then σ−1(P̃ ′

0) = ∅,
σ−1(P̃ ′′

0 ) = ∅, and σ(−1, 0, 0, 1) = P̃0.
(2) ∆2(P3

R/S4) =
{
D̃1

}
, ∆1(P3

R/S4) =
{
C̃1, C̃2

}
, and ∆0(P3

R/S4) =
{
P̃0, P̃1, P̃2

}
, where

D̃1, C̃i and P̃i are as follows:

D̃1 :=
{
σ(s: t:u:u) ∈ PR(1, 2, 3, 4)

∣∣ s < t, s ̸= u, t ̸= u
}
,

C̃1 :=
{
σ(s: 1: 1: 1) ∈ PR(1, 2, 3, 4)

∣∣ s ∈ P1
R, s ̸= −3, 1

}
,

C̃2 :=
{
σ(s: s: 1: 1) ∈ PR(1, 2, 3, 4)

∣∣ −1 < s < 1
}
,

P̃1 := σ(1: 1: 1: 1) = (4: 6: 4: 1) ∈ PR(1, 2, 3, 4),

P̃2 := σ(−1:−1: 1: 1) = (0:−2: 0: 1) ∈ PR(1, 2, 3, 4).

(3) ∆2(P3
+/S4) =

{
D̃+

1 , D̃0

}
, ∆1(P3

+/S4) =
{
C̃+

1 , C̃+
2 , C̃3, C̃4

}
, and ∆0(P3

+/S4) =
{
P̃1,

P̃3, P̃4, P̃5

}
, where D̃+

1 , D̃0, C̃
′
1, C̃i and P̃i are as follows:

D̃+
1 :=

{
σ(s: t: 1: 1) ∈ PR(1, 2, 3, 4)

∣∣ 0 < s < t, s ̸= 1, t ̸= 1
}
,

D̃0 :=
{
σ(0: s: t: 1) ∈ PR(1, 2, 3, 4)

∣∣ 0 < s < t < 1
}
,

C̃+
1 :=

{
σ(s: 1: 1: 1) ∈ PR(1, 2, 3, 4)

∣∣ 0 < s < 1 or s > 1
}
,

C̃+
2 :=

{
σ(s: s: 1: 1) ∈ PR(1, 2, 3, 4)

∣∣ 0 < s < 1
}
,

C̃3 :=
{
σ(0: s: 1: 1) ∈ PR(1, 2, 3, 4)

∣∣ 0 < s < 1 or 1 < s
}
,
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C̃4 :=
{
σ(0: 0: s: 1) ∈ PR(1, 2, 3, 4)

∣∣ 0 < s < 1
}
,

P̃3 := σ(0: 1: 1: 1) = (3: 3: 1: 0) ∈ PR(1, 2, 3, 4),

P̃4 := σ(0: 0: 1: 1) = (2: 1: 0: 0) ∈ PR(1, 2, 3, 4),

P̃5 := σ(0: 0: 0: 1) = (1: 0: 0: 0) ∈ PR(1, 2, 3, 4).

(4) disc(D̃1) = Disc4, and C̃1 ∪ C̃2 ⊂ Sing(V (Disc4)), here V (f) is the zero locus of f in
PR(1, 2, 3, 4).

(5) Cls C̃1 is isomorphic to a cubic curve on P2
R with a cusp at P̃1.

(6) C̃2 = (P̃1P̃2) is isomorphic to an open line segment with ends P̃1 and P̃2.
(7) P3

R/S4 is the semialgebraic subset of PR(1, 2, 3, 4) defined by Disc4(1, σ1, σ2, σ3, σ4) ≥ 0,
8σ2 ≤ 3σ2

1 , and 64σ4 − 16σ2
2 + 16σ2

1σ2 − 16σ1σ3 − 3σ4
1 ≤ 0. Here, σi is the elementary

symmetric polynomials of a0, a1, a2, a3 of degree i.

Proof. (1) is clear.
(2) and (3) follows from the critical decompositions of fundamental domains As and

A+
s in the above example.

(4) This follows from conditions that a quartic equation has a double root, a triple root
or two double roots.

(5) Eliminate t from x = σ2(t, 1, 1, 1)/σ1(t, 1, 1, 1)
2, y = σ3(t, 1, 1, 1)/σ1(t, 1, 1, 1)

3, z =
σ4(t, 1, 1, 1)/σ1(t, 1, 1, 1)

4, then we obtain 32(x − 3/8)3 + 27(x − 3/8)2 − 108(x − 3/8)(y −
1/16) + 108(y − 1/16)2 = 0 and x2 = 3y − 12z. This cuve is isomorphic to a cubic curve on
P2
R, and have a cusp at (x, y, z) = (3/8, 1/16, 1/256) = P̃1.

(6) Eliminate t from x = σ2(t, t, 1, 1)/σ1(t, t, 1, 1)
2, y = σ3(t, t, 1, 1)/σ1(t, t, 1, 1)

3, z =
σ4(t, t, 1, 1)/σ1(t, t, 1, 1)

4, then we obtain 4x − 8y = 1 and y2 = z. This is a non-singular
rational curve.

(7) This follow from theory of quartic equations. g(a, b, c, d) := 64σ4− 16σ2
2 +16σ2

1σ2−
16σ1σ3 − 3σ4

1 is a separator. Note that

g(a, a, c, d) = −(c− d)2(8a2 − 8ac+ 3c2 − 8ad+ 2cd+ 3d2),

g(a, a, a, d) = −3(a− d)4.

Thus, V (g) pass through C̃2.

3.2 The PSD cone Ps0
4,4

In this subsection, we shall study Ps0
4,4 := P(P3

R, H
s0
4,4). We choose

s0 := S4 − 4U, s1 := T3,1 − 12U, s2 := S2,2 − 6U, s3 := T2,1,1 − 12U

as a basis of Hs0
4,4. The aim of this subsection is to prove the following theorem.

Theorem 3.4. (1) For a monic f = s0+ps1+qs2+rs3 ∈ H̆s0
4,4, f(a) ≥ 0 for all a ∈ R4

if and only if
p+ r ≥ 0 and − 9p2 + 12p+ 12q + 12r + 8 ≥ 0.

(2) All the extremal elements of Ps0
4,4 are positive multiples of gt (t ∈ P1

R = R ∪ {∞}) or p.
(3) All the discriminants of Ps0

4,4 are discC1 = 9p2 +12p+12q+12r+8 and discP2 = p+ r.

(4)
{
(t: 1: 1: 1) ∈ P3

+

∣∣ t ≥ 0
}
∪ {(−1:−1: 1: 1)} is a test set for Ps0

4,4.

This theorem will be proved after Lemma 3.7.
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For f ∈ C[x1,. . ., xn]d and K = R or C, we denote

VK(f) :=
{
a ∈ Pn

K

∣∣ f(a) = 0
}
, V+(f) := VR(f) ∩ Pn

+.

In some articles, VK(f) are also denoted by Z(f). The symbol VK(f) is rather popular in
algebraic geometry.

We define Φs0
4,4 : P3

R · · · → P3
R by Φs0

4,4(a) =
(
s0(a) : s1(a) : s2(s) : s3(a)

)
. Let

Xs0
4,4 := Φs0

4,4(P3
R) = X(P3

R, H
s0
4,4) ⊂ P

(
(Hs0

4,4)
∨),

and let Ψ:P3
R/S4 · · · → Xs0

4,4 be the rational map such that Φs0
4,4 = Ψ ◦ σ. Let

C1 := Cls(Ψ(C̃1)) =
{
Φs0

4,4(t: 1: 1: 1)
∣∣ t ∈ P1

R
}
,

C2 := Ψ(C̃2) =
{
Φs0

4,4(t: t: 1: 1)
∣∣ −1 < t < 1

}
,

P0 := Ψ(P̃0) = Φs0
4,4(−1: 0: 0: 1) = (2:−2: 1: 0),

P2 := Ψ(P̃2) = Φs0
4,4(−1:−1: 1: 1) = (0: 1: 0: 1)

P−3 := Φs0
4,4(−3: 1: 1: 1) = (2:−1: 1: 1).

Moreover let

E0 :=
{
(a: b: c: d) ∈ P4

R
∣∣ a, b, c, d ∈ R, a+ b+ c+ d = 0

}
,

D′
1 :=

{
(a: b: c: c) ∈ P4

R
∣∣ a, b, c ∈ R

}
,

L0 := Φs0
4,4(E0) and D1 := Ψ(D̃1) = Φs0

4,4(D
′
1). Note that Ψ(D̃1) = Φs0

4,4(D
′
1). Since

BsHs0
4,4 = {(1: 1: 1: 1)}, Ψ is not holomorphic at P̃1.

Note that BsHs0
4,4 = {(1: 1: 1: 1)}, and Ψ is not holomorphic at P̃1.

Lemma 3.5.

(1) Ψ : P3
R/S4 −→ Xs0

4,4 is continuous map and Ψ : (P3
R/S4−{P̃1}) −→ Xs0

4,4 is a birational
morphism. All the exceptinal set of Φs0

4,4 : P3
R · · · → P3

R is E0.

(2) ∂Ps0
4,4 = F(C1) ∪F(P2), and E(Xs0

4,4) ⊂ C1 ∪ {P2}.

Proof. We denote the coordinate system of P
(
(Hs

4,4)
∨) = P3

R by (x0:x1:x2:x3), Φ
s0
4,4 is

defined by xi = si(a).

(0) Let P1 := (2: 3: 1: 1). When a, b, c→ 0,

Φs0
4,4(1: 1+a: 1+b: 1+c) = (3a2−2ab+3b2−2ac−2bc+3c2)(2: 3: 1: 1)+(higher terms of a, b, c).

Thus Φs0
4,4(1: 1: 1: 1) = Ψ(P̃1) = P1, and Ψ is continuoius at P̃1.

(1) We take As as Example 3.2(3). It is easy to see that Φs0
4,4 ⊗R C : P3

C −→ P3
C is a

generically finite rational map of degree 24. Thus Φs0
4,4:As −→ Xs0

4,4 is generically one to
one. Using PC, we have

JP := det

(
∂si(a0, a1, a2, a3)

∂aj

)
0≤i,j≤3

= 16S2
1(3S2 − 2S1,1)

2
∏
i<j

(ai − aj).

Jp ̸= 0 on Int(As) − {(1: 1: 1: 1)}. Thus Φs0
4,4: Int(As) −→ Xs0

4,4 is injective. Since ∂As ⊂
E0 ∪

⋃
τ∈S4

τ(D′
1), we have ∂X

s0
4,4 = L0 ∪D1. So, Ψ : (P3

R/S4 −{P̃1}) −→ Xs0
4,4 is a birational
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morphism. Let

fs04,4(x0, x1, x2, x3) := −3x0x
4
1 + 4x51 + 6x20x

2
1x2 − 24x0x

3
1x2 + 14x41x2 − 3x30x

2
2

+ 20x20x1x
2
2 − 48x0x

2
1x

2
2 + 16x31x

2
2 + 34x20x

3
2 + 16x0x1x

3
2 + 8x21x

3
2 + 44x0x

4
2

− 48x1x
4
2 − 72x52 + 12x20x

2
1x3 + 12x0x

3
1x3 − 36x41x3 − 12x30x2x3 + 20x20x1x2x3

+ 120x0x
2
1x2x3 − 56x31x2x3 − 76x20x

2
2x3 − 32x0x1x

2
2x3 − 64x21x

2
2x3

− 32x0x
3
2x3 + 112x1x

3
2x3 + 144x42x3 − 12x30x

2
3 − 40x20x1x

2
3 − 112x1x

3
2x3

+ 144x42x3 − 12x30x
2
3 − 40x20x1x

2
3 − 18x0x

2
1x

2
3 + 104x31x

2
3 + 14x20x2x

2
3

− 104x0x1x2x
2
3 + 84x21x2x

2
3 + 64x0x

2
2x

2
3 + 16x1x

2
2x

2
3 − 152x32x

2
3 + 28x20x

3
3

+ 12x0x1x
3
3 − 136x21x

3
3 + 8x0x2x

3
3 − 56x1x2x

3
3 + 32x22x

3
3 − 3x0x

4
3 + 84x1x

4
3

+ 14x2x
4
3 − 20x53.

Since

fs04,4(s0, s1, s2, s3) = 16(a0 + a1 + a2 + a3)
4

∏
i<j

(ai − aj)
2

∑
i<j

(ai − aj)
2

2

,

we have ∂Xs0
4,4 = Φs0

4,4(E0 ∪D′
1) ⊂ VR(f

s0
4,4) ⊂ P3

R by Corollary 2.13. Since fs04,4 is irreducible,
we have Zar(∂Xs0

4,4) = VR(f
s0
4,4). Note that fs04,4 ≥ 0 on Xs0

4,4.

It is easy to see that L0 is a closed line segment [P2P−3] defined by x0 = 2x2, x0−x1+
x3 = 0 and x1/x0 ≤ −1/2. This also means that E0 is an exceptinal set of Φs0

4,4.

Similarlym C2 is an open line segment (P1P2) defined by x0 = 2x2, x0 − x1 + x3 = 0
and x1/x0 < 3/2. Note that L0, C2 ⊂ ∂Xs0

4,4.

Next we consider C1. Let

g2(x0, x1, x2, x3) := (x1 − x3)
2 + 2x22 − 3x2x0.

Then C1 is the conic defined by x2 = x3 and g2(x0, x1, x2, x3) = 0. Note that x2 − x3 ≥ 0
on Xs0

4,4, because s2 − s3 = p ≥ 0 on As.

Let B be the ellise domain on the plane x2 = x3 defined by g2(1, x1, x2, x2) ≤ 0, and
let Y be the cone with the base B and the virtex P2.

(2) We shall show that Y is the convex closure of Xs0
4,4.

A point on C1 can be written as

P (t) = Φs0
4,4(t, 1, 1, 1) = (t2 + 2t+ 3: 3(t+ 2): 3: 3)

where t ∈ P1
R. P (1) = P1 and P (−3) = P−3. Let L(t) := (P2P (t)) be an open line segment.

Note that L(−3) = (P2P−3) ⊂ L0, and L(1) = (P2P1) = C2. A point on L(t) can be written
as P (t, s) = P (t) + sP2 by s > 0. Using PC, we have

fs04,4(P (t, s)) = −12s2(s− 1)2(t+ 3)4.

This implies L(t)∩Xs0
4,4 = ∅, if t ̸= −3, 1. This meansXs0

4,4 ⊂ Y . Since C1∪{P2} ⊂ Xs0
4,4 ⊂ Y ,

we conclude that Y is the convex closure of Xs0
4,4. This also implies E(Xs0

4,4) ⊂ C1 ∪ {P2}.
SinceXs0

4,4∩∂Y = C1∪C2∪L0∪{P2}, we have ∂Ps0
4,d = F(C1)∪F(C2)∪F((P2P−3))∪F(P2) by

Theorem 2.7(1). But F(C2) and F((P2P−3)) are not face components, because dual varieties
of Zar(C2) and Zar((P2P−3)) are linear subspaces of cHs0

4,4 of codimension 2. Thus all the
face components of Ps0

4,4 are F(C1) and F(P2). Therefore ∂P
s0
4,4 = F(C1) ∪F(P2).
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Proof of Theorem 1.9(1). Put Ω := {(−1:−1: 1: 1)} ∪
{
(t: 1: 1: 1) ∈ P3

R
∣∣ t ∈ R

}
. By

Theorem 2.10, it is enough to show that Φs0
4,4(Ω) ⊃ C1 ∪ {P2} = E(Xs0

4,4). But this is clear.

We regard Hs0
4,3 = R4, by identifying f =

3∑
i=0

pisi ∈ Hs0
4,3 and (p0, p1, p2, p3) ∈ R4. We

also use (p0, p1, p2, p3) as a coordinate system of Hs0
4,3 = R4. We denote the local cone of

Ps0
4,4 at (t: 1: 1: 1) ∈ P3

R by Ls0
t . Note that if f ∈ F(C1), there exists t ∈ R such that f(t, 1, 1,

1) = 0. Thus f ∈ Ls0
t . For t = ∞ ∈ P1

R, we denote the local cone of Ps0
4,4 at (1: 0: 0: 0) ∈ P3

R
by Ls0

∞.

We shall observe gt, g∞ and p ∈ Ps0
4,4. Note that

3gt(a, b, c, d) = 3s0 − 2(t+ 1)(s1 − s3) + (t2 + 2t− 1)s2

=
(
a2 + b2 − c2 − d2 + (t+ 1)(cd− ab)

)2
+
(
a2 − b2 + c2 − d2 + (t+ 1)(bd− ac)

)2
+
(
a2 − b2 − c2 + d2 + (t+ 1)(bc− ad)

)2
,

g∞(a, b, c, d) = s2 = (ab− cd)2 + (ac− bd)2 + (ad− bc)2,

p(a, b, c, d) = s2 − s3 = (a− b)2(c− d)2 + (a− c)2(b− d)2 + (a− d)2(b− c)2.

Espacially, gt, g∞, p ∈ Σ4,4.
If f ∈ E(P4,4) ∩ Σ4,4, then there exists g ∈ P2,4 such that f = g2. Therefore gt, g∞,

p /∈ E(P4,4). But gt, g∞, p /∈ E(Ps0
4,4) as the following Lemma.

For f(a, b, c, d) ∈ R[a, b, c, d], we dnote
∂

∂a
f by fa,

∂2

∂a2
f by faa, and so on.

Lemma 3.6. gt ∈ E(Ps0
4,4) for all t ∈ P1

R, and p ∈ E(Ps0
4,4). These are characterized as

the following:
(1) Let t ∈ R−{1, −3}. If f ∈ Ps0

4,4 satisfies f(t, 1, 1, 1) = 0 and f(−1, −1, 1, 1) = 0, then
there exists α ≥ 0 such that f = αgt.

(2) If f ∈ Ps0
4,4 satisfies f(x, x, 1, 1) = 0 for all x ∈ R, then there exists α ≥ 0 such that

f = αg1.
(3) If f ∈ Ps0

4,4 satisfies f(x, y, z, −x − y − z) = 0 for all x, y, z ∈ R, then there exists
α ≥ 0 such that f = αg−3.

(4) If f ∈ Ps0
4,4 satisfies f(0, 0, 0, 1) = 0 and f(−1, −1, 1, 1) = 0, then there exists α ≥ 0

such that f = αg∞.
(5) If f ∈ Ps0

4,4 satisfies f(0, 0, 0, 1) = 0 and f(x, 1, 1, 1) = 0 for all x ∈ R, then there
exists α ∈ R+ such that f = αp.

Proof. Note that of f ∈ Ps0
4,4 satisfies f(a, b, c, d) = 0, then fa(a, b, c, d) = 0. Similarly,

if faa(a, b, c, d) = 0, then faaa(a, b, c, d) = 0. Otherwise, f will be negative at a certain point
near (a, b, c, d). f ∈ Hs

4,4 can be written as f = p0s0 + p1s1 + p2s2 + p3s3) by p0, p1, p2,
p3) ∈ R.

(1) Take t ∈ R− {1, −3}. Let’s consider a system of equations

f(t, 1, 1, 1) = 0, fa(t, 1, 1, 1) = 0, f(−1,−1, 1, 1) = 0. (∗)
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Let a0,j := sj(t, 1, 1, 1), a1,j := (sj)a(t, 1, 1, 1), a2,j := sj(1, 1,−1,−1), and A := (ai,j) ∈
M3,4(R). Then, (∗) is equivalent to Ap = 0. That is (t− 1)2(t2 + 2t+ 3) 3(t− 1)2(t+ 2) 3(t− 1)2 3(t− 1)2

4(t3 − 1) 9(t2 − 1) 6(t− 1) 6(t− 1)
0 −16 0 −16



p0
p1
p2
p3

 =

 0
0
0

 .

Using Mathmatica, we can soon check that KerA = R ·gt. If f ∈ Ps0
4,4 satisfies f(t, 1, 1, 1) =

0, then fa(t, 1, 1, 1) = 0 always holds. Thus, if f ∈ Ps0
4,4 satisfies f(t, 1, 1, 1) = 0 and

f(−1,−1, 1, 1) = 0, then f = αgt by a certain α > 0.

(2) Consider a system of equations f(0, 0, 1, 1) = 0, f(2, 2, 1, 1) = 0 instead of (∗).
Then dimKerA = 2, and g1 and g := s1 − 2s2 − s3 is a basis of KerA. g is not PSD. Since
g1(x, 1, 1, 1) + cg(x, 1, 1, 1) = (x− 1)3(x− 1 + 3c), g1 + cg is PSD only if c = 0.

(3) Consider f(1, 2, 3,−6) = 0, fa(1, 2, 3,−6) = 0, f(1, 2, 4,−7) = 0.
(4) Consider f(0, 0, 0, 1) = 0, fa(0, 0, 0, 1) = 0, f(−1,−1, 1, 1) = 0.
(5) Consider f(2, 1, 1, 1) = 0, f(0, 0, 0, 1) = 0, fa(0, 0, 0, 1) = 0.
Each A of the cases (2)—(5) are as follows:

(2) A =

 18 26 9 8
24 34 12 10
24 18 0 0

 , (3) A =

 1538 −962 769 576
148 248 314 516
2898 −2002 1449

 ,

(4) A =

 1 0 0 0
0 1 0 0
0 16 0 −16

 , (5) A =

 11 12 3 3
1 0 0 0
0 1 0 0

 .

gt (t ∈ P1
R) degenerates when t = 1, −3. Note that

g−3 = S2
1(3S3 − 2T1,1).

Thus F(L0) = R+ · g−3.
Since g1(x, x, 1, 1) = 0 for all x ∈ P1

R, we have F(C2) = R+ · g1. These also implies
that F(L0) and F(C2) are not a face component of Ps0

4,4, and we can omit
{
(x:x: 1: 1) ∈ P3

R∣∣ x ∈ R+

}
from the test set.

Lemma 3.7. Ls0
t = R+ · gt + R+ · p, and the discriminant of F(C1) and F(P2) are

discC1
(p0, p1, p2, p3) = 8p20 − 9p21 + 12p0p1 + 12p0p2 + 12p0p3,

discP2(p0, p1, p2, p3) = p1 + p3.

Proof. Since P2 = (0: 1: 0: 1), discP2
(p0, p1, p2, p3) = p1 + p3, by Remark 1.28 of [4].

Since gt, p ∈ Ls0
t (t ∈ P1

R), we have dimLs0
t ≥ 2. On the other hand, since dimLs0

t <
dimPs0

4,4 = 3, we have dimLs0
t = dimLs0

∞ = 2 (t ̸= 1). Since gt, p ∈ E(Ps0
4,4), we have

Ls0
t = R+ · gt + R+ · p for all t ∈ P1

R.
Using PC, we can check that gt (∀t ∈ P1

R) and p exists on the hypersurface in Hs0
4,4

defined by 8p20− 9p21+12p0p1+12p0p2+12p0p3. This equation is also the defining equation
of the dual variety of C1. So, this is discC1

.
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Proof of Theorem 3.4. By the above lemma, we have

F(P2) =

{
3∑

i=0

pisi ∈ Hs0
4,4

∣∣∣∣∣ p1 + p3 = 0, p0 ≥ 0, −9p21 + 12p0p2 + 8p20 ≥ 0

}
,

F(C1) =

{
3∑

i=0

pisi ∈ Hs0
4,4

∣∣∣∣ p1 + p3 ≥ 0, p0 ≥ 0,

−9p21 + 12p0p1 + 12p0p2 + 12p0p3 + 8p20 = 0

}
.

Thus, all the extremal elements of Ps0
4,4 are gt (t ∈ P1

R) and p.
Thus, for f = s0+ps1+qs2+rs3 ∈ Hs0

4,4, f(a) ≥ 0 for all a ∈ P3
R if and only if p+r ≥ 0

and −9p2 + 12p+ 12q + 12r + 8 ≥ 0.
(4) follow from ∂Ps0

4,4 = F(C1) ∪F(P2).

Proof of Theorem 1.1(1), 1.2 and 1.8(1). Let t0 := σ4
1 − 256σ4, t1 := σ2

1σ2 − 96σ4,
t2 := σ2

2 − 36σ4, t3 := σ1σ3 − 16σ4. Then s0 = t0 − 4t1 + 2t2 + 4t3, s1 = t1 − 2t2 − t3,
s2 = t2 − 2t3 and s3 = t3. Using these substitution for gt, g∞ and p, we obtain Theorem
1.2.

Take f = p0s0 + p1s1 + p2s2 + p3s3 = q0t0 + q1t1 + q2t2 + q3t3 ∈ Hs0
4,4. Since t0 =

s0 + 4s1 + 6s2 + 12s3, t1 = s1 + 2s2 + 5s3, t2 = s2 + 2s3 and t3 = s3, we have p0 = q0,
p1 = 4q0 + q1, p2 = 6q0 + 2q1 + q2, and p3 = 12q0 + 5q1 + 2q2 + q3. Substitute these for pi
in discC1

and discP2
of Lemma 3.7, we obtain d1 and d2 of Theorem 1.8(1). Theorem 1.1(1)

follows from these.

Proof of Proposition 1.7(1). Let f(x, y) := gt(x, y, 1,−x − y − 1)/(t + 3)3 for t ∈
P1
R − {−3}. If gt is reducible, then f is also reducible. By

∂

∂x
f(x, y) = 2(2x+ y + 1)(x2 + xy + y2 + x+ 3y + 1)

and so on, we have

Sing(VC(f)) =
{
(−1:−1: 1), (−1: 0: 1), (0: 1: 1)

}
.

Moreover, these are acnodes. Assume that f = gh. If deg g = 1, then #Sing(VC(f)) = 4
or #Sing(VC(f)) ⊂ VC(g). This cannot occur. Thus, g and h are irreducible quadric curves
which intersect transversally. Then, #Sing(VC(f)) = 4. Therefore, VC(f) must be an
irreducible rational quartic curve.

Proof of Corollary 1.3. E(Ps0
4,4) ⊂ Σ4,4 is already proved. Since, any element of Ps0

4,4

can be written as a sum of some elements in E(Ps0
4,4), we have Ps0

4,4 ⊂ Σ4,4.
Assume that ∃f ∈ E(Ps0

4,4) ∩ E(P4,4) ̸= ∅. f is SOS, since E(Ps0
4,4) ⊂ Σ4,4. Since,

f ∈ E(P4,4), we have f ∈ E(Σ4,4). Thus, there exists g ∈ H4,2 such that f = g2. Then
VR(g) = VR(f). Since #VR(gt) ≥ 2 and #VR(p) ≥ 2, we have #VR(g) ≥ 2. Such conic g
satisfies dimR VR(g) ≥ 1. But, VR(f) is a finite set.

3.3. The PSD cone Ps0+
4,4

In this subsection, we shall study Ps0+
4,4 := P(P3

+, H
s0
4,4). The aim of this subsection is

to prove the following theorem.
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Theorem 3.8. (I) For a monic

f = s0 + ps1 + qs2 + rs3 ∈ H̆s0
4,4,

f(a) ≥ 0 for all a ∈ R4
+ if and only if the following “(1) or (2)” and “(3) or (4)” hold:

(1) p ≤ −4 and p2 ≤ 4q − 8.
(2) p ≥ −4 and 2p+ q + 2 ≥ 0.
(3) p ≤ −2/3 and 9p2 ≤ 12p+ 12q + 12r + 8.
(4) p ≥ −2/3 and 3q + 3r ≥ 1.

(II) All the extremal elements of Ps0+
4,4 are positive multiples of fabt (0 ≤ t ≤ 5), fct

(5 < t <∞), p = s2 − s3, q1 = s1 − 2s2 or q2 = s3.
(III) The following set is a test set for (P3

+, H
s0+
4,4 ).{

(t: 1: 1: 1) ∈ P3
+

∣∣ t ≥ 0
}
∪
{
(0: 0: t: 1) ∈ P3

+

∣∣ t ≥ 0
}
.

This theorem will be proved after Lemma 3.16.
Essentially, we use the same symbols as the previous subsection, but there are some

changes. Let A := P3
+ : (a0: a1: a2: a3), X

s0+
4,4 := Φs0

4,4(P3
+) = X(P3

+, H
s0
4,4) ⊂ P

(
(Hs0

4,4)
∨). As

§3.2, put D0 := Ψ(D̃0), D
+
1 := Ψ(D̃+

1 ) ⊂ D1, P1 := (2: 3: 1: 1), C+
1 := Ψ(C̃+

1 ) ∪ {P1} ⊂ C1,
C+

2 := Ψ(C̃+
2 ) ⊂ C2, Ci := Ψ(C̃i) for i = 3, 4 and Pj := Ψ(P̃j) for j = 3, 4, 5. Note that

P3 = (1: 2: 1: 1) = Φs0
4,4(0, 1, 1, 1),

P4 = (2: 2: 1: 0) = Φs0
4,4(0, 0, 1, 1),

P5 = (1: 0: 0: 0) = Φs0
4,4(0, 0, 0, 1).

Lemma 3.9. Let Z := P3
+/S4 − C̃+

1 − C̃+
2 − {P̃1, P̃3, P̃4, P̃5}.

(1) Ψ:P3
+/S4 −→ Xs0+

4,4 is continuous bijective map and Ψ : Z −→ Ψ(Z) is an isomprohism.

(2) ∆0(Xs0+
4,4 ) = {P3, P4, P5}, ∆1(Xs0+

4,4 ) = {C+
1 , C+

2 , C3, C4}, ∆2(Xs0+
4,4 ) = {D0, D

+
1 },

∆3(Xs0+
4,4 ) = {Int(Xs0+

4,4 )}.

Proof. (1) We use tha same symbols with the proof of Lemma 3.5. Note that E0∩A+
s =

∅. So, it is enough to show that Φs0
4,4 is injective on A+

s ∩
⋃

τ∈S4

τ(D′
1). It is enough to show

that Φs0
4,4 is injective on P2

+ ∩D′
1. It’s Jacobian is equal to J(x1, x2) := det

(
∂hi
∂xj

)
1≤i,j≤1

,

where hi(x1, x2) := s1(x1, x2, 1, 1)/s0(x1, x2, 1, 1) (i = 1, 2). Using PC, we have

J(x, y) =
4(x− 1)(y − 1)(x− y)w(x, y)

s0(x, y, 1, 1)3
,

w(x, y) :=
1

8

(
(x+ y − 2)4(x+ y + 2)2 + (x− y)4(3(x+ y)2 + 28(x+ y) + 12)

+ 4(x− y)2(x+ y − 2)2((x+ y)2 + 6(x+ y) + 4)
)
.

Thus J(x, y) ≥ 0 on P2
+ ∩ D′

1, and J(x, y) = 0 only at points of the form (x: 1: 1: 1) or
(1:x: 1: 1) or (x:x: 1: 1). Thus Ψ : Z −→ Ψ(Z) is an isomprohism.

(2) follows from Proposition 3.3(3) and the proof of Lemma 3.5.

Lemma 3.10. (1) ∂Ps0+
4,4 = F(C+

1 ) ∪F(C3) ∪F(C4) ∪F(P3) ∪F(P4) ∪F(P5).

20



(2) Take f ∈ Hs0
4,4. If f(x, 1, 1, 1) ≥ 0, f(0, x, 1, 1) ≥ 0, f(0, 0, x, 1) ≥ 0 for all x ≥ 0,

then f ∈ Hs0
4,4.

Proof. (1) Int(Xs0+
4,4 ), F(D0) and F(D+

1 ) are not face components of Ps0+
4,4 by Theorem

2.16. F(C+
2 ) is not also a face component of Ps0+

4,4 , because C+
2 is an open line segment (P1,

P4). Thus, we have (1).

(2) Let
A+

1 :=
{
(t: 1: 1: 1) ∈ P3

+

∣∣ t ≥ 0
}
,

A+
2 :=

{
(t: t: 1: 1) ∈ P3

+

∣∣ 0 ≤ t ≤ 1
}
,

A3 :=
{
(0: t: 1: 1) ∈ P3

+

∣∣ t ≥ 0
}
,

A4 :=
{
(0: 0: t: 1) ∈ P3

+

∣∣ t ≥ 0
}
.

Note that Φs0
4,4(A

+
i ) ⊃ C+

i (i = 1, 2), and Φs0
4,4(Aj) ⊃ Cj (j = 3, 4). By Corollary 1.3 of [22]

or Corollary 2.1 of [23], we can choose A+
1 ∪A+

2 ∪A3 ∪A4 as a test set for (P3
+, H

s0
4,4). Since

F(C+
2 ) is not a face component of Ps0+

4,4 and P1 ∈ C+
1 , P4 ∈ Cls(C3)∩Cls(C4), we can omit

A+
2 from the test set. Thus, if f ∈ Hs0

4,4 satisfies f(x, 1, 1, 1) ≥ 0, f(0, x, 1, 1) ≥ 0 and f(0,

0, x, 1) ≥ 0 for all x ≥ 0, then f ∈ Ps0+
4,4 .

In fact, F(C3) is not a face component, and we can omit A3 from the test set. But it
will be proved later. We summarize here what C+

1 , C3 and C4 are.

Lemma 3.11.
(1) Zar(C+

1 ) is a conic defined by x21 − 2x1x2 − 3x0x2 + 3x22 = 0, x2 − x3 = 0. Especially,
Zar(C+

1 ) is nonsingular. The ends of C+
1 are P3 and P5.

(2) Zar(C3) has a cusp at P3. The ends of C3 are P4 and P5.
(3) Zar(C4) is a conic defined by x21 − 2x22 − x0x2 = 0 on the plane VR(x3). The ends of C4

are P4 and P5.

Next, we shall study fabt (0 ≤ t ≤ 5), fct (5 ≤ t < ∞), p = s2 − s3, q1 = s1 − 2s2, and
q2 = s3. Note that

fabt =
1

3

(
3s0 − 2(t+ 1)s1 + 2(2t− 1)s2 + (t2 + 3)s3

)
,

fct =
1

9

(
9s0 − 6(t+ 1)s1 + (t2 + 2t+ 19)s2 + 2(t2 + 5t− 8)s3

)
,

and fab5 = fc5. Put fc∞ := s2 + 2s3. Since fc∞ = p + 3q2, f
c
∞ is not extremal. The author

studied Φc0
4,4(t: 1: 1: 1) ∈ F(C+

1 ), dividing three cases (a) 0 ≤ t < 1, (b) 1 < t ≤ 5 and (c)

t > 5. The symbol fabt stands for cases (a) and (b). For u ≥ 0, let

hcu := 3u2s0 − 6u(u2 + 1)s1 + 3(u4 + 4u2 + 1)s2 + 2(3u4 + 3u3 + 2u2 + 3u+ 3)s3.

If t = (3u2 −u+3)/u, then hcu = 3u2fct . So, h
c
u is not a new polynomial, but it is convenient

to study F(C4) for the property hcu(0, 0, u, 1) = 0.
We shall denote the local cone of Pc0+

4,4 at the point (t: 1: 1: 1) ∈ P3
+ by LC1

t , and the

local cone at the point (0: 0: t: 1) by LC4
t .

Lemma 3.12. fabt (0 ≤ t ≤ 5), fct (5 < t < ∞), p, q1, and q2 are extremal elements of
Ps0+

4,4 . These are characterized as follows:
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(1) Let 0 ≤ t < 1 or 1 < t ≤ 5. If f ∈ Ps0+
4,4 satisfies f(t, 1, 1, 1) = 0 and f(0, 0, 1, 1) = 0,

then there exists α ∈ R+ such that f = αfabt .

(2) If f ∈ Ps0
4,4 satisfies faa(1, 1, 1, 1) = 0 and f(x, x, 1, 1) = 0 for all x ≥ 0, then there

exists α ∈ R+ such that f = αfab1 .

(3) Assume that t, u ∈ R+ satisfy 3u2 − (t + 1)u + 3 = 0. If f ∈ Ps0
4,4 satisfies f(t, 1, 1,

1) = 0 and f(0, 0, u, 1) = 0, then there exists α ∈ R+ such that f = αfct .

(4) If f ∈ Ps0
4,4+ satisfies f(0, 0, 0, 1) = 0, fa(0, 0, 0, 1) = 0 and f(x, 1, 1, 1) = 0 for all

x ≥ 0, then there exists α ∈ R+ such that f = αp.

(5) If f ∈ Ps0
4,4 satisfies f(0, 1, 1, 1) = 0, f(0, 0, 1, 1) = 0 and f(0, 0, 0, 1) = 0, then there

exists α ∈ R+ such that f = αq1.

(6) If f ∈ Ps0
4,4 satisfies f(0, 0, x, y) = 0 for all x, y ∈ R+, then there exists α ∈ R+ such

that f = αq2.

Proof. We shall show that fabt (0 ≤ 1 ≤ 5), fct (t ≥ 5), p, q1 and q2 belong to Ps0+
4,4 .

Since

fabt (0, x, 1, 1) =
1

3
x(x+ 2)

((
t− 2(x− 1)2

(x+ 2)

)2

+
x(16− x)(x− 1)2

(x+ 2)2

)
,

we have fabt (0, x, 1, 1) ≥ 0 if x ≤ 16. On the other hand

fabt (0, x, 1, 1) =
1

3
x
(
18(25− t)2 +

(
t2 + 120(5− t) + 1575

)
(x− 16)

+
(
4(5− t) + 120

)
(x− 16)2 + 3(x− 16)3

)
,

we have fabt (0, x, 1, 1) ≥ 0 for x ≥ 16. Similarly,

fabt (x, 1, 1, 1) = (x− t)2(x− 1)2 ≥ 0,

fabt (0, 0, x, 1) =
1

3
(x− 1)2

(
3

(
x− t− 2

3

)2

+
1

3
(5− t)(1 + t)

)
≥ 0,

fct(x, 1, 1, 1) = (x− t)2(x− 1)2 ≥ 0,

fct(0, x, 1, 1) =
1

9
(2x+ 1)2

((
t− (x− 1)2(6x+ 5)

(2x+ 1)2

)2

+
24x(x− 1)2(x+ 2)(3x+ 2)

(2x+ 1)4

)
≥ 0,

fct(0, 0, x, 1) =
1

9
(3x2 − (t+ 1)x+ 3)2 ≥ 0,

hcu(0, 0, x, 1) = 3(x− u)2(ux− 1)2 ≥ 0,

q1(x, 1, 1, 1) = 3x(x− 1)2 ≥ 0,

q1(0, x, 1, 1) = 2x(x− 1)2 ≥ 0,

q1(0, 0, x, 1) = x(x− 1)2 ≥ 0,

q2(x, 1, 1, 1) = 3(x− 1)2 ≥ 0,

q2(0, x, 1, 1) = x(x+ 2) ≥ 0,

q2(0, 0, x, 1) = 0.

Thus fabt , fct , q1, q2 ∈ Ps0+
4,4 .

The left part can be proved similarly as the proof of Lemmma 3.6.
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(1) Consider a system of equations f(t, 1, 1, 1) = 0, fa(t, 1, 1, 1) = 0, f(0, 0, 1, 1) = 0
instead of (∗) in Lemmma 3.6. Then Ap = 0 become (t− 1)2(t2 + 2t+ 3) 3(t− 1)2(t+ 2) 3(t− 1)2 3(t− 1)2

4(t3 − 1) 9(t2 − 1) 6(t− 1) 6(t− 1)
2 2 1 0



p0
p1
p2
p3

 =

 0
0
0

 .

Using Mathematica, we can check KerA = R · fabt if t ̸= 1. fa(t, 1, 1, 1) = 0 follows from
f(t, 1, 1, 1) = 0 if f ∈ Ps0+

4,4 .

(2) Consider faaa(1, 1, 1, 1) = 0, f(0, 0, 1, 1) = 0, fa(0, 0, 1, 1) = 0.

(3) This case is slightly complicated. Let t = (3u2 − u+ 3)/u and consider the system
of equations f

(
(3u2 − u+3)/u, 1, 1, 1

)
= 0, fa

(
(3u2 − u+3)/u, 1, 1, 1) = 0, f(0, 0, u, 1) = 0.

Then Ap = 0 become (t− 1)2(t2 + 2t+ 3) 3(t− 1)2(t+ 2) 3(t− 1)2 3(t− 1)2

4(t3 − 1) 9(t2 − 1) 6(t− 1) 6(t− 1)
u4 + 1 u(u2 + 1) u2 0



p0
p1
p2
p3

 =

 0
0
0

 .

Using Mathematica, we can check KerA = R · fct .
(4) Same with (5) of Lemmma 3.6.

(5) Consider f(0, 1, 1, 1) = 0, f(0, 0, 1, 1) = 0, f(0, 0, 0, 1) = 0.

(6) Consider f(0, 0, 0, 1) = 0, f(0, 0, 1, 1) = 0, f(0, 0, 1, 2) = 0.
Each A of the cases (2), (5), (6) are as follows:

(2) A =

 24 18 0 0
2 2 1 0
0 2 0 2

 , (5) A =

 3 6 3 3
2 2 1 0
1 0 0 0

 , (6) A =

 1 0 0 0
2 2 1 0
17 10 4 0

 .

Lemma 3.13.
(1) fabt ∈ F(C1) ∩F(P4) and LC1

t = R+ · fabt + R+ · p for 0 < t < 1 or 1 < t ≤ 5.
(2) fct ∈ F(C1)∩F(C4) and LC1

t = R+ ·fct+R+ ·p for t > 5. Moreover, LC4
u = R+ ·hcu+R+ ·q2

for u ≥ 0 with t = (3u2 − u+ 3)/u.
(3) fab0 ∈ F(C1) ∩F(P3) ∩F(P4).
(4) f5 := fab5 = fc5 ∈ F(C1) ∩F(C4) ∩F(P4).
(5) fc∞ ∈ F(C1) ∩F(C4) ∩F(P5).
(6) p ∈ F(C1) ∩F(P3) ∩F(P5).
(7) q1 ∈ F(P3) ∩F(P4) ∩F(P5).
(8) q2 ∈ F(C4) ∩F(P4) ∩F(P5).

Proof. If F(D) (D ∈ ∆(Xc0+
4,4 )) is a face component of Pc0+

4,4 , then dimF(D) =

dim(∂Pc0+
4,4 ) = dimPc0+

4,4 − 1 = 3. So, if D1, D2, D3 are distinct elements of ∆(Xc0+
4,4 ), and

F(Di) (i = 1, 2, 3) are face components, then dim
(
F(D1) ∩F(D2)

)
= 2 and dim

(
F(D1) ∩

F(D2) ∩F(D3)
)
= 1.

Now, we shall prove (1)—(8).

(1) Assume that 0 ≤ t < 1 or 1 < t ≤ 5. By previous lemma, we have fabt ∈ LC1
t ∩F(P4)

for 0 ≤ t ≤ 5. Since dimLC1
t = 2, we have LC1

t = R+ · fabt + R+ · p ⊂ F(C1),

23



(2) Let u > 0 and t = (3u2 − u + 3)/u ≥ 5. By previous lemma, fct ∈ F(C1) ∩ F(C4).
Since dimLC4

t = 2, LC4
u = R+ · hcu + R+ · q2. As (1), we have LC1

u = R+ · fct + R+ · p.
(3)—(8) can be proved similarly.

Note that fab1 ∈ F(C+
2 ), because fab1 (x, x, 1, 1) = 0 for all x ∈ R. By Lemmma 3.6(2),

we have F(C+
2 ) = R+ · fab1 . This also implies that F(C+

2 ) is not a face component.
Using the above lemma, we shall determine the structure of the face components F(C+

1 ),
F(C4), F(P3), F(P4) and F(P5).

Lemma 3.14. For f , g ∈ Hs0
4,4, let Fan(f , g) := R+ · f +R+ · g be the fan whose edges

are f and g. Put

W ab := R+ ·
{
fabt
∣∣ 0 ≤ t ≤ 5

}
⊂ Hs0

4,4, W c := R+ ·
{
fct
∣∣ t ≥ 5

}
∪ R+ · fc∞.

Then the following hold.
(1) ∂F(C+

1 ) =W ab ∪W c ∪ Fan(fc∞, p) ∪ Fan(p, fab0 ).
(2) ∂F(C4) =W c ∪ Fan(f5, q2) ∪ Fan(q2, f

c
∞).

(3) ∂F(P3) = Fan(fab0 , q1)∪Fan(q1, p)∪Fan(p, fab0 ). That is, F(P3) is a triangle cone with
edges fab0 , q1 and p.

(4) ∂F(P4) =W ab ∪ Fan(f5, q2) ∪ Fan(q2, q1) ∪ Fan(q1, f
ab
0 ).

(5) F(P5) is a triangle cone with edges p, q1 and q2. Note that fc∞ ∈ Fan(p, q2), and Fan(p,
fc∞) = F(P5) ∩F(C1), Fan(f

c
∞, q2) = F(P5) ∩F(C4).

F(C1) = ⟨fab0 , f5, f
c
∞, p⟩

F(C4) = ⟨f5, fc∞, q2⟩

F(P3) = ⟨fab0 , q1, p⟩

F(P4) = ⟨fab0 , f5, q2, q1⟩

F(P5) = ⟨p, q1, q2⟩

q1 q2

p

fab0 W ab

W c

f5

fc∞

q

Fig.3.1. Ps0+
4,4

By the above lemma, we know that ∂Ps0+
4,4 is enclosed by F(C+

1 ), F(C4), F(P3), F(P4)
and F(P5). We don’t need F(C3). See Fig.3.1. Thus, we have:

Lemma 3.15. ∂Ps0+
4,4 = F(C+

1 ) ∪ F(C4) ∪ F(P3) ∪ F(P4) ∪ F(P5), and E(Xs0+
4,4 ) ⊂

C+
1 ∪ C4 ∪ {P3, P4, P5}. Especially, F(C3) is not a face component of Ps0+

4,4 .

Proof of Theorem 1.9(2). Put Ω+ := A+
1 ∪A4. By Theorem 2.10, it is enough to show

that Φs0
4,4(Ω+) ⊃ C+

1 ∪ C4 ∪ {P3, P4, P5}. But this is clear.
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Geometrically, C3 − {P3, P4, P5} is included in the interior of the convex closure of
Xs0+

4,4 . So, any f ∈ Ps0+
4,4 cannot satisfy f(0, x, 1, 1) = 0 for x > 0, x ̸= 1.

Theorem 1.4 is also proved from the above results.
Finally, we shall study discriminants discD = disc(D) for D = C+

1 , C4, P3, P4 and P5.
We use (p0, p1, p2, p3) as a coordinate system of Hs0

4,4 as before. (p0, p1, p2, p3) corresponds

to

3∑
i=0

pisi ∈ Hs0
4,4.

Lemma 3.16.

disc(C+
1 ) = 8p20 − 9p21 + 12p0p1 + 12p0p2 + 12p0p3,

disc(C4) = −8p20 − p21 + 4p0p2,

disc(P3) = p0 + 2p1 + p2 + p3,

disc(P4) = 2p0 + 2p1 + p2,

disc(P5) = p0.

Proof. disc(C+
1 ) = disc(C1), since Zar(C+

1 ) = Zar(C1).

If P = (c0: c1: c2: c3) ∈ ∆0(Ps0+
4,4 ), then disc(P ) =

3∑
i=1

cipi. Thus we have disc(Pi)

(i = 3, 4, 5).
We shall study disc(C4). Take f = (1/3u3)hcu + vq2 ∈ F(C4) (u > 0, v ≥ 0). The

coefficients of f are p1/p0 = −2(u2 + 1)/u, p2/p0 = (u4 + 4u2 + 1)/u2, p3/p0 = 2(3u4 +
3u3 + 2u2 + 3u + 3)/(3u2) + v. Eliminate u and v from these relations. Then we have
disc(C4) = −8p20 − p21 + 4p0p2 = 0.

Proof of Theorem 3.8. This proof is almost completed. What we should do is only to
observe the signature of discriminants. Then, we find that we can use p+ 4 and p+ 2/3 as
separators to describe Pc0+

4,4 as a union of basic semialgebraic sets as (1)—(4) of Theorem
3.8(I).

Proof of Theorem 1.1(2), 1.4 and 1.8(2). This is same as the proof of Theorem 1.1(1),
1.2 and 1.8(1).

Proof of Proposition 1.7(2), (3).(2-i) Consider the case 0 ≤ t < 1 or 1 < t ≤ 5. Let
F (x, y, z) := 3fabt (x, y, z − x − y, −z), and f(x, y) := F (x, y, 1). If fabt is reducible, then f
is also reducible. Consider the real curve Γ := VR(F ) ⊂ P2

R. Note that f(y, x) = f(x, y).
Since

f(x, 0) = f(0, x) = 8(t+ 1)(x2 − x+ 1)2 > 0,

F (1, 0, z) = F (0, 1, z) = 8(t+ 1)(z2 − z + 1)2 > 0,

f(1, 1) = f(1,−1) = f(−1, 1) = −16(t− 1)2 < 0,

Γ has at least three connected components Γ1, Γ2, Γ4 in the 1-st, 2-nd and 4-th quadrant.
Γ1, Γ2, Γ4 are all bounded. This implies Γ cannot contain a line. Moreover, Γ cannot be a
union of two quadric curves. Thus VC(F ) must be an irreducible curve.
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(3) Consider the case t > 5. Let G(x, y, z) := 9fct(x, y, z − x − y, −z), and g(x, y) :=
G(x, y, 1). Then,

g(x, 0) = g(0, x) = (t+ 7)2(x2 − x+ 1)2 > 0,

G(1, 0, z) = G(0, 1, z) = (t+ 7)2(z2 − z + 1)2 > 0,

g(1, 1) = g(1,−1) = g(−1, 1) = −32(t2 + 2t− 11) < 0.

Thus VC(G) must be an irreducible curve.

(2-ii) Consider the case t = 1. Assume that fab1 is reducible. Since

fab1 (x, y, 1, 1) =
1

3
(x− y)2(3x2 + 2xy + 3y2 − 8x− 8y + 8),

fab1 must be product of two real quadrics. But this is impossible. since (fab1 )aa(1, 1, 1, 1) = 0.

Proof of Proposition 1.5. For ft = fabt (0 < t < 1 or 1 < t ≤ 5) or ft = fct (t > 5), let
Ft(a, b, c, d) := ft(a

2, b2, c2, d2), and consider the zero point set Zt := VR(Ft) ⊂ P3
R.

Let u be a positive root of t = (3u2 − u + 3)/u if t > 5, and u := 1 if 0 < t ≤ 5.
Remember that ft(1, 1, 1, 1) = ft(t, 1, 1, 1) = ft(0, 0, u, 1) = 0. Let s :=

√
t and v :=

√
u.

Then Ft(±1, ±1, ±1, 1) = Ft(±s, ±1, ±1, 1) = Ft(0, 0, ±v, 1) = 0. Thus, if 0 < t < 1 or
1 < t ≤ 5, then #Zt = 52. If t > 5, then #Zt = 64.

Assume that Ft ∈ Σ4,8. Then, there exists r ∈ N and g1,. . ., gr ∈ H4,4 such that
Ft = g21 + · · · + g2r . If a ∈ Zt, then g1(a) = · · · = gr(a) = 0, since Ft(x) ≥ 0 for all x ∈ P3

R.
Note that dimH4,4 = 35. So, let’s find 35 points ai ∈ Zt (1 ≤ i ≤ 35) such that there exists
no g ∈ H4,4 − {0} which satisfy g(ai) = 0 for all 1 ≤ i ≤ 35.

Let a1 := (1: 1:−1:−1), a2 := (1: 1: 1: s), a3 := (−s: 1: 1: 1), a4 := (1:−s: 1: 1), a5 :=
(1: 1:−s: 1), a6 := (1: 1: 1:−s), a7 := (s:−1: 1: 1), a8 := (s: 1:−1: 1), a9 := (s: 1: 1:−1),
a10 := (−1: s: 1: 1), a11 := (1: s:−1: 1), a12 := (1: s: 1:−1), a13 := (−1: 1: s: 1), a14 :=
(1:−1: s: 1), a15 := (1: 1: s:−1), a16 := (−1: 1: 1: s), a17 := (1:−1: 1: s), a18 := (1: 1:−1: s),
a19 := (s: 1:−1:−1), a20 := (s:−1: 1:−1), a21 := (s:−1:−1: 1), a22 := (−1: s: 1:−1),
a23 := (−1: s:−1: 1), a24 := (1: s:−1:−1), a25 := (−1:−1: s: 1), a26 := (1:−1: s:−1),
a27 := (−1: 1: s:−1), a28 := (1:−1:−1: s), a29 := (−1: 1:−1: s), a30 := (−1:−1: 1: s),
a31 := (v: 1: 0: 0), a32 := (v: 0:−1: 0), a33 := (v: 0: 0:−1), a34 := (0: v: 1: 0), a35 := (0: v: 0: 1).
Take 35 monomials e1,. . ., e35 as a basis of H4,4, and denote g = c1e1 + · · ·+ c35e35 ∈ H4,4.
Let A = (ai,j) be 35× 35-matrix such that ai,j = ej(ai). Then

detA = ±549755813888 t13/2(t− 1)23(t+ 3)6

× u3(1 + t− 2u)(tu+ u− 2)(3u2 − ut− u− 1).

Note that 3u2 − ut− u− 1 = (3u2 − ut− u+3)− 4 = −4 ̸= 0, tu+ u− 2 = 3u2 +1 > 0 and
u > 0. There exist no real solutions 1 + t− 2u = 0, t = (3u2 − u+ 3)/u. Thus detA ̸= 0 if
t > 0 and t ̸= 1. This implies there exists no g ∈ H4,4 − {0} which satisfy g(ai) = 0 for all
1 ≤ i ≤ 35.

Proof of Proposition 1.6. Let t > 5. We shall show that fct ∈ E(P+
4,4). This is equivalent

to hcu ∈ E(P+
4,4) for all u > 0.
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Let e1,. . ., e35 be all the monomials in H4,4, and denote f ∈ H4,4 as f =

35∑
i=1

ciei

(ci ∈ R). Let t := (3u2−u+3)/u. Let K be the subspace of all the f ∈ H4,4 which satisfies
the following 34 equalities:

fa(1, 1, 1, 1) = 0, fb(1, 1, 1, 1) = 0, f(t, 1, 1, 1) = 0, fa(t, 1, 1, 1) = 0,
fb(t, 1, 1, 1) = 0, f(1, t, 1, 1) = 0, fa(1, t, 1, 1) = 0, fb(1, t, 1, 1) = 0,
fc(1, t, 1, 1) = 0, f(1, 1, t, 1) = 0, fa(1, 1, t, 1) = 0, fb(1, 1, t, 1) = 0,
fc(1, 1, t, 1) = 0, f(1, 1, 1, t) = 0, fa(1, 1, 1, t) = 0, fb(1, 1, 1, t) = 0,
fc(1, 1, 1, t) = 0, f(0, 0, u, 1) = 0, fc(0, 0, u, 1) = 0, f(0, u, 0, 1) = 0,
fb(0, u, 0, 1) = 0, f(0, u, 1, 0) = 0, fb(0, u, 1, 0) = 0, f(u, 0, 0, 1) = 0,
fa(u, 0, 0, 1) = 0, f(u, 0, 1, 0) = 0, f(u, 1, 0, 0) = 0, fa(u, 1, 0, 0) = 0,
f(0, 0, 1, u) = 0, f(0, 1, 0, u) = 0, f(0, 1, u, 0) = 0, f(1, 0, 0, u) = 0,
f(1, 0, u, 0) = 0, f(1, u, 0, 0) = 0.

The system of these equation can be written as Ac = 0 by a certain 34× 35-matrix A,
i.e. K = KerA. Add the vector (1, 0,. . ., 0) to the bottom of A, and make 35 × 35-matrix
B. Then

detB = ±t(t+ 3)(t− 1)25u12(u2 − 1)12(u2 + 1)2(12u4 + 12u3 + 21u2 + 10u+ 9) ̸= 0.

Thus dimKerA = 1, and KerA = R · hcu. This implies hcu ∈ E(P+
4,4).

It seems that fabt /∈ E(P+
4,4) for t < 5. But the author does not have proof.

Section 4. Cubic Inequalities of Four Variables

4.1. Structure of Pc0+
4,3

In this section, we shall study Pc0+
4,3 := P(P3

+, H
c0
4,3). We use similar symbols with §3.

To state the main theorem of this section we need to fix some symbols. Put

S3 :=

3∑
i=0

a3i , S2,1,0 :=

3∑
i=0

a2i ai+1, S2,0,1 :=

3∑
i=0

a2i ai+2,

S1,2,0 :=

3∑
i=0

a2i ai+3, S1,1,1 :=

3∑
i=0

aiai+1ai+2,

here we regard ai+4 = ai for all i ∈ Z. We choose s0 := S3 − S1,1,1, s1 := S2,1,0 − S1,1,1,
s2 := S2,0,1 − S1,1,1, s3 := S1,2,0 − S1,1,1 as a basis of Hc0

4,3, and define Φc0
4,3 : P3

+ · · · →
P3
+ by Φc0

4,3(a) =
(
s0(a) : s1(a) : s2(a) : s3(a)

)
. The coordinate system of A = P3

R is
denoted by (a0: a1: a2: a3) or (a: b: c: d), and the coordinate system of P((Hc0

4,3)
∨) is denoted

by (x0:x1:x2:x3). We represent f ∈ Hc0
4,3 as f = p0s0 + · · · + p3s3 (pi ∈ R), and the

coordinate system of Hc0
4,3 is denoted by (p0, p1, p2, p3). If f ∈ Pc0+

4,3 , then s0 ≥ 0. When
p0 = 1, we say f is monic. When p0 = 0, we say f lies at infinity. We denote

P̆c0+
4,3 :=

{
f ∈ Pc0+

4,3

∣∣ f is monic
}
.

The characteristic variety is written by Xc0+
4,3 := Φc0

4,3(P3
+). Let

A+
c :=

{
(a0: a1: a2: 1) ∈ P3

+

∣∣ 0 ≤ ai ≤ 1 (i = 0, 1, 2)
}
,

E2 :=
{
(a: b: a: b) ∈ P3

+

∣∣ a, b ∈ R+

}
,

E3 :=
{
(a0: a1: a2: a3) ∈ P3

+

∣∣ a0 + a2 = a1 + a3
}
,
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B0 :=
{
(0: s: t: 1) ∈ P3

+

∣∣ s > 0, t > 0, (s, t) ̸= (1, 0), t ̸= s+ 1
}
,

B0 :=
{
(0: s: t:u) ∈ P3

+

∣∣ (s: t:u) ∈ P2
+

}
,

S := Φc0
4,3(B0) ⊂ Xc0+

4,3 ,

C :=
{
Φc0

4,3(0: 0: t: 1) ∈ P3
+

∣∣ t > 0
}
⊂ Xc0+

4,3 ,

L :=
{
Φc0

4,3(0: t: 0: 1) ∈ P3
+

∣∣ t > 0
}
⊂ Xc0+

4,3 ,

P1 := (1: 0: 0: 0) = Φc0
4,3(0: 0: 0: 1) ∈ Xc0+

4,3 ,

P2 := (1: 0: 1: 0) =
{
Φc0

4,3(a: b: a: b) ∈ P3
+

∣∣ a, b ∈ R+

}
∈ Xc0+

4,3 ,

P3 := (2: 1: 0: 1) ∈ Xc0+
4,3 .

We denote F(Pi), F(C), F(S) by FPi
, FC and FS . As we will prove in Lemma 4.4,

Pc0+
4,3 = FS ∪ FC ∪ FP1

∪ FP2
, So, we need two discriminants discC and discS which are

defining equations of Zar(FC) and Zar(FS). discS is somewhat complicated polynomial.

discC(p0, p1, p3) := 27p40 + 4p0p
3
1 + 4p0p

3
3 − p21p

2
3 − 18p20p1p3 = Disc3(p0, p1, p3, p0),

dS(p0, p2, q, r)

:= (p0 − p2 − q)2(13p20 − 2p0p2 + p22 + 2p0q + 2p2q)
2

(104p30 + 100p20p2 − 4p0p
2
2 + 36p20q + 36p0p2q − p0q

2 − p2q
2 + 8q3)

+ (17173p70 − 121p60p2 − 5639p50p
2
2 + 7651p40p

3
2 − 3489p30p

4
2 + 469p20p

5
2

− 45p0p
6
2 + p72 + 6250p60q + 10028p50p2q + 3142p40p

2
2q − 1368p30p

3
2q − 746p20p

4
2q

− 20p0p
5
2q − 6p62q + 898p50q

2 + 7230p40p2q
2 + 1748p30p

2
2q

2 − 1572p20p
3
2q

2

− 86p0p
4
2q

2 − 26p52q
2 + 2780p40q

3 − 368p30p2q
3 + 1448p20p

2
2q

3 − 496p0p
3
2q

3

+ 28p42q
3 + 518p30q

4 + 1018p20p2q
4 − 190p0p

2
2q

4 + 78p32q
4 + 164p20q

5

+ 168p0p2q
5 + 4p22q

5)r2

+ (2495p50 − 317p40p2 − 1886p30p
2
2 + 842p20p

3
2 − 81p0p

4
2 + 3p52 + 1768p40q

+ 4p30p2q − 988p20p
2
2q + 380p0p

3
2q − 12p42q + 291p30q

2 + 897p20p2q
2 − 463p0p

2
2q

2

+ 83p32q
2 + 226p20q

3 + 92p0p2q
3 − 38p22q

3 − p0q
4 − p2q

4)r4

+ (95p30 + 65p20p2 − 43p0p
2
2 + 3p32 + 98p20q − 20p0p2q − 6p22q − 4p0q

2)r6

+ (−3p0 + p2)r
8,

discS(p0, p1, p2, p3) :=
1

4
dS(p0, p2, p1 + p3, p1 − p3).

Since discC(p0, p1, p3) has an obstacle branch in the first quadrant p1/p0 > 0, p3/p0 > 0, we
put

dC(x, z) :=

{
discC(1, x, z) (if x < 0 or z < 0)
1 (if x ≥ 0 and z ≥ 0)

to avoid complexity. dC(x, z) ≥ 0 implies discC(1, x, z) ≥ 0 or ‘x ≥ 0 and z ≥ 0’. Thus,
dC(x, z) ≥ 0 defines a convex domain, but discC(1, x, z) ≥ 0 does not. The following η(x, y)
is a nice separator whose property is explained in Lemma 4.10.

η(x, y) := 61 + 62x+ 56y + 32x2 + 30xy − 6y2

+ 9x3 + 4x2y − 6xy2 − 16y3 + x4 − 4x2y2 − 6xy3 + y4 − x3y2.

We also need two constants κ1, κ2. Let κ1 := 0.0129074031 · · · be a root of

817808203x6 − 546807084x5 + 129155640x4 − 13342016x3 + 556080x2 − 10176x+ 64 = 0,
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and κ2 := 0.0318925844 · · · be a root of

43042537x6 − 4514514x5 − 188769x4 − 38684x3 + 4119x2 − 114x+ 1 = 0.

The aim of this section is to prove the following theorem.

Theorem 4.1. (I) Take a monic f = s0 + p1s1 + p2s2 + p3s3 ∈ H̆c0
4,3. Then, f(a) ≥ 0

for all a ∈ R4
+, if and only if one of the following holds:

(1) p2 = −1 and 8(p1 + p3) ≥ (p1 − p3)
2.

(2) −1 < p2 ≤ 3, discS(1, p1, p2, p3) ≥ 0 and dC(p1, p3) ≥ 0.

(3) p2 > 3, κ1(p1 + p3) + κ2p2 ≥ 1, discS(1, p1, p2, p3) ≥ 0, and dC(p1, p3) ≥ 0.

(4) p2 > 3, κ1(p1 + p3) + κ2p2 < 1, η(p1 + p3, p2) > 0, discS(1, p1, p2, p3) ≥ 0, and
dC(p1, p3) ≥ 0.

(5) p2 > 3, κ1(p1 + p3) + κ2p2 < 1, η(p1 + p3, p2) ≤ 0, and dC(p1, p3) ≥ 0.

(II) Let’s denote f = p0s0+ p1s1+ p2s2+ p3s3. Then, all the discriminants of Pc0+
4,3 are

discS(p0, p1, p2, p3), discC(p0, p1, p3), discP1
= p0, and discP2

= p0 + p2.

(III) If f ∈ Hc0
4,3 satisfies f(0, s, t, 1) ≥ 0 for all s, t ∈ R+, then f ∈ Pc0

4,3.

This theorem will be proved after Lemma 4.8.

Proposition 4.2.

s0(a0, a1, a2, a3) =
1

3

3∑
i=0

(a3i + a3i+1 + a3i+2 − 3aiai+1ai+2) ≥ 0,

s2(a0, a1, a2, a3) = (a0 − a1 + a2 − a3)(a0a2 − a1a3),

s3(a0, a1, a2, a3) = s1(a0, a3, a2, a1),

s0 − s2 =
1

3

3∑
i=0

(a3i + a3i + a3i+2 − 3a2i ai+2) ≥ 0,

s0 + 2s2 =

3∑
i=0

(a2i ai+2 + a3i+1 + aia
2
i+2 − 3a2i ai+1ai+2) ≥ 0,

2s1 + s2 =

3∑
i=0

(a2i ai+1 + a2i+1ai+2 + a2i+2ai − 3aiai+1ai+2) ≥ 0,

2s3 + s2 =
3∑

i=0

(aia
2
i+1 + ai+1a

2
i+2 + ai+2a

2
i − 3aiai+1ai+2) ≥ 0,

s0 − s1 =
1

3

3∑
i=0

(a3i + a3i + a3i+1 − 3a2i ai+1) ≥ 0,

s0 − s3 =
1

3

3∑
i=0

(a3i + a3i+1 + a3i+1 − 3aia
2
i+1) ≥ 0,

s1 + s3 = (a0 + a2)(a1 − a3)
2 + (a1 + a3)(a0 − a2)

2 ≥ 0.

Proof. These follow from direct calculations.
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Thus Xc0+
4,3 is a subset of a cube defined by −1/2 ≤ s1/s0 ≤ 1, −1/2 ≤ s2/s0 ≤ 1,

−1/2 ≤ s3/s0 ≤ 1. Note that s1, s2 and s3 are not PSD. For example s1(1/100, 1/2, 1/10,
1) = −229/20000 < 0. The rational map Φc0

4,3 : P3
+ · · · → Xc0+

4,3 splits as

Φc0
4,3 : P3

+
π−→ P3

+/(Z/4Z)
Ψc0

4,3−→ Xc0+
4,3 .

It is easy to see that Ψc0
4,3 : P3

+/(Z/4Z) · · · → Xc0+
4,3 is a birational map, but is not holomorphic

at a singular point π(1: 1: 1: 1). We shall provide more precise structure of Xc0+
4,3 at Lemma

4.4. The following es,t(a0, a1, a2, a3) ∈ Hc0
4,3 (s, t ∈ R) has a possibility to be an extremal

element. But there exists (s, t) such that es,t is not PSD.

Proposition 4.3. For (u: v:w) ∈ P2
+ −

{
(1: 0: 1)

}
, let

gh0 (u, v, w) := −v
(
uwv2 − (u+ w)(u2 + w2)v + uw(u− w)2

)
,

gh1 (u, v, w) := uv4 − w(u+ 2w)v3 − 2uw(u− w)v2 − u(2u3 + u2w − 3w3)v + w(u2 − w2)2,

gh2 (u, v, w) := v
(
v4 + (2u2 − 3uw + 2w2)v2 − (u+ w)(u2 + w2)v + (u− w)2(u2 − uw + w2)

)
,

gh3 (u, v, w) := gh1 (w, v, u),

ehu,v,w(a) :=

3∑
i=0

ghi (u, v, w)si(a).

For simplicity, put gi(s, t) := ghi (s, t, 1) and es,t(a) := ehs,t,1(a). Then the following hold:

(1) ehw,v,u − ehu,v,w = (u− w)(v2 − (u+ w)2)((u− w)2 + 2(u+ w)v + v2)(s1 − s3).

(2) eht,1,0 = teh0,t,1 − (t2 − 1)(t2 + 1)2s2.

(3) Assume that s > 0, t > 0, t ̸= s+ 1, g0(s, t) > 0 and es,t ∈ Pc0+
4,3 . If f ∈ Pc0+

4,3 satisfies

f(0, s, t, 1) = 0, then there exists α ≥ 0 such that f = αes,t. Especially, es,t ∈ E(Pc0+
4,3 ).

(4) Assume that s = 0, t > 0, t ̸= 1 and e0,t ∈ Pc0+
4,3 . If f ∈ Pc0+

4,3 satisfies f(0, 0, t, 1) = 0

and
∂

∂b
f(0, 0, t, 1) = 0, then there exists α ≥ 0 such that f = αe0,t. Especially,

e0,t ∈ E(Pc0+
4,3 ).

(5) Assume that u > 0, v > 0, and ehu,v,0 ∈ Pc0+
4,3 . If f ∈ Pc0+

4,3 satisfies f(0, u, v, 0) = 0

and
∂

∂d
f(0, u, v, 0) = 0, then there exists α ≥ 0 such that f = αehu,v,0. Especially,

ehu,v,0 ∈ E(Pc0+
4,3 ).

(6) If t = s+ 1, then

es,s+1(a, b, c, d) = (s+ 1)(s2 + 1)2(a− b+ c− d)2(a+ b+ c+ d) (∗)
= (s+ 1)(s2 + 1)2e0,1(a, b, c, d).

If f ∈ Pc0+
4,3 satisfies f(0, 0, 1, 1) = 0 and f(0, 1, 2, 1) = 0, then there exists α ≥ 0 such

that f = αe0,1. Especially, es,s+1 ∈ E(Pc0+
4,3 ).

(7) If g0(s, t) < 0, then es,t /∈ E(Pc0+
4,3 ) and −es,t /∈ E(Pc0+

4,3 ).

(8) e1,0 = eh1,0,1 is a zero polynomial.

Proof. Denote fa(a, b, c, d) =
∂

∂a
f(a, b, c, d) and so on.

(1), (2) and (8) follows from direct calculation.
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(3) Assume that f = p0s0 + p1s1 + p2s2 + p3s3 ∈ Pc0+
4,3 satisfies f(0, s, t, 1) = 0. Then

fb(0, s, t, 1) = 0 and fc(0, s, t, 1) = 0 hold. Let a0,j = sj(0, s, t, 1), a1,j = (sj)b(0, 0, t, 1),
a2,j = (sj)c(0, s, t, 1), and A = (ai,j). Then

A =

 s3 + t3 − st+ 1 t(s2 − s+ t) s(1 + s− t) t(st− s+ 1)
3s2 − t (2s− 1)t 2s− t+ 1 t(t− 1)
3t2 − s s2 − s+ 2t −s 2st− s+ 1

 .

Let B be the square matrix add (1, 0, 0, 0) above A. Then detB = (t − s − 1)g0(s, t) ̸= 0.
Note that es,t ∈ KerA. Thus, KerA = R · es,t.

(4), (5) Same with (3).

(6) (∗) follows from direct calculation. Assume that f ∈ Pc0+
4,3 satisfies f(0, 0, 1, 1) = 0

and f(0, 1, 2, 1) = 0. Then f(0, 0, 1, 1) = 0, fa(0, 0, 1, 1) = 0 and fa(0, 1, 2, 1) = 0. then
fc(0, 0, t, 1) = 0 holds. By the same method as (3), we have the conclusion.

(7) We may assume t ̸= s + 1. If es,t ∈ E(Pc0+
4,3 ), then g0(s, t) = es,t(0, 0, 0, 1) ≥ 0. On

the other hand, es,t(0, 0, 1, 1) = (s+1)(t− s− 1)2((s− 1)2 + t2) > 0. Thus −es,t /∈ E(Pc0+
4,3 ).

The condition that es,t ∈ E(Pc0+
4,3 ) will be determined at Theorem 4.13.

Lemma 4.4. Let 1 = (1: 1: 1: 1) ∈ P3
+, Z := A+

c − {1} −
⋃

τ∈Z/4Z

τ(E2 ∪ E3) and

f c04,3(x0, x1, x2, x3)

:= (x31 − x0x1x3 + x33)
2 − x2(x

3
1 − x0x1x3 + x33)(x

2
0 + 3x21 − 4x1x3 + 3x23)

+ x22
(
x20(x

2
1 − x1x3 + x23) + 2x0x1x3(x1 + x3)

+ x41 − 7x31x3 + 9x21x
2
3 − 7x1x

3
3 + x43

)
+ x32

(
2x0x

2
1 − x0(4x

2
1 + x1x3 + 2x23) + (x1 + x3)(x

2
1 − 3x1x3 + x23)

)
+ x42(x

2
1 + x1x3 + x23).

Then, the following hold:
(1) Φc0

4,3 : A+
c · · · → Xc0+

4,3 is a birational map whose all the exceptional sets are Φc0
4,3(E2) =

P2 and Φc0
4,3(E3) = P3. Φc0

4,3:Z −→ Φc0
4,3(Z) is an isomorphism. BsΦc0

4,3 = {1} and we
can regard Φc0

4,3(1) as the closed line segments [P2P3].

(2) Zar(∂Xc0+
4,3 ) ⊂ VR(f

c0
4,3), Φ

c0
4,3(B0) = ∂Xc0+

4,3 and S is non-singular.

(3) ∆0(Xc0
4,3) = {P1, P2}, ∆1(Xc0

4,3) = {C, (P1P2)} and ∆2(Xc0
4,3) = {S}.

(4) Let Lc0+
(0:s:t:1) be the local cone of P

c0+
4,3 at (0: s: t: 1). Take (0: s: t: 1) ∈ B0. If es,t is PSD,

then es,t ∈ E(Pc0+
4,3 ) and

Lc0+
(0:s:t:1) = R+ · es,t.

If es,t is not PSD, then Lc0+
(0:s:t:1) = 0.

Proof. (1), (2) and (3) BsΦc0
4,3 = {1} is trivial. Since Φc0

4,3(1, 1 + b, 1 + c, 1 + d) =
(2(c2+(b−d)2)+(b−c+d)2 : c2+(b−d)2 : (b−c+d)2, c2+(b−d)2)+(higher degree terms),
we can regard Φc0

4,3(1, 1, 1, 1) is a line segment [P2P3].
Φc0

4,3(E2) = P2 and Φc0
4,3(E3) = P3 are obtained by the direct calculation.
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A+
c is a fundamental domain of Φc0

4,3. It is easy to see that Φc0
4,3:P3

+ → P3
+ is a generically

finite map of degree 4. The Jacobian of Φc0
4,3 is equal to

JP := −(a− b+ c− d)3((a− c)2 + (b− d)2)2(a+ b+ c+ d).

Thus JP ̸= 0 on Z. Therefore Φc0
4,3:Z −→ Φc0

4,3(Z) is an isomorphism. This also implies

S ⊂ ∂Xc0+
4,3 , C ⊂ ∂Xc0+

4,3 , L ⊂ ∂Xc0+
4,3 , and {P1, P2, P3} ⊂ ∂Xc0+

4,3 .

We obtain f c04,3 by eliminating a, b, c from xi = si(a, b, c, 0) (i = 0, 1, 2, 3). Using PC,
we fave

f c04,3
(
Φc0

4,3(a, b, c, d)
)
= abcd(a− b+ c− d)4(a+ b+ c+ d)2((a− c)2 + (b− d)2)4 ≥ 0.

Thus ∂Xc0
4,3 ⊂ VR(f

c0
4,3), and Φc0

4,3(B0) = ∂Xc0+
4,3 . Since JP ̸= 0 on B0, we have Sing(S) = ∅.

Since C =
{
(t3 +1 : t2 : 0 : t)

∣∣ t > 0
}
, C is a cubic curve desined by x31 + x32 = x0x1x3,

x2 = 0 and (x1 + x3)/x0 > 0. Note that C has a node at P1 (t = 0 and ∞). But P3 (t = 1)
is a non-singular point of C.

Since L =
{
(t3 + 1 : 0 : t(t + 1) : 0)

∣∣ t > 0
}
, L is a line segment (P1P2] desined by

x31 + x32 = x0x1x3, x2 = 0 and 0 < x2/x0 ≤ 1.
Thus Sing(∂Xc0

4,3) = C ∪ (P1P2) ∪ {P1, P2}, This implies (3).

(4) follows from Proposition 4.3(4).

It is easy to draw a graph of Xc0+
4,3 using Mathematica. But it may present incorrect

impression. It seems that Xc0+
4,3 is a convex set. But it is not true. The following observation

show us that Xc0+
4,3 is not convex near (1: 0: 0: 0). Cut ∂Xc0+

4,3 by the plane VR(x1−x3). Note
that

f c04,3(1, x, y, x) = x2(2x− 3y − 1)(2x3 + x2y − y3 − x2 + 2y2 − y).
The graph of VR(2x

3 + x2y − y3 − x2 + 2y2 − y) is not convex near (x, y) = (0, 0). Thus
Xc0+

4,3 is not convex. This also implies that es,t /∈ Pc0+
4,3 for some (0: s: t: 1) ∈ B0.

It is also possible to obtain es,t by the method explained in Remark 1.28 of [3].

Let fi(x0, x1, x2, x3) :=
∂

∂xi
f c04,3(x0, x1, x2, x3) and

hi(s, t) := fi
(
Φc0

4,3(0, s, t, 1)
)
,

gc(s, t) := st(t− s− 1)2(s+ t+ 1)((s− 1)2 + t2)2.

Then hi(s, t) = gc(s, t)gi(s, t) (i = 0, 1, 2, 3). Thus we have es,t =

3∑
i=0

gi(s, t)si. We define

a rational map GS : B0 · · · → P(Hc0
4,3) by

GS(0: s: t: 1) :=
(
g0(s, t): g1(s, t): g2(s, t): g3(s, t)

)
.

Note that (0: 1: 0: 1) ∈ BsG. If es,t ∈ Pc0+
4,3 , then GS(0, s, t, 1) = es,t ∈ FS . We can

extend G to GS : ∂P3
+ · · · → P(Hc0

4,3) by GS(x: y: 1: 0) = GS(y: 1: 0:x) = GS(1: 0:x: y) =

GS(0:x: y: 1) := GS(0, x, y, 1).

Lemmma 4.5. (1) ∂Pc0+
4,3 = FP1

∪FP2
∪FS ∪FC .

(2) B0 is a test set of Pc0+
4,3 . In other words, if f ∈ Hc0

4,3 satisfies f(0, s, t, 1) = 0 for all

s ≥ 0, t ≥ 0, then f(a) ≥ 0 for all a ∈ R4
+.
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Proof. (1) ∂Pc0+
4,3 =

⋃
D∈∆(Xc0+

4,3 )

F(D) by Theorem 2.7(1). Let D3 := Int(Xc0+
4,3 ) ∈

∆3(Xc0+
4,3 ). Sice Zar(D3) = P3

R, F(D3) is not a face component.

Zar
(
F((P1P2))

)
is two dimensional plane defined by p0 = p2 = 0. Thus, F((P1P2)) is

not a face component. Thus we have the conclusion.
(2) By Lemma 4.4(2) and Theorem 2.10, we have the conclusion.

Note that (III) of Theorem 4.1 follows from the above proposition.

Lemma 4.6. We regard as Hc0+
4,3 = R4 by identifying (p0, p1, p2, p3) ∈ R4 with

3∑
i=0

pisi ∈ Hc0+
4,3 . Then,

(1) Zar
(
FP1

)
= VR(p0). Thus FP1

=
{
f ∈ Pc0

4,3

∣∣ f is at infinity
}
.

(2) Zar
(
FP2

)
= VR(p0 + p2).

(3) discS
(
g0(s, t), g1(s, t), g2(s, t), g3(s, t)

)
= 0 for all s, t ∈ R.

(4) discS
(
g0(s, t), g3(s, t), g2(s, t), g1(s, t)

)
= 0 for all s, t ∈ R.

(5) Zar
(
FC

)
= VR(discC).

(6) Zar
(
FS

)
= VR(discS).

Proof. (1) and (2) are trivial.
(3) and (4) follow from direct calculation.
(5) follows from study of Pc+

3,3. See §3 of [3].
(6) follows from (3).

Now, we shall observe FP2 . In the definition of es,t, Remember that e1,0 = 0. In

other word, gi(1, 0) = 0 (i = 0, 1, 2, 3). This e1,0 corresponts to FP2
. Put gP2

i (c) :=

lim
h→0

gi(ch+ 1, h)

4h2
. Then gP2

0 (c) = 1, gP2
1 (c) = c(c− 2), gP2

2 (c) = −1, gP2
3 (c) = c(c+ 2).

Lemma 4.7. For c ∈ R, let
eP2
c := s0 + c(c− 2)s1 − s2 + c(c+ 2)s3,

and eP2
∞ := s1 + s3. Then the following hold:

(1) eP2
c ∈ FP2

∩FS and FP2
∩FS ∩FP1

= R+ · eP2
∞ .

(2) ∂FP2
⊂ FS .

(3) FP2
∩FS = V

(
p0 + p2, 8p0(p1 + p3)− (p1 − p3)

2
)
.

(4) eP2
c ∈ E(Pc0+

4,3 ) for all c ∈ P1
R.

Proof. (0) We shall show that eP2
c ∈ Pc0+

4,3 for all c ∈ P1
R.

Let c2(u, v) := (u− 1)2 + v(u+ 1) and c1(u, v) := 2(u− 1)v(v− u− 1). c2(u, v) ≥ 0 for
u ≥ 0, v ≥ 0. Then,

eP2
c (0, u, v, 1) = vc2(u, v)

(
c+

c1(u, v)

2vc2(u, v)

)2

+
(u+ 1)((u− 1)2 + v2)2

c2(u, v)
≥ 0.

Thus, fP2
c is PSD for c ∈ R. eP2

∞ = s1 + s3 is PSD by Proposition 4.2.
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(1) Since eP2
c = lim

h→0
ech+1,h/4h

2, we have eP2
c ∈ FS . Since eP2

c (1, 0, 1, 0) = 0, we

have eP2
c ∈ FS . It is easy to see that eP2

∞ ∈ FP1
and dim(FP2

∩ FC ∩ FP1
) = 1. Thus

FP2
∩FS ∩FP1

= R+ · eP2
∞ .

(2) We shall determine (FP2
∩FC)−FP1

. Note that

discS(p0, p1,−p0, p3) = 2p0
(
(p0 − p1)

2 + (p0 − p3)
2
)(
8p0(p1 + p3)− (p1 − p3)

2
)3
.

Thus let
V̆C :=

{
(1, p1,−1, p3) ∈ H̆c0

4,3

∣∣ 8(p1 + p3)− (p1 − p3)
2 = 0

}
.

Then V̆C =
{
(1, c(c− 2), −1, c(c+2))

∣∣ c ∈ R
}
. Each point in V̆C corresponts to eP2

c . Since

R+ · V̆C ∪R+ ·eP2
∞ is a conic closed convex cone, it must agree with FC , and ∂FC is generated

by eP2
c (c ∈ P1

R).

(3) follows from (1) and (2).

(4) Put DP2 :=
{
(p0: p1: p2: p3) ∈ P3

R
∣∣ p0 + p2 ≥ 0, 8p0(p1 + p3) ≧ (p1 − p3)

2
}
. Then

P(FP2
) = DP2

, and eP2
c ∈ ∂FP2

. Any point of ∂DP2
is an extremal point of DP2

.

To characterize eP2
c , we need an infinitesimal local cone. Let π:X → A = P2

+ be the
blowing up at (1: 0: 1), and put ebc(x, y, z) := eP2

c (xz, yz + 1, z, 1)/z2. Then ebc(x, y, 0) =
2(cx+ y − t)2. This zero locus VX(cx+ y − t, z) characterizes eP2

c .

Next we shall study FS ∩ FC . Remember that discC is the edge discriminant of Xc+
3,3

and Xc0+
3,3 . Let

DC :=
{
(1, x, y, z) ∈ H̆c0+

4,3

∣∣ y ≥ −1 and dC(x, z) ≥ 0
}
.

Then DC is a closed convex set such that P̆c0+
4,3 ⊂ DC , and

(
∂P̆c0+

4,3

)
∩ Int(DC) ⊂ VR(discS)

by Lemma 4.6. We need the following polynomial to describe the cusp loci of VR(discS).

fQ0
(x, y) := 4(x+ 1)2 + (y − 3)2,

fLS
(x, y) := 2x+ y − 1,

fCs(x, y) := y2 + 4x(y + 1)− 2y + 13,

f cuspS (x, y) = 260403739669 + 153581431744x+ 102255553008x2 + 5758906656x3

+ 2375407488x4 − 2980119168x5 + 472233216x6 − 115722240x7

+ 17307648x8 − 438272x9 + 4096x10 + 89440948796y + 32061417248xy

+ 8138124864x2y − 17528885472x3y − 2067065472x4y − 828572544x5y

+ 1188607488x6y − 112318464x7y − 15593472x8y − 126976x9y + 8192x10y

− 223071977286y2 − 16231383328xy2 − 12833341936x2y2 + 40377065344x3y2

+ 5505244544x4y2 + 4819181440x5y2 − 264563968x6y2 + 218927104x7y2

+ 9482240x8y2 + 176128x9y2 + 4096x10y2 + 30713189004y3 + 8960225536xy3

+ 17703049984x2y3 − 2170474624x3y3 − 7085133440x4y3 − 4728214912x5y3

− 1856392192x6y3 − 112496640x7y3 − 3928064x8y3 − 135168x9y3

+ 61229381323y4 − 32671427200xy4 − 16135419808x2y4 − 19363454784x3y4

+ 2347438208x4y4 + 668450944x5y4 + 1133005568x6y4 + 47364096x7y4

+ 1464320x8y4 − 40004520712y5 + 14114790976xy5 − 921252992x2y5

+ 9081775296x3y5 + 71177344x4y5 + 679918976x5y5 − 112298496x6y5
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− 6821888x7y5 + 10688483692y6 − 1398548800xy6 + 3457102112x2y6

− 1135819904x3y6 + 55287936x4y6 − 134577536x5y6 − 18625280x6y6

− 870429832y7 + 226903552xy7 − 733186304x2y7 − 48610432x3y7

− 35363712x4y7 − 12108928x5y7 − 108565637y8 − 133149760xy8

+ 1725104x2y8 + 6646560x3y8 − 2811392x4y8 + 4147404y9 + 9240992xy9

+ 5649472x2y9 − 26336x3y9 + 2233722y10 + 1416544xy10 + 84944x2y10

+ 121340y11 + 16896xy11 + 517y12.

Note that

discS(1, x, y, x) = fLS
(x, y)2fCs(x, y)2(16x3 − x2y + 18xy − x2 − y2 + 18x+ 25y + 26).

Lemma 4.8. Regard H̆c0
4,3 ⊂ P(Hc0

4,3), and consider on H̆c0
4,3 : (1, x, y, z) ∼= R3. Then

{Q0} ∪ Ls ∪ Ccusp
1 ∪ Ccusp

2 ∪ Ccusp
3 ∪ Ccusp

4 ⊂ Sing
(
VR(discS(1, x, y, z))

)
∩ P̆c0+

4,3 ⊂ H̆c0
4,3,

where Q0, L
s and Ccusp

i are defined as follows:

(1) Q0 := VR(fQ0
) ∩ VR(z + 1) = (1,−1, 3,−1) ∈ ∂P̆c0+

4,3 ⊂ H̆c0
4,3.

(2) Ls is the half line defined by x = z, fL(x, y) = 0 and y ≥ −1 in H̆c0
4,3. But L

s∩∂P̆c0+
4,3 =

{Q0}.
(3) Let Cs be the hyperbolic curve on a plane defined by x = z and fCs(x, y) = 0 in H̆c0

4,3.

But Cs ∩ ∂P̆c0+
4,3 = {Q0}.

(4) Let x = αi(y) be all the four real roots of f cuspS (x, y) = 0 when we regard y to be a
constant where y ≥ 3 and α1(y) ≤ α2(y) ≤ α3(y) ≤ α4(y). Note that α1(3) = α2(3) =
α3(3) = α4(3) = 1. Then, the following four branches are cusps of S.

Ccusp
1 =

{
(1, α1(y), y, α4(y)) ∈ H̆c0

4,3

∣∣ y > 3
}
,

Ccusp
2 =

{
(1, α2(y), y, α3(y)) ∈ H̆c0

4,3

∣∣ y > 3
}
,

Ccusp
3 =

{
(1, α3(y), y, α2(y)) ∈ H̆c0

4,3

∣∣ y > 3
}
,

Ccusp
4 =

{
(1, α4(y), y, α1(y)) ∈ H̆c0

4,3

∣∣ y > 3
}
.

Proof. Let f(x, y, z) := discS(1, x, y, z) and fx :=
∂f

∂x
and so on. Sing

(
VR(discS(1, x,

y, z))
)
can be obtained by solving the system of equations f(x, y, z) = fx(x, y, z) = fy(x,

y, z) = fz(x, y, z) = 0. But it is next to impossible to proceed this calculation. Instead of
it, we eliminate z from fx(x, y, z) = 0, fy(x, y, z) = 0, and fz(x, y, z) = 0. During this
elimination process, we obtain fQ0(x, y), fLS

(x, y), fCs(x, y) and f cuspS (x, y). Using PC, we
can check {Q0} ∪ Ls ∪ Ccusp

1 ∪ Ccusp
2 ∪ Ccusp

3 ∪ Ccusp
4 ⊂ Sing

(
VR(discS(1, x, y, z))

)
.

Sing
(
VR(discS(1, x, y, z))

)
may has other loci. But we will see that

Sing
(
VR(discS(1, x, y, z))

)
∩ ∂P̆c0+

4,3 ⊂ {Q0} ∪ Ccusp
1 ∪ Ccusp

2 ∪ Ccusp
3 ∪ Ccusp

4 ,

during discussion from now.

Proof of Theorem 4.1. We take the section of P̆c0+
4,3 by the hyperplane

Hr :=
{
(1, x, y, z) ∈ H̆c0

4,3

∣∣ y = r
}
.
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We regard Hr as (x, z)-plane. Put

Dr := Hr ∩ P̆c0+
4,3 =

{
(x, z) ∈ Hr

∣∣ (1, x, r, z) ∈ P̆c0+
4,3

}
,

DC := DC ∩Hr =
{
(x, z) ∈ Hr

∣∣ dC(x, z) ≥ 0
}
,

VC := ∂DC =
{
(x, z) ∈ Hr

∣∣ dC(x, z) = 0
}
,

V r
S :=

{
(x, z) ∈ Hr

∣∣ discS(1, x, r, z) = 0
}
− (Cs ∪ Ls) ∩Hr.

(O-1) If r < −1, then Dr = ∅, by Lemma 4.6(2).

(O-2) If r = −1, then the condition of (1) of Theorem 4.1 determines the set P̆c0+
4,3 ∩H−1,

because of Lemma 4.7.

-x

6z
V r
SVC

Pc0+
4,3

p PPi Singurarity Ls ∩ Lrp
6

Singurarity Cs ∩Hr

Fig.4.1 : The case −1 < r < 3

discS = 0

discC = 0

-
x

6z

q
P tan
3,2 = P tan

3,3

qP tan
3,1

qP tan
3,4

Fig.4.2 : The case r = 3

fS3 = 0

x+ z = −2

(I) When −1 < r < 3, V r
S is as Fig.4.1. Two points Cs ∩Hr and Ls ∩Hr are all the

isolated singularities of VR(discS) ∩H3. V
r
S is a smooth curve in DC and enclose a convex

set P̆c0+
4,3 ∩Hr. Thus,

Dr =
{
(x, z) ∈ R2

∣∣ discS(1, x, r, z) ≥ 0 and dC(x, z) ≥ 0
}
.

Thus, the conditions of (2) of Theorem 4.1 determines P̆c0+
4,3 ∩Hr.

(II) Consider the case r = 3. Let

fS3 (x, z) := x6 − 4x5z + 7x4z2 − 8x3z3 + 7x2z4 − 4xz5 + z6

− 174x5 − 342x4z − 508x3z2 − 508x2z3 − 342xz4 − 174z5

− 414x4 − 712x3z − 1332x2z2 − 712xz3 − 414z4

− 800x3 − 4320x2z − 4320xz2 − 800z3

− 6592x2 − 16512xz − 6592z2 − 16384x− 16384z − 11776.

Then discS(1, x, 3, z) = −2(x + z + 2)2fS3 (x, z). As Fig 4.2, VR(f
S
3 ) tangents VC at three

points P tan
3,1 , P

tan
3,4 and P tan

3,2 = P tan
3,3 (these symbols will be explained in (III)). Moreover

VR(f
S
3 ) ⊂ DC . Thus,

D3 =
{
(x, z) ∈ R2

∣∣ discS(1, x, 3, z) ≥ 0 and dC(x, z) ≥ 0
}
,

and the conditions of (2) of Theorem 4.1 determines P̆c0+
4,3 ∩H3.
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Note that VR(f
S
3 ) ∩ VR(z + 11.851831 · · ·) = ∅, and VR(fS3 ) ∩ VR(z − z0) sonsists of two

points for z0 > −11.851831 · · ·.
(III) Consider the case r > 3. Then, V r

S has just four cusps P cusp
r,i := Ccusp

i ∩ Hr =(
αi(r), α5−i(r)

)
(i = 1, 2, 3, 4). Since V r

S is symmetric with respect to the line VR(x − z),
it is enough to consider the part z ≥ x.

We observe FS ∩FC ∩ H̆c0
4,3. Let

Lx :=
{
(0: 0:w: 1) ∈ P3

+

∣∣ w ∈ [0,∞]
}
,

Ly :=
{
(0:w: 0: 1) ∈ P3

+

∣∣ w ∈ [0,∞]
}
,

Lz :=
{
(0:x: y: 0) ∈ P3

+

∣∣ (x: y) ∈ P1
+

}
.

Note that ∂ ClsP3
+
(B0) = Lx ∪ Ly ∪ Lz.

We define a rational map GS : P3
+ · · · → P(Hc0

4,3) just before Lemma 4.5. Since

g0(w, 0) = 0, GS(Ly) ∩ H̆c0
4,3 = ∅. Since GS(0:x: y: 0) = GS(0: 0:x/y: 1), we have GS(Lz) =

GS(Lx). Since
discC

(
g0(0, w), g1(0, w), g3(0, w)

)
= 0,

we have GS(Lx) ⊂ VR(discC) ∩ VR(discS). Put Ctan
x := GS(Lx).

Similarly, we define a rational map G′ : P3
+ · · · → P(Hc0

4,3) by

G′(0, x, y, 1) :=
(
g0(x, y) : g3(x, y) : g2(x, y) : g1(x, y)

)
.

Let Ctan
z := G′(Lx). Then C

tan
x ∪ Ctan

z ⊂ VR(discC) ∩ VR(discS).
Put H≥3 :=

{
(1, x, r, z) ∈ H̆c0

4,3

∣∣ r ≥ 3
}
. We regard H≥3 ⊂ H̆c0

4,3 ⊂ P(Hc0
4,3). We shall

determine Ctan
x ∩ H≥3. Let δ := 0.2955977425 · · · be the real root of t3 + t2 + 3t − 1 = 0.

Then, all the real roots of g2(0, t)/g0(0, t) = 3 are t = 1, δ. We put

Ctan
1 :=

{
G′(0, 0, w, 1) ∈ P(Hc0

4,3)
∣∣ 0 < w ≤ δ

}
⊂ Ctan

z , P tan
r,1 := Ctan

1 ∩Hr ∈ P̆c0+
4,3 ,

Ctan
2 :=

{
GS(0, 0, w, 1) ∈ P(Hc0

4,3)
∣∣ w ≥ 1

}
⊂ Ctan

x , P tan
r,2 := Ctan

2 ∩Hr ∈ P̆c0+
4,3 ,

Ctan
3 :=

{
G′(0, 0, w, 1) ∈ P(Hc0

4,3)
∣∣ w ≥ 1

}
⊂ Ctan

z , P tan
r,3 := Ctan

3 ∩Hr ∈ P̆c0+
4,3 ,

Ctan
4 :=

{
GS(0, 0, w, 1) ∈ P(Hc0

4,3)
∣∣ 0 < w ≤ δ

}
⊂ Ctan

x , P tan
r,4 := Ctan

4 ∩Hr ∈ P̆c0+
4,3 .

Then Ctan
x ∩H≥3 = Ctan

1 ∪ Ctan
3 and Ctan

z ∩H≥3 = Ctan
2 ∪ Ctan

4 . Note that FS ∩FC ∩{
GS(0, 0, w, 1) ∈ P(Hc0

4,3)
∣∣ δ < w < 1

}
= ∅.

Lemma 4.9. Ctan
1 ∪ Ctan

2 ∪ Ctan
3 ∪ Ctan

4 ⊂ Zar(FS ∩FC) ∩H≥3.

Proof. Clear.

Put Ccusp := Cls
H̆c0

4,3
(Ccusp

1 ∪ Ccusp
2 ∪ Ccusp

3 ∪ Ccusp
4 ). Let’s determine Ctan

x ∩ Ccusp.

Since Ctan
x = GS(Lx) ⊂ VR(discC) ∩ VR(discS), and

GS(0, 0, w, 1) =

(
1 :

1− 2w3

w2
:
(w2 + 1)2 − w

w
:
w3 − 2

w

)
,

we put GS
x (w) := (1− 2w3)/w2, GS

y (w) := ((w2 + 1)2 − w)/w and GS
z (w) := (w3 − 2)/w =

GS
x (1/w).

Lemma 4.10. η(x, y) = 61 + 62x + 56y + 32x2 + 30xy − 6y2 + 9x3 + 4x2y − 6xy2 −
16y3 + x4 − 4x2y2 − 6xy3 + y4 − x3y2 has the following properties:
(1) If (1:x: y: z) ∈ Ctan

x ∪ Ctan
z , then η(x+ z, y) = 0.
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(2) Let r > 3. On a plane Hr, the zero locus η(x+ z, r) = 0 is the union of two lines. One
is the line P tan

r,1 P
tan
r,4 , and the other is the line P tan

r,2 P
tan
r,3 . η(x+ z, r) < 0 between these

two lines, and η(x+ z, r) > 0 outside.

Proof. (1) follows from η
(
GS

x (w) +GS
z (w), G

S
y (w)

)
= 0.

(2) η(x, r) = 0 has just two real roots for r > 3, and η(y − 3, y) < 0 for y < 3.

Note that

f cuspS

(
GS

x (w), G
S
y (w)

)
=

(w − 1)4(w2 + 1)4(w4 − 6w2 − 8w + 1)2f38(w)

w22
,

here f38(w) is a polynomial of degree 38 whose real roots are two negative numbers w =
−8.590880 · · ·, −2.4445756 · · ·. Let τ1 := 0.1150 · · · and τ2 := 2.9343 · · · be the real roots of
w4 − 6w2 − 8w + 1 = 0, and

r1 :=
g2(0, τ1)

g0(0, τ1)
= 7.9207039574 · · · , r2 :=

g2(0, τ2)

g0(0, τ2)
= 30.474537321 · · · .

be the real roots of r4 − 28r3 − 90r2 − 92r + 16353 = 0. Then, all positive the roots
of f cuspS

(
GS

x (w), G
S
y (w)

)
= 0 are w = 1, τ1, τ2. In the case w = 1, GS(0, 0, w, 1) =

(1:−1: 3:−1) = Q0. Thus, Ctan
x ∩ Ccusp consists of three points Q0, P

tan
r1,1 = P cusp

r1,1
=

GS(0, 0, τ1, 1), and P
tan
r2,2 = P cusp

r2,2
= GS(0, 0, τ2, 1). Similarly, Ctan

z ∩ Ccusp consists of three
points Q0, P

tan
r1,4 = P cusp

r1,4
= G′(0, 0, τ1, 1), and P

tan
r2,3 = P cusp

r2,3
= G′(0, 0, τ2, 1).

Lemma 4.11. In H̆c0
4,3

∼= R3 : (x, y, z), κ1(x + z) + κ2y = 1 defines the plane which
passes through P tan

r1,1, P
tan
r2,2, P

tan
r2,3 and P tan

r1,4.

Proof. Note that P tan
r1,1 = P cusp

r1,1
= (α1(r1), r1, α4(r1)) and so on.

α2(r1) + α3(r1) =
g1(0, τ1) + g3(0, τ1)

g0(0, τ1)
= GS

x (τ1) +GS
z (τ1),

α1(r2) + α4(r2) =
g1(0, τ2) + g3(0, τ2)

g0(0, τ2)
= GS

x (τ2) +GS
z (τ2).

Solve κ1(G
S
x (w) +GS

z (w)) + κ2G
S
y (w) = 1 for w = τ1 and τ2. Then, we obtain

κ1 :=
s2t2 − t3 + 2t2 − t

s4 − 2s3t− 2st3 + t4 − 4s2t+ 5st2 − 2t3 + 2s2 − 2st− s+ 1
= 0.0129074031 · · · ,

κ2 :=
−st2 + 2t2 + s− 2t

s4 − 2s3t− 2st3 + t4 − 4s2t+ 5st2 − 2t3 + 2s2 − 2st− s+ 1
= 0.0318925844 · · · ,

where s = τ1 + τ2, t = τ1τ2. Let γ, δ be all the imaginal roots w4 − 6w2 − 8w + 1 = 0, and
put s2 := γ + δ, t2 := γδ. Then s + s2 = 0, tt2 = 1, t + t2 + s + s2 = −6, ts2 + st2 = 8.
When we eliminate s, t, s1, t1 from these relations, we have

817808203κ61 − 546807084κ51 + 129155640κ41 − 13342016κ31 + 556080κ21 − 10176κ1 + 64 = 0,

43042537κ62 − 4514514κ52 − 188769κ42 − 38684κ32 + 4119κ22 − 114κ2 + 1 = 0.
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Now, we shall complete the proof of Theorem 4.1. To prove (3), (4), (5) of Theorem
4.1, we put

D(3)
r :=

{
(x, z) ∈ Hr

∣∣ κ1(x+ z) + κ2r ≥ 1, discS(1, x, r, z) ≥ 0, dC(x, z) ≥ 0
}
,

D(4)
r :=

{
(x, z) ∈ Hr

∣∣∣∣ κ1(x+ z) + κ2r < 1, η(x+ z, r) > 0,

discS(1, x, r, z) ≥ 0, dC(x, z) ≥ 0

}
,

D(5)
r :=

{
(x, z) ∈ Hr

∣∣ κ1(x+ z) + κ2r < 1, η(x+ z, r) ≤ 0, dC(x, z) ≥ 0
}
.

-
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6z
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S
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S
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Fig.4.3 : The case 3 < r < r1
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S

V r
S
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r,c
S

r P cusp
r,2 = (α2(r), α3(r))
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r,2

V r,3
S

Fig.4.4 : The case 3 < r < r1

As Fig. 4.3, we divide the part z > α4(y) of V
r
S at P cusp

r,1 , and denote the right part by

V r,a
S and the left part by V r,b

S . We mean V r,a
S ∩ V r,b

S = {P cusp
r,1 }. Similarly, let V r,c

S be the
smooth interval between P cusp

r,2 and P cusp
r,3 of V r

S . We mean P cusp
r,2 , P cusp

r,3 ∈ V r
S .

(III-1) If 3 < r < r1, then P
cusp
r,1 =

(
α1(r), α4(r)

)
∈ Int(DC), and V

r,a
S tangents to VC

at P tan
r,1 , as Fig. 4.3. This implies that P tan

r,1 ∈ (∂FC)∩ (∂FS). We divide the curve segment
V r,a
S at the point P tan

r,1 , and denote the upper part by

V r,1
S :=

{
(x, z) ∈ Hr

∣∣ discS(x, r, z) = 0, dC(x, z) ≥ 0, z ≥ z(P tan
r,1 )

}
,

where z(P ) is the z-coordinate of the point P ∈ Hr. Then V r,1
S = FS ∩ V r,a

S . Every

P ∈ V r,a
S − V r,1

S is obtained as P = G(0: s: t: 1) for a certain (s, t) ∈ C2 −B0.

Let V r,2
S be the symmetric set of V r,1

S with respect to the line x = z on Hr.
Similarly,

(
α2(r), α3(r)

)
∈ Int(DC), and V

r,c
S tangents to VC at P tan

r,2 , as Fig. 4.4. Let

V r,3
S :=

{
(x, z) ∈ Hr

∣∣ discS(x, r, z) = 0, dC(x, z) ≥ 0, z(P tan
r,3 ) ≤ z ≤ z(P tan

r,2 )
}

be the interval of V r,c
S between P tan

r,2 and P tan
r,3 . Then V r,2

S = FS ∩ V r,c
S . By Lemma 4.10,

V r,1
S ∪ V r,2

S ∪ V r,3
S =

{
(1, x, r, z) ∈ ∂P̆c0+

4,3

∣∣∣∣ discS(1, x, r, z) = 0, dC(x, z) ≥ 0,
η(x+ z, r) ≥ 0

}
.
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So, Dr = D
(3)
r ∪D(4)

r ∪D(5)
r .

(III-2) If r = r1, then P tan
r1,1 =

(
α1(r1), α4(r1)

)
, P tan

r1,4 =
(
α4(r1), α1(r1)

)
∈ (∂FC) ∩

(∂FS). The line defined by κ1(x+ z) + κ2r1 = 1 agrees with the line P tan
r1,1P

tan
r1,4. Others are

similar as (III)-1.

(III-3) Consider the case r1 < r < r2. About V
r,3
S the situation is same as (III-1).

The situation of V r,1
S and V r,2

S changes. If r > r1, then
(
α1(r), α4(r)

)
/∈ DC . and

P tan
r,1 /∈ DC as Fig. 4.5. In this case, VC and V r,a

S intersect at a point Qa
r transversally. So,

FS ∩ V r,a
S agrees with the following new V r,4

S in this case.

V r,4
S :=

{
(x, z) ∈ Hr

∣∣ discS(x, r, z) = 0, dC(x, z) ≥ 0, z ≥ z(Qa
r)
}
,

be the interval of V r,a
S upper than Qa

r . Let V r,5
S be the symmetric set of V r,4

S with respect
to VR(x− z). Then,

V r,4
S ∪ V r,5

S =

{
(1, x, r, z) ∈ ∂P̆c0+

4,3

∣∣∣∣ discS(1, x, r, z) = 0, dC(x, z) ≥ 0,

κ1(x+ z) + κ2r ≥ 1

}
,

V r,3
S =

{
(1, x, r, z) ∈ ∂P̆c0+

4,3

∣∣∣∣ discS(1, x, r, z) = 0, dC(x, z) ≥ 0,

η(x+ z, r) ≥ 0, κ1(x+ z) + κ2r < 1

}
.

So, Dr = D
(3)
r ∪D(4)

r ∪D(5)
r .

rP cusp
r,1 = (α1(r), α4(r))

rP tan
r,1

rQa
r

V r,4
S

V r,b
S

VC

V r,b
S

VC

Fig.4.5 : The case r > r1

VC

V r,6
S

V r
S

V r
S VC

r

r

r
P cusp
r,2 = (α2(r), α3(r))

P tan
r,2

Qc1
r

Fig.4.6 : The case r > r2

(III-4) If r = r2, then P tan
r2,2 =

(
α2(r2), α3(r2)

)
, P tan

r2,3 =
(
α2(r3), α3(r2)

)
∈ (∂FC) ∩

(∂FS). Others are similar as (III-3).

(III-5) If r > r2, then
(
α2(r), α3(r)

)
/∈ DC , and P tan

r,2 , P tan
r,3 /∈ DC as Fig.4.6. In this

case, VC and V r,c
S intersect at two points Qc1

r , Qc2
r transversally. So, FS ∩ V r,c

S agrees with

the following new V r,6
S in this case.

V r,6
S :=

{
(x, z) ∈ Hr

∣∣ discS(x, r, z) = 0, dC(x, z) ≥ 0, z(Qc2
r ) ≤ z ≤ z(Qc3

r )
}
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be the interval of V r,c
S between Qc1

r and Qc2
r . Then

V r,4
S ∪ V r,5

S ∪ V r,6
S =

{
(1, x, r, z) ∈ ∂P̆c0+

4,3

∣∣ discS(1, x, r, z) = 0, dC(x, z) ≥ 0
}
.

If r > r2, then κ1(x+ z) + κ2r ≥ 1 holds for any (x, z) ∈ DC . Thus Dr = D
(3)
r in this case.

By (III-1)—(III-5) and Lemma 4.11, we conclude that the conditions of (3), (4), (5) of

Theorem 4.1 determine P̆c0+
4,3 when r > 3.

Next we observe ∂FP1
. Note that es,t ∈ FP1

when g0(s, t) = 0.

Proposition 4.12. Let

hξ(t) := t4 − 3t3 − 27t2 − 64t+ 2,

hµ(t) := t4 + t3 − 2t2 − 3t+ 1,

hν,a(t) := t4 − 7t3 + 13t2 − 20t+ 2,

hν,b(t) := t4 − 4t3 + 3t2 − 6t+ 2.

Take the real roots of these polynomials as follows:

VR(hξ) =
{
ξ1 := 0.0308472031 · · · , ξ2 := 7.631998798 · · ·

}
,

VR(hµ) =
{
µ1 := 0.2882309962 · · · , µ4 := 1.4587325322 · · ·

}
,

VR(hν,a) =
{
ν1 := 0.1070225045 · · · , ν4 := 5.2319384324 · · ·

}
,

VR(hν,b) =
{
ν2 := 0.3713081034 · · · , ν3 := 3.586633132 · · ·

}
.

Moreover, put µ2 := 1/µ4 and µ3 := 1/µ1. Then the following hold:
(1) s1 + s3 + cs2 ∈ Pc0+

4,3 , if and only if 0 ≤ c ≤ 16. Moreover s1 + s3 + 16s2 = (1/64)e1,4
and s1 + s2 = eP2

∞ .
(2) s1 + cs2 and s3 + cs2 are PSD, if and only if ξ1 ≤ c ≤ ξ2.
(3) There exists αi > 0 (i = 1, 2, 3, 4) such that

eµ1,ν1 = α1(s1 + ξ1s2), eµ2,ν2 = α2(s3 + ξ1s2),

eµ3,ν3 = α3(s3 + ξ2s2), eµ4,ν4 = α4(s1 + ξ2s2).

(4) FP1 is given as the following. Normalize f ∈ FP1 as f = xs1 + ys2 + (1 − x)s3, and
correspond this f to the point (x, y) ∈ R2. Let

D(P1) :=
{
(x, y) ∈ R2

∣∣ xs1 + ys2 + (1− x)s3 ∈ FP1

}
,

V u
S :=

{
(x, y) ∈ R2

∣∣ 0 ≤ x ≤ 1, 4 ≤ y ≤ 8, discS(0, x, y, 1− x) = 0
}
,

V l
S :=

{
(x, y) ∈ R2

∣∣ 0 ≤ x ≤ 1, 0 < y ≤ 4, discS(0, x, y, 1− x) = 0
}
∪ {(1/2, 0)}.

Then, D(P1) is a convex domain enclosed by V u
S , V l

S and lines x = 0, x = 1. We can
identify D(P1) with P(FP1

) ⊂ P(Hc0
4,3).

Proof. (1) Let ft := s1+s3+ ts2, wf (u) := u+1/u, vf (t, u) :=
u

2(u+ 1)

(
t+2−wf (u)

)
,

and rf (t, u) := −wf (u)
2 + 2(3t+ 2)wf (u)− (t− 2)2. Then

ft(0, u, v, 1) = (u+ 1)(v − vf (t, u))
2 +

u2rf (t, u)

4(u+ 1)
.

Note that wf (u) ≥ 2.
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Consider the case wf (u) > t + 2. Then vf (t, u) < 0 and ft(0, u, v, 1) is monotonically
increasing with respect to v in v ≥ 0. Thus ft(0, u, v, 1) ≥ ft(0, u, 0, 1) = tu(u+ 1) ≥ 0.

Consider the case 2 ≤ wf (u) ≤ t + 2. Then rf (t, u) ≥ rf (t, 1) = t(16 − t). Thus,
ft(0, u, v, 1) ≥ 0 if 0 ≤ t ≤ 16. If t < 0 or t > 16, then vf (t, 2) > 0 and ft(0, 1, vf (t, 1), 1) =
rf (t, 1)/8 = t(16− t)/8 < 0.

Thus ft ∈ Pc0+
4,3 if and only if 0 ≤ t ≤ 16.

Since f16(0, 1, v, 1) = 2(v − 4)2 and g1(1, 4) = 64, we have f16 = e1,4/64.

(2) Let gt := s1 + ts2, vg(t, u) := u(t+1− u)/2, and rg(t, u) := −u3 + (2t+2)u2 − (t−
1)2u+ 4t. Then

gt(0, u, v, 1) = (v − vg(t, u))
2 +

u

4
rg(t, u).

If u > t+ 1, then gt(0, u, v, 1) ≥ gt(0, u, 0, 1) = tu(u+ 1) ≥ 0.

Assume that 0 ≤ u ≤ t + 1. Observe the cubic function rg(t, u). The roots of
(∂/∂u)rg(t, u) = 0 are u± := (2(t+ 1)±

√
t4 + 14t+ 1)/3. Note that 0 ≤ u− < t+ 1 < u+.

Thus min gt(0, u, v, 1) = min rg(t, u) = rg(t, u−). If gy ∈ E(Pc0+
4,3 ) then rg(t, u−) = 0 and the

cubic equation rg(t, u) = 0 has a double root at u = u−. Then Disc3(−1, 2t+ 2, −(t− 1)2,
4) = 0. Note that Disc3(−1, 2t + 2, −(t − 1)2, 4t) = 16t · hξ(t). Thus t = ξ1 or ξ2 if
gt ∈ E(Pc0+

4,3 ).

We can also see that gt is PSD if and only if ξ1 ≤ t ≤ ξ2. Since discS(0, 1, t, 0) =
−t2hξ(t), gt ∈ FS if and only if t = ξ1 and ξ2.

Since discS(0, x, y, z) = discS(0, z, y, x) and s3(a, b, c, d) + ts2(a, b, c, d) = s1(b, a, d, c) +
ts2(b, a, d, c), s3 + ts2 is PSD if and only if ξ1 ≤ t ≤ ξ2.

(3) Assume that t = ξ1 or ξ2. Then rg(ξi, u0) = 0 for ∃u0 ∈ R and hξ(ξi) = 0. Eliminate
t from rg(t, u) = 0 and hξ(t) = 0, we obtain

hµ(u)
2(u4 − 16u3 + 48u2 − 384u+ 512) = 0.

u = u0 must be a multiple root of the above equation. Thus hµ(u0) = 0, and u0 = µ1 or µ4.
Let ν1 := vg(ξ1, µ1) and ν4 := vg(ξ2, µ4). Then gξ1(0, µ1, ν1, 1) = 0 and gξ2(0, µ4, ν4, 1) = 0.
Thus gξ1 ∈ R+ · eµ1,ν1

and gξ2 ∈ R+ · eµ4,ν4
by Proposition 4.3(5). Eliminate t and u from

v = vg(t, u), hξ(t) = 0 and hµ(u) = 0, we obtain hν,a(ν1) = hν,a(ν4) = 0.

Let ht := s1 + ts2. Then ht(0, u, v, 1) = u3gt(0, 1/u, v/u, 1). µ2 = 1/µ4 and µ3 = 1/µ2

are roots of u4hµ(1/u). Let ν3 := ν1/µ1 and ν2 := ν4/µ4. Then hξ2(0, µ2, ν2, 1) = 0
and hξ1(0, µ4, ν4, 1) = 0. Thus hξ2 ∈ R+ · eµ2,ν2 and hξ2 ∈ R+ · eµ3,ν3 . Eliminate u from
v = uvg(t, 1/u), hξ(t) = 0 and hµ(1/u) = 0, we obtain hν,b(ν2) = hν,b(ν3) = 0.

(4) For f = p0s0 + p1s1 + p2s2 + p3s3 ∈ Hc0
4,3, disc(P1) = p0 and disc(P2) = p0 + p2.

By Lemma 4.5, ∂FP1 ⊂ FP2 ∪ FS ∪ FC . disc(P2) = 0 corresponds to y = 0. Thus, D(P1)
must be included in the upper half space y ≥ 0. Since discC(0, x, (1 − x)) = −x2(1 − x)2

and (1/2, 1) ∈ D(P1), D(P1) is included in the stlipe 0 ≤ x ≤ 1. V u
S and V l

S are curves as
Fig 4.7. Thus, we have the conclusion.
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Let

Dh
e :=

{
(u: v:w) ∈ P2

+

∣∣ ehu,v,w ∈ E(Pc0+
4,3 )

}
=
{
(u: v:w) ∈ P2

+

∣∣ ehu,v,w ∈ Pc0+
4,3

}
,

dCh
e (u, v, w) :=

discC
(
gh0 (u, v, v), g

h
1 (u, v, w), g

h
3 (u, v, w)

)
u2w2(u+ w − v)2((u− w)2 + v2)2

,

dCe (s, t) := dCh
e (s, t, 1).

dCh
e (u, v, w) is a homogeneous polynomial of degree 10. Let Lw := V+(w) ⊂ P2

+ be the line
segment at infinity. For (u: v:w) ∈ P2

+ − Lw, let s := u/w, t := v/w and regard P2
+ − Lw

to be the the first quadrant of the (s, t)-plane R2
+. The point (s, t) = (1, 0) /∈ Dh

e because
e1,0 = 0. For completion of Dh

G, it is better to put eP2
∞ = s1 + s3 at (s, t) = (1, 0). In the

quadrant s ≥ 0 and t ≥ 0, the curve VC := VR(d
C
e (s, t)) has two connected components V l

C

and V u
C . Similarly, VG := VR(g0(s, t)) has two connected components V l

G and V u
G . V l

C and
V l
G are included in t < s+ 1, and V u

C , V u
G are included in t > s+ 1.

V l
C ∩ V l

G =
{
(µ1, ν1), (µ2, ν2)

}
, and V u

C ∩ V u
G =

{
(µ3, ν3), (µ4, ν4)

}
. Divide V l

C and

V l
G by the points (µ1, ν1) and (µ2, ν2), and define V l,i

C and V l,i
G (i = 0, 1, 2) as Fig. 4.8.

Similarly, we divide V u
C and V u

G by the points (µ3, ν3) and (µ4, ν4), and we define V u,i
C and

V u,i
G (i = 0, 1, 2) as Fig. 4.8. The segment V l,1

G corresponds to V l
S , and V

u,1
G corresponds to

V u
S .

Theorem 4.13.

Dh
e =

{
(u: v:w) ∈ P2

+

∣∣ gh0 (u, v, w) ≥ 0, v > 0 and one of the following (1) or (2) holds.
}
.

(1) dCh
e (u, v, w) ≥ 0.

(2) gh1 (u, v, w) ≥ 0 and gh3 (u, v, w) ≥ 0.

Proof. We already proved that if ehu,v,w is PSD then ehu,v,w ∈ E(Pc0+
4,3 ). By Proposition

4.3, gh0 (u, v, w) ≥ 0 is required.
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(i) Consider the case gh0 (u, v, w) > 0.
Let pi = ghi (u, v, w)/g

h
0 (u, v, w) (i = 1, 2, 3). ehu,v,w is PSD, if and only if (p1,

p2, p3) satisfy the condition of Theorem 4.1. If ehu,v,w is PSD, then ehu,v,w ∈ FS and
discS(1, p1, p2, p3) = 0. Conditions about η(p1 + p3, p2) and κ1(p1 + p3) + κ2p2 − 1 do
not have special sence in this case. Thus, ehu,v,w is PSD, if and only if dC(p1, p3) ≥ 0. That
is, discC(1, p1, p3) ≥ 0 or ‘p1 ≥ 0 and p3 ≥ 0’. discC(1, p1, p3) ≥ 0 is equivalent to u ≥ 0,
w ≥ 0 and dCh

e (u, v, w) ≥ 0. Thus, we have the conclusion.

(ii) Consider the case gh0 (u, v, w) = 0.
In this case, V l

S and V u
S of Proposition 4.12 appears in ∂Dh

e . By Proposition 4.12,
V l
G ∪ V u

G is determined by g0(s, t) = 0, g1(s, t) ≥ 0 and g3(s, t) ≥ 0.

By the avobe theorem, e0,t is PSD, if and only if τ1 ≤ t ≤ τ2. Similarly, eht,1,0 =

teh0,t,1 − (t2 − 1)(t2 + 1)2s2 is PSD, if and only if 1/τ2 ≤ t ≤ 1/τ1.

We shall observe ∂Dh
e precisely. FS ∩ FP1 and FS ∩ FP2 are determined already. We

observe the part of ∂Dh
e corresponding to FS ∩FC .

Let Ll
C be the line segment defined by s = 0 and τ1 ≤ t ≤ τ2, and put V 1

SC :=

V l,0
C ∪ Ll

C ∪ V u,0
C . Since V 1

SC ⊂ V (discC) ∩ ∂Dh
e , if (s, t) ∈ V 1

SC , there exists ρ ∈ P1
R such

that es,t(0, 0, ρ, 1) = 0. We denote this ρ by ρ(s, t) = ρ(s: t: 1). Note that ρ(0, τ1) = τ1,

ρ(µ1, ν1) = 0. If (s, t) ∈ V l,0
C , ρ(s, t) is monotonically decreasing from τ1 to 0 with respect

to s. Similarly, ρ(0, τ2) = τ2, ρ(µ3, ν3) = +∞, and of (s, t) ∈ V u,0
C , ρ(s, t) is monotonically

increasing from τ2 to +∞ with respect to s. If (s, t) ∈ Ll
C , then ρ(s, t) = t. So, each ρ ∈ [0,

+∞], there exists unique (s, t) ∈ V 1
SC such that ρ(s, t) = ρ. That is, es,t(0, 0, u, 1) = 0.

Note that (s, t) = (0, τ1) corresponds to P tan
r1,4 = P cusp

r1,4
, and (s, t) = (0, τ2) corresponds to

P tan
r2,2 = P cusp

r2,2
.

When w = 0, let Lu
C be the interval of Lw = V+(w) between (1: τ1: 0) and (1: τ2: 0).

Note that V l,2
C ∩ Lw = (1: τ1: 0) and V u,2

C ∩ Lw = (1: τ2: 0). Put V 2
SC := V u,2

C ∪ Lu
C ∪ V l,2

C .
Note that ρ(µ4, ν4) = 0, ρ(1: t: 0) = 1/t, and ρ(µ3, ν3) = +∞. So, each ρ ∈ [0, +∞], there
exists unique (u: v:w) ∈ V 2

SC such that ρ(u: v:w) = ρ.
Ll
C corresponts to Ctan

x , and Lr
C corresponts to Ctan

z . P tan
r,1 moves on the interval of Lu

C

defined by 1/τ2 ≤ v/u ≤ 1. Qa
r moves on V l,2

C . P tan
r,2 moves on the interval of Ll

C defined by

1 ≤ t ≤ τ2. Q
c1
r moves on V u,0

C .

If (s, t) ∈ V l,0
C ∪ V l,2

C ∪ V u,0
C ∪ V 2,2

C and ρ = ρ(s, t), then s and ρ satisfy the following
relation:

(ρ3 + 1)2(ρ4 − 8ρ3 − 6ρ2 + 1)s4

+ (3ρ+ 1)(−ρ9 − 3ρ8 − 2ρ7 − 6ρ6 − 14ρ5 + 6ρ4 − 2ρ3 − 6ρ2 − 5ρ+ 1)s3

− 2(ρ10 + 12ρ8 + 26ρ7 − ρ6 + 4ρ5 − ρ4 + 26ρ3 + 12ρ2 + 1)s2

+ (ρ+ 3)(ρ9 − 5ρ8 − 6ρ7 − 2ρ6 + 6ρ5 − 14ρ4 − 6ρ3 − 2ρ2 − 3ρ− 1)s

+ (ρ3 + 1)2(ρ4 − 6ρ2 − 8ρ+ 1) = 0.

Especially, we have the following:

Proposition 4.14. For t ∈ [0, +∞]. let LC
t ⊂ FC be the local cone of Pc0+

4,3 at

(0: 0: t: 1) ∈ P3
+. Take (ui: vi:wi) ∈ V i

SC such that ρ(ui: vi:wi) = 1 (i = 1, 2). Then

LC
t = R+ · ehu1,v1,w1

+ R+ · ehu2,v2,w2
.
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Theorem 4.15. All the elements of E(Pc0+
4,3 ) is the positive multiple of ehu,v,w ((u: v:w)

∈ Dh
e ) or e

P2
t (t ∈ P1

R).

Proof of Proposition 1.11. Let e1,. . ., e20 be all the monomials in H4,3. Assume that
(s: t: 1) ∈ Dh

e , s > 0, t > 0 and t ̸= s+1. Put u :=
√
s, v :=

√
t and Es,t(a, b, c, d) := es,t(a

2,
b2, c2, d2). VR(Es,t) contains at least 27 isolated points. Among VR(Es,t), we choose the
following 20 points: a1 = (1: 1: 1: 1), a2 = (−1: 1: 1: 1), a3 = (1:−1: 1: 1), a4 = (1: 1:−1: 1),
a5 = (1: 1: 1:−1), a6 = (1: 1:−1:−1), a7 = (1:−1: 1:−1), a8 = (1:−1:−1: 1), a9 =
(0:u: v: 1), a10 = (1: 0:u: v), a11 = (v: 1: 0:u), a12 = (u: v: 1: 0), a13 = (0:u: v:−1), a14 =
(−1: 0:u: v), a15 = (v:−1: 0:u), a16 = (u: v:−1: 0), a17 = (0:u:−v: 1), a18 = (1: 0:u:−v),
a19 = (−v: 1: 0:u), a20 = (u:−v: 1: 0). Let ai,j := ej(ai) and A := (ai,j). Then

detA = ±1048576s2t2(t− s− 1)4((s− 1)2 + t2)4 ̸= 0.

Thus, there exists no g ∈ H4,3−{0} such that g(ai) = 0 for all 1 ≤ i ≤ 20. Thus Es,t /∈ Σ4,6.

It seems that if (s, t) ∈ V l,0
C ∪ V l,1

G ∪ V l,2
C ∪ V u,0

C ∪ V u,1
G ∪ V u,2

C − (Ll
C ∪ Lu

C), then
es,t ∈ E(P+

4,3). If (s, t) ∈ Int(Dh
e )∪Ll

C ∪Lu
C , then es,t /∈ E(P+

4,3). This suggests that E(P
+
4,3)

is not so simple.
If (s, t) ∈ V l,0

C ∪ V l,2
C ∪ V u,0

C ∪ V u,2
C − (Ll

C ∪ Lu
C) −

{
(µi, νi)

∣∣ i = 1, 2, 3, 4
}
, then

es,t(a
2, b2, c2, d2) has 35 isolated zeros, because es,t(0, 0, r, 1) = 0 by r = ρ(s, t) > 0, t ̸= 1.

So, es,t(a
2, b2, c2, d2) will be an extremal element of P4,6 which is irreducible.

4.2. Structure of Pc+
4,3

We have not complete any of (I1), (I2), (I3) for Pc+
4,3. But, we shall give (I4) and some

information about Xc+
4,3.

We choose s0 := S3−S1,1,1, s1 := S2,1,0−S1,1,1, s2 := S2,0,1−S1,1,1, s3 := S1,2,0−S1,1,1,
s4 := S1,1,1 as a basis of Hc

4,3, and define Φc
4,3 : P3

+ −→ P4
+ by Φc

4,3(a) =
(
s0(a) : s1(a) :

s2(a) : s3(a) : s4(a)
)
. Put Xc+

4,3 := Φc
4,3(P3

+). Ψ
c0
4,3 : P3

+/(Z/4Z) · · · → Xc0+
4,3 split as

Ψc0
4,3 : P3

+/(Z/4Z)
Ψc

4,3−→ Xc+
4,3

pr−→ Xc0+
4,3 .

Proposition 4.16. Let

f c4,3(x0, x1, x2, x3, x4)

:= x31 − x0x1x3 + x33 + x21x2 + x1x
2
2 + x22x3 + x2x

2
3 − x0x1x2 − x0x2x3 − x1x2x3

+ x4

(
x20 + 5x21 + x22 + 5x23 − 2x0x1 − 2x0x2 − 2x0x3 + 2x1x2 − 6x1x3 + 2x2x3

)
.

Then Zar(Xc+
4,3) =

{
x ∈ P4

R
∣∣ f c4,3(x) = 0, f c04,3(x) ≥ 0

}
with the coordinate system xi =

si(a0: · · · : a3) (i = 0,. . ., 4). This cubic hypersurface VR(f
c
4,3) has an isolated singularity at

Φc
4,3(1: 1: 1: 1) = (0: 0: 0: 0: 1).

Proof. Using PC, we have f c4,3(s0, s1, s2, s3, s4) = 0. Define pr : Xc+
4,3 · · · → Xc0+

4,3

by pr(x0: · · · :x4) = (x0: · · · :x3). This is a birational map. By Lemma 4.4, we have the
conclusion.

Proposition 4.17. Xc+
4,3 does not have the main component.
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Proof. Assume that Xc+
4,3 has the main component. Note that E(Pc0+

4,3 ) = E(Pc+
4,3) ∩

Hc0+
4,3 . Let f be an element of the main component such that f ∈ E(Pc+

4,3)−E(Pc0+
4,3 ). Then,

there exists a = (a: b: c: 1) ∈ Int(P3
+) such that f(a) = 0. (a, b, c) ̸= (1, 1, 1), since f ̸∈ Pc0+

4,3 .

Put b := (b: c: 1: a) ∈ Int(P3
+). Note that a ̸= b. Then the line ab is a bitangent line of the

cubic surface VC(f) ∈ P3
C. But a cubic surface has no bitangent line. A contradiction.

Proof of Theorem 1.10. Let B0 :=
{
(0: s: t: 1) ∈ P3

+

∣∣ s, t ∈ R+

}
, and Ω := {(1: 1: 1: 1)}∪

B0. By Theorem 2.10, it is enough to show E(Xc+
4,3) ⊂ Φc

4,3(Ω). Take any x ∈ E(Xc+
4,3). Then,

there exists D ∈ ∆(Xc+
4,3) such that x ∈ D and that FD is a face component. By the above

proposition, D ⊂ ∂Xc+
4,3 ∪ Sing(Xc+

4,3). If x ∈ ∂Xc+
4,3, then x ∈ Φc

4,3(B0). If x ∈ Sing(Xc+
4,3),

then x = Φc
4,3(1: 1: 1: 1) by Proposition 4.16.

For test set, we can prove the following by the same idea.

Proposition 4.18. Assume that f(x1,. . ., xn) ∈ Hn,3, and there exists a ∈ Int(Pn−1
+ )

such that f(a) = 0 and
∂

∂xi
f(a) = 0 for all i = 1,. . ., n. Then f ∈ P+

n,3 if and only if

f(b) ≥ 0 for all b ∈ ∂Pn−1
+ .

Proof. Assume that f(c) < 0 for a certain c ∈ Int(Pn−1
+ ). We may assume that f take

a minimal value at c. Put g(t) := f((1 − t)a + tc). Then, a cubic polynomial g(t) takes
minimal values at t = 0 and t = 1. A contradiction.

Section 5. Philosophy of Semialgebraic Variety.

5.1. Real algebraic quasi-variety.

Till §4, we used the notion of (quasi-) semialgebraic varieties without exact definition.
In this section, we shall discuss how its definition should be, at least for theory of PDS
cones. Before to give it, we must discuss what a real algebraic variety is.

Usually, we say (X, OX) is an algebraic variety over R when (X, OX) is an integral
separated scheme of finite type over R. X(R) denotes the set of R-rational points, and
XC := X×SpecR SpecC. By this definition, X and XC are irreducible and reduced. To treat
possibly reducible or non-reduced varieties, we shall call a separated scheme of finite type
over Spec(R) to be an algebraic quasi-variety. This notion is not convenient for algebraic
inequalities. For example, there exists infinitely many algebraic varieties X over R such that
X(R) = R2. X may not be affine even if X(R) = R2.

The definition of a real algebraic variety is given in §3.2 in [8]. According to this defini-
tion, every real algebraic variety is reduced but may be reducible (i.e. not irreducible). To
keep consistency with complex algebraic geometry, we shall add a restriction that real alge-
braic varieties must be irreducible and separated. To treat possibly non-reduced varieties,
we shall give alternative definition of real algebraic quasi-varieties as the following:

Definition 5.1.(Real algebraic quasi-variety) (I) A locally ringed space (X, RX) is
called a real algebraic quasi-variety, if there exists a separated scheme (Y , OY ) of finite type
over SpecR which satisfies the following:
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(1) There exists an injective morphism ι: (X, RX) −→ (Y , OY ) as locally ringed spaces,
and ι induces a homeomorphism X → Y (R) as topological spaces with respect to Zariski
topology and Euclidean topology.

(2) Take any affine open subset V ⊂ Y . Let nP be the maximal ideal of OY (V ) corre-
sponding to a closed point P ∈ Y . For an arbitral non-empty subset U ⊂ V ∩ ι(X), we
put

SU :=
⋂
P∈U

(
OY (V )− nP

)
.

If U is an Euclidean open set, then ι∗ : S−1
U OY (V ) −→ RX(ι−1(U)) is an isomorphism

of R-algebra. Thus, each maximal ideal m ⊂ RX(ι−1(V )) corresponds to a point
P ∈ ι−1(V ) ⊂ X.

(3) Take an arbitral affine open subset V ⊂ Y . Then{
f ∈ OY (V )

∣∣ f(P ) = 0 for all P ∈ V (R)
}

is a nilpotent ideal of OY (V ).
In this case, Y is said to be a R-scheme which represents X. If we can choose Y such

that YC is irreducible and reduced, then we shall call X to be a real algebraic variety (See
Notation 0.1 of [18]).

U ⊂ X is called an affine open subset of X, if there exists an affine open subset UY ⊂ Y
such that U = ι−1(UY (R)). Zariski open (resp. closed) subsets are defied similarly. The
Euclidean topology of X is the topology induced from the analytic topology of YC. Y (R) is
also denoted as YC(R). When V ⊂ Y is an affine open subset and B ⊂ V (R) is a subset
such that ClsY (R)(Int(B)) = ClsY (R)(B), we put

SB :=
⋂
P∈B

(
OY (V )− nP

)
,

and RX(ι−1(B)) := ι∗
(
S−1
B OY (V )

)
. By this definition, (X, RX) can be also regarded as a

locally ringed space with respect to the Zariski topology and the Euclidean topology. We
usually omit to write ι. For example, we write X = Y (R).

Note that if (X, RX) is a (possibly reducible) separated real algebraic variety in the
sense of [8], there exists a reduced scheme (Y , OY ) which satisfies the above conditions.
Contrary, if (X, RX) is a reduced real algebraic quasi-variety as Definition 5.1, then (X,
RX) is a real algebraic variety in the sense of [8]. Definition 5.1 may not be so clear, the
author wishes someone will give more nice definition.

5.2. Semialgebraic quasi-variety.

Definition 5.2.(Semialgebraic quasi-variety) A locally ringed space (A, RA) is called
semialgebraic quasi-variety, if there exists a real algebraic quasi-variety (X, RX) and a finite
affine open covering {Vi}ri=1 of X which satisfies the following:
(1) There exists an injective morphism ι: (A, RA) −→ (X, RX) as locally ringed spaces,

and ι induces a homeomorphism A → ι(A) as Euclidean spaces. Moreover, ι(A) is a
semialgebraic subset of X, i.e. ι(A)∩Vi is a semialgebraic subset of Vi for each i = 1,. . .,
r.

(2) ZarX(A) = X.
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(3) Take an arbitral i ∈ {1, 2,. . ., r}, and take any Euclidean open subset U ⊂ ι−1(Vi). Put
Ri := RVi(Vi). For a point P ∈ ι(U), let mP be the maximal ideal of Ri corresponding
to P , and let

SU :=
⋂
P∈U

(
Ri −mP

)
⊂ Ri.

Then ι∗ : S−1
U Ri −→ RA(U) is an isomorphism of R-algebra.

Moreover, if X is a real algebraic variety, then A is said to be an semialgebraic variety.
In this case, the field of fractions Q(RA(Ui)) is called the field of rational functions, and is
denoted by Rat(A) := Q

(
RA(Ui)

)
.

The Zariski topology and the Euclidean topology on A are defined naturally. A semi-
algebraic quasi-variety A is called irreducible if it is irreducible with respect to the Zariski
topology. A is said to be reduced if RA,P has no nilpotent elements except 0 for every
P ∈ A. dimA is defined by dimA = max

P∈A
Krull dimRA,P . A is called connected if it is

connected with respect to Euclidean topology. Note that A may not be connected even if
A is irreducible. A is called affine, if we can choose X to be isomorphic to a closed Zariski
subset of Rn for a certain n.

Notions about singularities of A are defined using RA,P . Note that if Y is a R-scheme
which represents X, then RA,P

∼= OY,P . We denote

Sing(A) :=
{
P ∈ A

∣∣ RA,P is not a regular local ring
}
,

Reg(A) := Int(A)− Sing(A).

A regular map or holomorphic map (resp. isomorphism) between semialgebraic quasi-
varieties is defined as a morphism (resp. isomorphism) of locally ringed space.

We can choose a real algebraic quasi-variety X and a separated scheme Y of finite type
over R so that YC is complete and Y represents X. Then, we say X is a real envelope of A,
and YC is a complex envelope of A.

X and YC are not unique for A, but it is easy to see that:

Proposition 5.3. Let A be a semialgebraic quasi-variety, YC and Y ′
C be complex

envelopes of A. Then YC and Y ′
C are birational equivalent. If A is a semialgebraic variety,

then Rat(A)⊗R C = Rat(YC).

This follows from Proposition 5.10 given later.
By this proposition, if ν(YC) is a certain birational invariant of complex algebraic va-

rieties, then we can define ν(A) := ν(YC) to be an invariant of A. Especially, when A is
non-singular semialgebraic variety, we can choose Y to be non-singular projective, and we
can define hi(A) := dimCH

i(YC, OYC) and Pm(A) := dimCH
0(YC, OYC(mKYC)) for m ≥ 0.

Using Pm(A), we can define the Kodaira dimension κ(A),

Remark 5.4. (1) Reg(A) ̸= ∅ if A is reduced.
(2) Reg(A) is not always dense in A with respect to the Euclidean topology. For

example, consider the case that A has an isolated singularity as a connected component.
(3) If P ∈ Reg(A) ∩ Int(A) and dimA = n, then there exists an Euclidean open

neighborhood P ∈ U ⊂ A such that U is homeomorphic to an open subset of Rn.
(4) By our definition, an isolated singular locus of A is included in Int(A). But Sing(A)

sometimes acts as if it is a boundary. So it will be safe to discuss Int(A) ∩ Reg(A).
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In complex algebraic geometry, a subscheme is a closed subscheme of an open subscheme.
But to define semialgebraic subvarieties, we must be careful. For example, any semialgebraic
subset B of a real algebraic variety A, must be able to be treated as semialgebraic quasi-
subvariety of A.

Definition 5.5.(Image of a regular map) Let A, B be semialgebraic quasi-varieties,
and φ:A → B be a regular map. Let C := φ(B). By Tarski-Seidenberg theorem, C is a
semialgebraic subset of B. We define RC as the following:

We may assume A and B are affine, since definition of RC is local. Let RA := RA(A),
RB := RB(B), and φ∗:RB → RA be the homomorphism induced by φ. We put R :=
RB/Kerφ∗. Note that R defines ZarB(C). For a point P ∈ C, there exists the unique

maximal ideal mP ⊂ R corresponding to P . Put S :=
⋂
P∈C

(R − mP ), and RC := S−1R.

Note that RC is a RB-module. The structure sheaf of C is defined by RC := R̃C which is
the coherent RB-module defined by RC .

(C, RC) is called the image of φ, and simply denoted by C = φ(A).

Definition 5.6.(Semialgebraic quasi-subvariety) Let A, B be semialgebraic quasi-
varieties. A morphism φ : (B, RB) −→ (A, RA) is called an immersion, if φ induces
an isomorphism B −→ φ(B).

If B is a semialgebraic subset of A, and the inclusion map B → A is an immersion,
then B is called a semialgebraic quasi-subvariety of A.

If A is a semialgebraic quasi-variety, and B ⊂ A be a semialgebraic subset. Then, there
exists a unique sheaf of rings RB such that (B, RB) is a semialgebraic quasi-subvariety of
(A, RA) and (B, RB) is reduced. RB is called the reduced structure of B ⊂ A.

Assume that A, B, C are non-singular semialgebraic varieties such that A = B ∪ C,
and P ∈ B ∩ C. It may happen that RB,P ̸∼= RC,P . It is easy to see that RA,P agree with
one of RB,P and RC,P .

Definition 5.7.(Fibre product) Let A, B, C be semialgebraic quasi-varieties, and
f :A→ C, g:B → C be regular maps. The fiber product A×C B is a semialgebraic set

A×C B =
{
(a, b) ∈ A×B

∣∣ f(a) = g(b)
}

with a structure sheaf RA ⊗RC
RB .

Definition 5.8.(Inverse image) Let A, B be semialgebraic quasi-varieties, and φ:A→
B be a regular map. Let C ⊂ B be a semialgebraic quasi-subvariety. The inverse image
φ−1(C) is defined as the fiber product φ−1(C) := A×B C.

Definition 5.9.(Birational map) Let A, B be semialgebraic quasi-varieties. If there
exists Zariski open subsets U ⊂ A and W ⊂ B such that ZarA(U) = A, ZarB(W ) = B
and there exists a regular map φ:U → W , then we say that there exists a rational map
φ:A · · · → B. Moreover, if φ:U → W is an isomorphism, we say that φ:A · · · → B is a
birational map, and A and B are birational equivalent.

Proposition 5.10. Let A, B be semialgebraic quasi-varieties, and let X, Y be complex
envelopes of A, B.
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(1) If there exists a rational map φ:A · · · → B, then there exists a rational map Φ:XC · · · →
YC such that Φ|A = φ.

(2) In (1), if φ is a birational map, then Φ is a birational map.

Proof. (1) We may assume φ is a regular map. Take a point P ∈ Int(A) such that
Q := φ(P ) ∈ Int(B), and take an affine open subset W ⊂ Y such that Q ⊂W .

We can choose f1,. . ., fr ∈ RY,Q such that we can regard fi ∈ OY (W ) and OY (W ) =
C[f1, . . . , fr]. Put gj := φ∗(fj) ∈ RA,P . We can find an affine open subset U ⊂ XC such
that g1,. . ., gr are holomorphic (regular) on U , and that U ∩X is dense in X and U ∩ A is
dense in A. Then, ψ∗:RB → RA induces Ψ∗:OY (W ) −→ OX(U). Ψ∗ induces a rational
map Φ:X · · · → Y .

(2) is easy.

5.3. Some properties of semialgebraic quasi-varieties.

A notion of semialgebraic quasi-varieties brings some merits to Real Algebraic Geome-
try.

Theorem 5.11. Every semialgebraic quasi-variety is affine. In other words, if A is a
semialgebraic quasi-variety, then there exists n ∈ N and an immersion ι:A→ Rn.

Proof. Let A be a semialgebraic quasi-variety. We can take a real envelope X of A.
Take an affine open covering {V1,. . ., Vr} of X. Fix a 1 ≤ j ≤ r. We may assume Vj is a
closed subset of Rn. Let (x1,. . ., xn) be the coordinate system of Rn, and si := 1/(x2i + 1),
ti := xi/(x

2
i + 1). For P ∈ X − Vj , we put si(P ) = 0 and ti(P ) = 0. Then si and

ti are regular functions on X. The set of functions Fj :=
{
si, ti

∣∣ 1 ≤ i ≤ n
}

defines
a map Φj :X −→ R2n. This Φj is a regular map as semialgebraic quasi-varieties, and
Φj |Vj

:Vj −→ R2n is an immersion. Note that Φj(X) is a semialgebraic quasi-variety but is
not always algebraic quasi-variety. Put F := F1∪· · ·∪Fr and N := #F . F defines a regular
map Φ:X → RN , and F is an immersion as semialgebraic quasi-varieties.

Remark 5.12. A real algebraic variety is an affine semialgebraic variety, but is not
always a real affine variety. For example, R2 − {(0, 0)} is not a real affine variety.

Corollary 5.13. Let A be a semialgebraic quasi-variety (or a real algebraic quasi-

variety) and put RA := RA(A). Then, RA is the sheaf obtained as R̃A.

Note that RA is a Noetherian ring, but is not finitely generated over R if dimA ≥ 1.
Each maximal ideal of RA corresponds to a certain point of A.

Corollary 5.14. Let A be a semialgebraic quasi-variety (or a real algebraic quasi-
variety) and F be a quasi-coherent RA-module. Then, Hi(A, F) = 0 for all i > 0.

Proof. There exists an immersion ι:A→ Rn. As Definition 5.5, there exists a closed real
algebraic quasi-subvariety X ⊂ Rn such that X is real envelope of A. Let RX := RX(X) and
RA := RA(A). We can present as RA = S−1

A RX by a certain multiplicatively closed set SA.
Since RA is an RX -module, F is a quasi-coherent RX -module. Thus, F is a quasi-coherent
RRm -module. Thus we have

Hi(A, F) ∼= Hi
(
Rm, F

)
= 0
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(see [16] Chap.III, Theorem 3.5).

By the way, birational geometries of complex and real algebraic varieties are very differ-
ent. In a complete complex algebraic variety, exceptional subsets are special subsets. This
is not true for complete real algebraic varieties.

Theorem 5.15. Let A be a semialgebraic quasi-variety, E ⊂ A be a closed semialge-
braic subset such that E = ZarA(E) ⫋ A. Then there exists a semialgebraic quasi-variety
B and a regular surjective morphism φ:A → B such that P := φ(E) is a point and that
φ|A−E : (A−E) −→ (B − P ) is an isomorphism, i.e. φ is a contraction of E to a point P .

Proof. We may assume A ⊂ Rn. Let f1,. . ., fr be defining polynomials of ZarRn(E) in
R[x1,. . ., xn]. Consider a map Φ:Rn → Rrn defined by linear system with the base

{
xifj

∣∣
1 ≤ i ≤ n, 1 ≤ j ≤ r

}
. Φ is a regular map. Put B := Φ(A) and φ := Φ|A:A→ B. Then, B

and φ satisfy the conclusion of the Proposition.
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