SOME EXTREMAL SYMMETRIC INEQUALITIES

TETSUYA ANDO

ABSTRACT. Let H, g := R[x1,..., n]q be the set of all the homogeneous poly-
nomials of degree d, and let Hi,d = ’HS;} be the subset of all the symmetric
polynomials. For a semialgebraic subset of A C R™ and a vector subspace
H C Hn,a, we define a PSD cone P(A, H) by P(A, H) :={f eH| fla) >0
(Va € A)} In this article, we study a family of extremal symmetric polynomi-
als of P36 := P(RB, Hs3,6) and that of Py 4 := P(R4, Ha,4). We also determine
all the extremal polynomials of ”Pg'g = ’P(Ri, H3,5) where Ry := {z € R,

T > O}. Some of them provide extremal polynomials of P3 10.

1. INTRODUCTION

First, we should explain what an extremal inequality is. Let H,, 4 := Rlxy,.. .,
Zn]a (the part of degree d), and H C H,, 4 be a vector subspace. For a semialgebraic
subset A of R™ or Pﬁ_l, the closed convex cone

PA, H):={feH|fla)>0forallac A}

is called the PSD cone on A in H. PSD means Positive Semi-Definite. This is a
semialgebraic set whose boundary is a finite union of irreducible semialgebraic sets
(see [2, Theorem 2.7]). An element of P(A, H) can be regarded as an inequality on
A. In general, for a closed convex cone P, a half line Ry - f (f € P—{0}) or R} - f
is called an extremal ray, if g, h € P satisfy g + h = f then g, h € Ry - f, where
Ry:={zeR ’ x>0} and R} := Ry — {0}. In this case, f is called an extremal
element of P. The set of all the extremal elements of P is denoted by £(P). Any
element of P can be written as a sum of some elements of E(P).

The notion of ‘extremal’ is relative. When H’ C H is a vector subspace, (P (A,
H)) ¢ E(P(A, H)) may occur. But it is useful to study E(P(A, H')) to find
relations of P(A, H') and P(A, H).

When A = R"™ or A = R}, there are many cases that we have better to study
PPE ', H) or P(P? ', H) instead of P(R™, H) or P(R?, H). One of reasons is
as follows. For f € H,, 4 and K =R or C, we denote

Vi (f) = {x S IF”}{I | flx)= O}.

In the theory of inequalities, elements of Vi(f) are treated as ‘equality conditions’.
In many cases some points of Vg(f) are singular points of Vi(f), if f € P(A4,
‘H). Especially, when f is an irreducible polynomial, the structure of an algebraic
variety Vo (f), or the structure of singular points in Vk(f) plays an important role
for studies of inequality f > 0. When f is extremal, Vk(f) usually contains many
points. The set Vg(f) often determines f itself. This fact is recognized at least
from [10]. For more details, please see [6] and [3, §2].

There is another reason. Consider the case that a finite group G (for example,
the symmetric group G = &,,) acts on A, and H is a G-invariant set HE = H.
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Then P(A, H) can be identified with P(A/G, H). In many cases, the structure of
A/G plays an important role to study E(P(A, H)). In our cases, the structure of
Pp' /&, or P! /&, is more essential than that of R"/&,, or R /&, (see §4.2).

By the way, PSD cones P, 24 := P(R", Hy 24) are studied in many articles with
interest for SOS problem. An element f € P, a4 is called SOS (Sum Of Squares), if
there exists r € N and g1,. .., g € Hp.q such that f = g2 + - + g2. The set of all
the SOS elements of P, o4 is denoted by X, 24, and is called a SOS cone. Hilbert
proved that P, 04 = Xy, 24 if and only if (n, d) = (3, 2) or d = 1 or n < 2 ([13]).
In many articles, Py, 24 — 2,24 are studied, but I feel that not so many elements
of Py 24 — Xn,24 are known yet. One of reasons will be that dim H,, 24 is too large
to proceed precise analysis. Studies on P(A, H) for some small H often bring new
results.

The set of symmetric polynomials H;, , := 7—[”672 is one of nice vector subspace
which is easy to treat. For example, a nice condition to distinguish PSD is provided
n [15]. By our experience, the equality condition f(a,..., a) = 0 (i.e. f(1,...,
1) = 0) also often makes situation simple. Now, we fix some symbols. Let

qd= HS’& = {f € Hn,a | f(@oqys o Tom)) = f21,...,2,) for all o € Gn},
’H%d = {f € Hn,a | f(a,a,...,a) =0 for all aG]R},

and 'Hffd =H; 4N Hg,w We denote P,.q := P(R™, Hpn.a), ’P;l',d =P[R, Hn,a),
Pig = PR, M), Pol o= PRY, HS ), POy = PR, 1), and PO =
P(RY, Hfl?d). The rule of indexing will be clear. “s” means symmetrlc “0” means
an equality condition f(a,..., a) =0, and “4+” means A = R’}. These symbols are
used in [1, 2]. In [7], PS4, is denoted by P ,,. The symbols HS o5 := Hp2a N
R[z,. .., 23] and P o := Ppada NHS, 54 (even PSD cone) are also often used.

Note that if f € E(P,,24), then there exists a € R™ such that f(a) = 0. By
a linear bijective map ¢: R™ — R"™ such that ¢(1,..., 1) = a. Then we have
fope&(PY ). Moreover, E(PY 5y) C E(Pn 2a) holds. Thus, studies of E(P] ,,)
is useful to study &(Pp24)-

About the cone P, 5, of PSD symmetric forms, there are many studies relating
¥p,24- Many famous elements of P, 24 — X, 24 are found out from PS "9 OF Pn,zd
So, symmetric inequalities are studied in many articles with special interests (for
example [12, 15, 16, 17, 18]).

When d is odd, there are a few studies about ’PH But the cone P’ a4 1s also
useful, since P\, = P, and Pyt = Py, i= Py
flay, .., mp) — f(22,..., 22).

As is already commented, £(P;, ;) C &E(Pn24) is not always correct. But

E(Ps%y) C E(P, 2d) and 5(’PSO+) C E(P;7)) always hold. This is one of the reasons
why we study P:° g and Pfl?j.

We review easy cases that n = 3 and d is small. Let

2d m Py, 2a> by the corresponding

Sii=at vyt 2 S =aly +y' 2, Tiy=8+ S,

)

and U := xyz. The following proposition will be well known.

Proposition 1.1. The three dimensional PSD cone P;‘g is a triangular cone which

has three extremal rays. Fach edge of £ (Pg*g) is generated by one of ff Fo=

To1—6U, f3° := S343U ~Ty or f3° := U. The polynomials f>* are characterized

in P34 by the equality conditions f;**(1,0,0) = f"*(1,1,1) = 0, f3°(1,1,0) =
2%(1,1,1) = 0 and f3°(1,0,0) = f2*(1,1,0) = 0.
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The sentence ‘f € P is characterized by the condition (x)’ means that if g € P
satisfies the condition (*) then there exists o > 0 such that g = af.

The inequality f > 0 is called Schur’s inequality of degree 3. Note that

SRR S = E(P33). Thus E(P3%) C £(P45). Note that all the elements of

E(P33) are determined in [3]. It is also proved that if f(z,y,z) € £(P53), then
f(a?,y?,2%) € E(P3) ([3, Theorem 1.7)). If f(x,y, 2) € £(Py4) is irreducible, then
f(@?,y?,2%) ¢ Y36 So, the study of E(P; ;) may bring us new aspects.

The following proposition follows from [1, Proposition 4.13].

Proposition 1.2. Fach extremal ray of the four dimensional PSD cone P3 ; is
generated by one of the following polynomials:
(1) t4,s =Sy — (t + 1)T371 + (t2 + 21‘,)5272 — (t2 — 1)U51 where t € R.
(2) ;1(,}5 = 5272 - USl
(3) 92( = (k’SQ — 5171)2 where 71/2 < k < 1.

The polynomial ff % is characterized in P3 4 by the equality condition ft4 H(t,1,1)
= f*(1,1,1) =0.

Note that the inequality fg ® > 0 is the Schur’s inequality of degree 4. We should
mention that ¢ € E(Py4) but f;"°, f4° ¢ E(Py4). For example, f"° ¢ E(Py4)
since

4, 2
6f; " (v1, 72, 73) — a7y =y — (D) (@iip1 + 3w — 221 Tiya))

\\Mw

where z;13 := x;. Moreover, ft *(z,y,2) is a product of two imaginal quadratic
polynomials. The following proposition follows from [1, Therem 4.10].

Proposition 1.3. Fach extremal ray of the four dimensional PSD cone Pg;i is

generated by one of the following polynomials: ft4’S (t>0), fLe, X (0<k<1),
T371 - 25272 or USl

In §4 of this article, we determine all the elements of £ (P?fJg) Since the definitions
of extremal polynomials ef}u, etB:u, ¢, el and ¢F are long, we give them in §4.1.

Theorem 1.4. FEach extremal ray of the five dimensional PSD cone 773 L is gen-
erated by one of the following polynomials: etu 0<t<70<u<puasld)),
ey (t>2, pp(t) Su<1) ef (0<t<2), ¢ (t€[0,00]), e (t€7,o00]) or
U(S2 —S1,1). Polynomials e{}u, P, ef, el and ef are characterized in ng‘g by the
following conditions for general t and w:

B t+2)(T—t)—u B
e, (t,1,1) = e;}u< AT 1, 1) =0,

B B del,

e, (t,1,1) =P, (0,u,1) = —2(0,u,1) = 0,
3 5 6y

ef(t,1,1) = e(1,1,1) = ¢5(0,1,1) = 0,
P(t,1,1) =e¢P(1,1,1) = ¢P(0,0,1) = 0,

ef(tv 15 1) =& (07 17 1) =& (0,0, 1) =0.

Note that the condition (d¢f,/y)(0,u,1) = 0 can be described using the notion
of ‘infinitely near zero’ introduced in [3, §2]. We also prove that if (u, t) satisfies
certain conditions, then ¢f, € £(Py;), and

efu(x27 yQa 22) € 8(7)3,10) - E3,107



4 TETSUYA ANDO

in Theorem 4.26 and 4.28. On the other hand, ¢ ¢ 5(7);5) (Theorem 4.4). Thus,
E(P3Y) ¢ E(P3) and E(P5E) NE(PS,) # 0.

The cones P3¢ and Py 4 are studied with special interests (for example [11, 5]).
The cones P35 g and Pj 4, are also studied in many articles (for example [9, 12]). Let
P be a closed convex cone which contains no line. An element f € £(P) is called
an exposed, if there exists a hyperplane H of H such that H NP = Ry - f. For
example, if P is an polyhedral convex cone, then all f € £(P) are exposed. In
[4], it is proved that if f € E(Ps6) — 23,6 is exposed, then V¢ (f) is an irreducible
rational curve with 10 acnodes. All the extremal even sextics are determined in [3].
It provides many elements of £(P36) — X3,6. Some important symmetric elements
of £(P3 ) are also provided in [8, 12]. But, all the symmetric elements of £(Ps )
are not determined yet. In §3 of this article, we prove the following theorem about
the six dimensional PSD cone P3%.

Theorem 1.5. There exists a non-empty open subset U C R? such that for every
(u, v, w) € U there exists fu v € P5% which satisfies the following (1), (2), (3)
and (4):

(1) Fuyo,w(;v,1) = fupw(w, 1,1) = fupw(l,1,1) = 0.

(2) fuvw is irreducible in Clz, y, 2].

(3) fu,v,w € E(P36) — Ls6-

(4) Ve(fu,u,w) Is an irreducible rational curve which has 10 acnodes.

The structure of U is very complicated to describe it. So, it will not be easy to
determine all the symmetric elements of £(Ps ).

Next, we consider the cases n=4. Let
4
4. § : d
Sd = J:,L-,
i=1
4
4 D(..49 q q
T4 = Z z (vl +aiig +2s),
i=1

1=
4 p,.p
Spp = Z TiZjs

1<i<j<4

4
4 Pia 4 a . a g
Tpgq = E :xz (xi @i +alals +ofnls),
i=1

4
4 — Y P
Sppw = Zmz Tit1%i+2
i=1
U := 212910324

wherer x;+4 = x;. We also use (a, b, c,d) instead of (x1,x2,x3,x4). The following
proposition is easy to prove but may not be well known. A proof will be given in
§2.2.

Proposition 1.6. The three dimensional PSD cone ijg is a quadrangular cone
which has four extremal rays. Fach edge of £ (Pj‘g) is generated by one of gf’s =
T24,1*3Sf1,1; 9378 = 3S§+3S%,1,1*2T24,1, gg’s = Sfl,p 01”92’5 = S§+3S%,1,1*T24,1-
These gf’ '® are characterized in ’P;f,g by the equality conditions

91"(1,0,0,0) = ¢;*(1,1,1,1) = 0,

92°(1,1,1,0) = g5°(1,1,1,1) = 0,
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95°(1,0,0,0) = ¢5°(1,1,0,0) = 0,
95°(1,1,0,0) = ¢3°(1,1,1,0) = 0.

Note that gi”s, gg”s, gg”s ¢ E(st). But gi”s € 5(’PI3), and
g3 (a?, 2,2, d?) € E(Pag) — Tue.
All the elements of £(P5Y) and € (Pj?f) are completely determined in [2].

Theorem 1.7. ([2, Theorem 1.2]) Each extremal ray of the four dimensional PSD
cone 77221 is generated by one of the following polynomials:

3g¢(a,b,e,d) i= (a® + 0> —® —d* + (t + 1)(cd — ab))2
+(a® =>4+ —d®+ (t+1)(bd — ac))2
+ (2= —E+d®+ (t+1)(be—ad)®  (t€R),
000 (a, b, ¢,d) := (ab — cd)? + (ac — bd)? + (ad — be)?,
p(a,b,c,d) ;= (a—b)2(c—d)* + (a — c)*(b—d)* + (a — d)*(b — ¢)*.
Conversely, these are extremal elements of Pjgl.

g: (t # 1, —3) is characterized by the equality conditions g.(t, 1, 1, 1) = g;(—1,
—1,1,1) = 0. gy is characterized by the equality conditions g (x, x, 1, 1) = 0 for all
x € PL. g_3 is characterized by the equality conditions g_3(a, b, ¢, —a—b—c) =0
for all a, b, ¢ € R. g Is characterized by the equality conditions g..(0, 0, 0,
1) = goo(—1, =1, 1, 1) = 0.

p is characterized by the equality conditions p(0,0,0,1) =1 andp(s,1,1,1) =0
for all s € R.

Using this, we have P; C 344 and E(P5Y) N E(Pa4) = 0.

Theorem 1.8. ([2, Theorem 1.4]) Each extremal ray of the four dimensional PSD
cone PZB{" is generated by one of the following polynomials:

3f¢%(a,b,c,d) = 38} — 2(t + 1)Ty , +2(2t — 1)S3 ,
+ (P +3)TY,, — 127+ 1)U (0<t<5),
9¢(a,b,c,d) == 953 — 6(t + 1)T5, + (t* + 2t + 19)55,
+2(t% + 5t — 8)T4, , — 6(5t + 10t — 19)U* (¢ > 5),
pla,b,c,d) =83, — Ty, +6U"
qi1(a,b,¢,d) = T3471 — 25;{2,
q2(a,b,c,d) =Ty, , — 120"
Conversely, these are extremal elements of PZ,OZF.
9 (0 <t < 1or1<t<H5)is characterized by the equality conditions
a(t,1,1,1) = §2¢(0,0,1,1) = 0.

9% js characterized by the equality conditions f¢*(t,t,1,1) = 0 for all t > 0 and
2
%ﬁw(l, 1,1,1) = 0. ¢ (t > b) is characterized by the equality conditions
fg(ta L1, 1) - ff(oa 0,u, 1) =0,
where u € R, is any root of 3u® — (t + 1)u+ 3 = 0. Moreover §§ € 5(’PZ4) ift > 5.
Thus 5(772%') NE(P;y) # 0. p is characterized by the equality conditions

p(0,0,0,1) = p,(0,0,0,1) = p(x,1,1,1) =0
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for all x > 0. qy is characterized by the equality conditions
ql(]-v ]-7 17 0) = q1(17 ]-7 07 0) = q1(1707 07 0) = 0.
q2 is characterized by the equality conditions q2(s,1,0,0) = 0 for all s > 0.

By the above representation, we have p(a?, b%, ¢2, d?), q;(a?, b, ¢?, d?) € S48
(i=1,2). Butif 0 <t <5 and t # 1 then (a2, b2, %, d?) ¢ S48, and if t > 5
then ¢(a?, b2, %, d?) ¢ Y4s.

The set Py 4 — X4 4 is studied in many articles . Extremal elements of Py 4 have
similar properties with that of £(Ps¢). If f € E(Ps4) — X4 is irreducible, then
Ve(f) is a K3-surface with 10 real rational double points of Aj-type (see [4]). In
§2 of this article, we prove the following theorem about the five dimensional PSD
cone Pj 4.

Theorem 1.9. There exists a non-empty open subset U C R? (thisU is described in
Theorem 2.5 and Theorem 2.6) and polynomials g; ..(a,b,c,d) € Pj 4 for (t, u) €U
(this g, will be defined in Definition 2.1) which satisfy the following properties:
(1) g44(t,1,1,1) =0 and g4, (u,u,1,1) = 0.

(2) gtu € E(Pra) — Xaa.

(3) @¢.4 is irreducible in Cla, b, ¢, d].

(4) Vr(gew) is a set of 10 isolated points.

As is stated after Theorem 1.7, we know that £(P;%) C £(Pf,) N X44 and
E(P5Y) NE(Paa) = 0. But E(P5,) N (E(Paa) — Xa4) # O by the above theorem.
This fact suggests that £(Pj ,) is very complicated.

In this article, many complicated calculations appear. In most of them, we use
the software Mathematica. The code for Mathematica can be found on the link of
the authors WEB or in arXiv’s anc folder.

2. SOME EXTREMAL ELEMENTS OF Pj 4

Among Theorem 1.4, 1.5 and 1.9, Theorem 1.9 is most easy to prove. So, we
start from this.

2.1. Quartic polynomial g; .

In this subsection, we prove Theorem 1.9. We have studied the structure of P,
in [2]. Tt is fairly simple. But the structure of Pi 4 is very complicated. We only
provide here a family of extremal elements of Pj,. But these extremal elements
will be interesting with a view of theory of K3 surfaces.

In this section, we use the following symbols. We denote the standard coordinate
system of P2 by (ag: a1: az: az). We also denote a := ag, b := ai, ¢ := ag, d := ag.
We choose the following so,. .., s4 as a basis of H ,:

so(a,b,c,d) == S§ —4U* = a* + b* + ¢* + d* — 4abced,

1

s1(a,b,c,d) := ngl,1 —12U% = 3 Z ai(o)ag(l) — 12abcd,

[ASICP
s2(a,b,¢,d) == 5372 —6U* = Z a?a? — 6abed,

0<i<j<3
1
i 4 _ 2
s3(a,byc,d) =Ty, — 120" = 3 ; U (0)0o(1) A0 (2) — 12abcd,
0€G,

s4(a,b,c,d) := U* = abed.
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Note that {sg, s1, s2, s3} is a basis of ”Hf&. Let s(a,b,c,d) be the vector (so, s1,
880 384
da’""" Oa

S2, S3, S4). We denote s, := ) and so on.

Definition 2.1. For ¢, w, u, a, b, ¢, d € R, we put

1 —1)2
w(u)::quff2:M7
u u

p§ (t,w) := (4t + 2)w? — 3(t — 1)%w,

p§(t,w) i= —2(t 4+ 1)%w?® + 2(t + 1)(t — 1)%w,

pS (t,w) == 4t%w? — 2(t — 1)3(2t — Dw + 2(t — 1)%,

pS (tw) :=2(t + 1)%w? — (t — 1)2(t> + 3)w — 2(t — 1)*,
pg (8 w) = 2(t — 1)*w?,

Note that if (¢, u) = (1, 1), then g11 = 0.

Theorem 2.2. Let t, u € R. Aline 4 vectors s(t,1,1,1), sq(¢,1,1,1), s(u,u, 1,1),
Sa(u,u,1,1) and make a 4 x 5 matrix A(t,u). Moreover, put e; = (1,0,0,0,0) at
the top of A(t,u), and make 5 x 5 matrix B(¢,u). Then

det B(t,u) = 3(t — 1)2(u* — D)u?p§ (t, w(u)).
If det B(t,u) # 0, then Ker A(t,u) is generated by g¢ ..

Proof. This follows from a direct calculation using Mathematica. O

By the above theorem, if g;, € Pj, and det B(t,u) # 0, then g;, € E(P] 4)-
As a special case of [15, Corollary 1.3] or [16, Corollary 2.1], we have the following
Lemma. See also [17] and [18].

Lemma 2.3. Let f € Hj,. Then, f € P}, if and only if the following (1) and (2)
hold:
(1) f(z,z,1,1) >0 for all x € R.
(2) f(z,1,1,1) >0 for all z € R.
Theorem 2.4. Let
Ve (t,w) == (34 6t — t))w? — 6(t — 1)*w.
Assume that u # 0, 1. Then g; ., € Pj, if and only if Vr(t, w(u)) > 0. Moreover,
—0t,u & Pi, for any t, u € R.

Proof. If uw # 0, 1, then w := w(u) # 0. Let
4

0iw(a,b,c,d) = pf(t,w)si(a,b,c,d).
=0

Then g ,(a,b,c,d) = uQQZ‘,w(u)(a,b, ¢,d). Thus, g, € Pj, if and only if 97 i) €
P; 4. Since g ,,(1,0,0,0) = p§ (t, w), if f € P§, then p§ (t,w) > 0. Since
205 (t,w) — Vi(t,w) = (t + 1)%w? > 0,
if Vi(t,w) > 0 then p§ (t,w) > 0. Since
0p (2, 2,1,1) = 2(t — 1)* (2w — (z — 1)?)* > 0,
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(1) of Lemma 2.3 holds. This also proves that —g;. ¢ Pf4if t #1. —g1.. & Pi,
follows from p§ (1, w) = 6w? > 0. On the other hand,
2 2,2
. aq (t, w) (t — 1) *w*Vr(t, w)
9 oz, 1,11 = (z—1t)? th,w (x— ) + ,

e L) = (e o ) (7 e ) W)
where a;(t, w) = (3 + 4t — t*)w? — 3(t — 1)?w. Thus, if Vz(¢, w) > 0, then (2)
of Lemma 2.3 holds. Conversely, consider the case x = ay(t,w)/p§ (t,w), Vr(t,
w) > 0 is necessary for (2). O

Theorem 2.5. Let
Dp(t,u) == (3 + 6t — t?) — (13 + 6t + 5t*)u
+ (10 4+ 9t + 4t2 + t3)u? — (1 4 6t + t2)u?.

Assume that t ¢ {0, 1}, u ¢ {0, £1}, 2u #t+ 1, tu+ u # 2, Dp(t, u) # 0 and
Vie(t, w(u)) > 0. Then g¢y € E(Pya).

Proof. Let e;(a,b,c,d) (i = 1,..., 35) be all the monic monomials of H4 4. Every
f € Haq can be written as f = cre; + - -+ + c3se35 (3e; € R).

Let a; := (¢,1,1,1), ag := (1,¢,1,1), ag := (1,1,¢,1), ag := (1,1,1,¢), a5 :=
(u,u,1,1), ag := (u,1,u,1), a7 := (u,1,1,u), ag := (L,u,u,1), ag := (L,u,1,u),
ajo := (1,1,u,u). Consider the following 34 equations for f.

fla;)) =0, fo(a;))=0, fo(a;)=0, fe(a;)=0 (i=1,.,7),
f(as) =0, fa(as) =0, fo(as) =0,

flag) =0, fa(ag) =0,

f(ap) =0.

This system of equalities can be written using a 34 x 35 matrix A;, and a vector
cs:="(c1,..., c35) as Ay ycp = 0. Note that if f = gy, the condition Acy = 0 is
satisfied. Thus, g¢, € Ker Ay ,,.

Let By, be the 35 x 35 matrix obtained by putting e; = (1, 0,..., 0) at the top
of A. Then

det By o, = £t(t — 1)®u(u — 1)*"(u + 1)°(t — 2u + 1)*(tu + u — 2)3
x S (t, w(u))Ve(t, w(u))De(t,u)?

Remember that if Vi (¢, w) > 0, then p§ (t, w) > 0. Thus, under the given condition,
we have det By ,, # 0. Therefore, dim Ker A; ,, = 1 and Ker A; ,, = R-g;,. We have
9t,u € Paa by the previous theorem.

Assume that g,, = f+ ¢ (f, 9 € Paa). Then f, g € Ker Ay, =R - g;,. Thus
we have gy, € E(Paa). O

Theorem 2.6. Assume that t # 1, u ¢ {0, £1} and Vp(t, w(u)) > 0. Moreover,
we assume g, € E(Py4). then g4 (a,b,c,d) is irreducible in Cla, b, ¢, d] and g, ¢
24,4.

Proof. Let a; := (¢,1,1,1),..., a;9 := (1,1,u,u) be the same as in the proof of
Theorem 2.5.

(1) We prove that if t # 1, u ¢ {0, £1} and Vp(t, w(u)) > 0, then there exists
no quadric g € Cla, b, ¢, d] such that g(a;) =0 for all i = 1,..., 10.

Let ¢1,..., gio be all the monic monomials of Hso. Every g € Hao can be
written as g = ¢1q1 + - -+ + ¢c10q10 (J¢; € R). Consider the 10 equations g(a;) = 0
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for all 4 = 1,..., 10. This system of equalities can be written by a 10 x 10 matrix

B, = (ei(aj)), and a vector ¢, := ‘(cq,.. ., ¢10) as By ucy = 0. Using PC, we have
det By, = +(t — 1)5(u — 1)°(u + 1)*u?Ve(t, w(u)) # 0.

Thus, Ker B, = 0 and we have (1).

(2) Note that if f € E(Ps4) N Xy4, then there exists a quadric g € Ha o such
that f = g% If g;., = g°, then (g(ai))2 = giu(a;) = 0. But this is impossible by
(1) Thus, g §‘é 2474.

(3) We shall show that gy ,, is irreducible if g; ,, € £(Py.4). Assume that g; ., = gh
(3g, h € Cla,b,c,d] — C) with degg < degh. Then degg < 2. As is well known, g
and h are homogeneous.

(3-1) Consider the case degg = 2 and ag ¢ Rla, b, ¢, d] for any a € C*.

Then g;, can be divided by the complex conjugate g. We may assume that
0tu = gg. Then g(a;) =0 for all 4 = 1,..., 10. This is impossible by (1).

(3-2) Consider the case degg = 2 and g € Ra, b, ¢, d].

Note that Ve(ge,u) = Ve(g) U Ve(h). If Ve(g) = Vie(h), then there exists a € R
such that h = ag. Thus, g;, = ag®. Then g(a;) = 0 for all i = 1,..., 10. This is
impossible by (1). So V(g) # Ve(h). It is easy to see that g, h € E(P4,2), otherwise
[ & E(Py4). Since Py o = ¥y 9, there exists g1, hy € Hy 1 such that g = g7, h = h3.
So, at least 5 points among aj,..., ajg lie on the line Vkr(g1) or Vr(hy). This is
impossible.

(3-3) Consider the case degg = 1 and ag € R|a, b, ¢, d] for any o € C*.

Then g;,, change the signature across Vg(g) unless g; ., is divisible by g*. This
is impossible by (3-2).

(3-4) Consider the case degg =1 and g ¢ Ra, b, ¢, d].

Then g, can be divided by the complex conjugate g. So, we can write g, =
ggh. This is impossible by (3-2). O

Thus, we obtain Theorem 1.9.

2.2. Proof of Proposition 1.6.

There are many ways to prove Proposition 1.6. We give a short direct proof
which use theory of PSD cone. Note that by [15, Corollary 1.3], the following
lemma holds.

Lemma 2.7. Let f € Hj ;. Then f € Pj; if and only if
f(0707w71)207 f(0’$717]‘)207 f($7x’171)207 f(w71)171)20

for all z > 0.
Proof of Proposition 1.6. Choose sg := S5 — Sil,l’ §1 1= T2471 - 351{171, Sg 1= Sil,l,l
as a basis of Hj 3, where S5 = a® 4+ b3 + ¢* + d?, Sfl,l = bed + acd + abd + abe,
and T3 ) == a*(b+c+d) +b*(a+c+d) +A(a+b+d) + d*(a+ b+ c). Remember
that gi”s = 51, gg’s = 350 — 251, gg’s = 59 and gi’s =59 — 51 + So.

Define 5 5: P} — P} by ®j 3(a) = (so(a): s1(a): sa(a)). Let X775 := @5 5(P).
As [2, Example 3.2(4)],

AT = {(a:b:c: 1)61?’%’0§a§b§c§1}

is a fundamental domain of ®j ;. Let ®: AT — XZE be the restriction of ®j ;.
The above lemma implies that QXZE is included in the image of 6 edges of the
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tetrahedron AF by ®. Using this, it is easy to see that the convex closure of Xj,g
is a quadrilateral PyP; P, P3, where
Py=®(0:0:0:1)=(1:0:0), P =®(0:0:1:1)=(1:1:0),
Po=®(0:1:1:1)=(2:3:1), P3=®(1:1:1:1)=(0:0:1).
By [1, Proposition 1.14(2)], P(P;%) is the dual of the convex closure of X;%. Thus,
P(P;%) is a quadrilateral whose vertices are g2 = s (dual of PsPy), go* :7330—231
(dual of P,P3), gg’s = $9 (dual of PyP;), and gZ’s = 89— 81+82 (dual of P Py). I

Corollary 2.8. Let f € 3 5. Then f € P;% if and only if
£(0,0,0,1) >0, f£(0,0,1,1)>0, f(0,1,1,1) >0, and f(1,1,1,1) > 0.

We define the map ¢,,: H;, ; — H;, 4 by

Qon(f(alw ) an)) = Zf(alv' sy Q=1 Qg an+1)'
i=1

If n > d, then ¢,, is an isomorphism (see [7, Proposition 2.3]). In general, ¢, (P:1)
C P’Zil,d' Especially ¢3: Hj5 3 — M 3 is an isomorphism. Note that ¢s3( 3%) =
207°, 3(f3°) = g5 and @s( 335) = ggl’s, where f;”s are defined in Proposition

1.1. This implies ¢>°, g5*, ¢5° ¢ £(Pa.3). Thus, we have:
Corollary 2.9. ¢3 (5(77;'5)) - S(PZ};) ¢ 5(772:3).

But, it seems that Lpn(g(PZ,tl» - g(PZil,d) and ‘Pn(&P}i,Qd)) C 5(/PfL+1,2d>
don’t hold in general.

Theorem 2.10. gy°(a?,b?,¢2,d?) € E(Pag) — Xas and gy°(a,b,c,d) € E(PL ).

Proof. (1) We prove g2 (a2,b2, 2, d?) € £(Pye).

Put g(a,b,c,d) = gi”s(aQ,bz,CQ,dQ) € Py. Let eq,..., esq be all the monic
monomials in Hyg. We define 7 € Aut(Hag) by 7(a,b,c,d) = (—a,b,c,d). Let
G C Aut(H46) be the subgroup generated by 7 and the symmetric group &4, and
let

2z :={0(1,1,1,0) |0 € G}, Z5:={0(1,1,0,0) |0 € G}.
The set Z; consists of 4 x 4 = 16 points and Z, consists of 6 x 2 = 12 points. Let
Zl U ZQ = {Zl,. .oy Z28}, and

oe; Oe;
asi—a,j = €j(2Z;), asi—3;:= 87;(%‘), asi—2,j 1= an(Zi)v
de 9¢;

asi—1,5 1= éTcJ(Zi)’ Q54,5 = ad (z),

for 1 =¢=28 and 1 = j < 84. Construct a 140 x 84 matrix A = (a; ;).

Note that g(a,b,c,d) € Ker A. Using Mathematica, we have rank A = 83.
Thus Ker A = R - g(a,b,c,d). This implies g(a,b,c,d) € E(Psg). Therefore,
gi’s(a, b,c,d) € 5(772:3).

(2) We prove g(a,b,c,d) ¢ La6.

Assume that g(a,b,c,d) € ¥46. Then, there exists h(a,b,c,d) € Hag such
that g(a,b,c,d) = h(a,b,c,d)?. We have h(z;) = 0 for i = 1,..., 28, because
g(z;) = 0. Using Mathematica, we can check that there exists no such cubic
h(a,b,c,d) € Has. In fact, we can check this as the following. Let €f,. .., €5, be all
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the monic monomials in 4,3, and construct 28 x 20 matrix B := (e}(z,)). Then
rank B = 20 and Ker B = 0. |

Conjecture 2.11. Let n > 3 and b; := (0,...,0,1,...,1). The three dimensional
V- M
n—u K3
PSD cone 77,?5 will be a polyhedral cone whose basis is a n-gon. The extremal rays
Ry - f; of PZE will satisfy the following: f;(b;) = fi(b;y1) =0fori=1,..., n—1,

and fp,(b,) = fn(b1) =0.

3. SOME EXTREMAL ELEMENTS OF P5%

In this section, we prove Theorem 1.5. Our idea of proof is similar to that of
Theorem 1.9. But it is more difficult to judge whether f € Hg?ﬁ is PSD or not.

In this section, we use the following symbols. We denote the coordinate system
of P2 by (a: b: ¢), and put

Sm’n — Sm}n(a, b7 C) = a’rnbn + b7nCTL + cnban?
Sy, 1= Sp(a,b,¢) = Spo(a,b,c) =a™ +b" + ",
Tm,n = m,n(av b, C) + Sn,m(av b, C)7
U="U(a,b,c):= abc.

3.1. Preparation.

We use the following theorem.

Theorem 3.1. If f € Ps¢ is an exposed extremal element and f ¢ Y36, then
Ve(f) is an irreducible rational curve which has 10 acnodes Px,. . ., Pyg, and Vr(f) =
{Pi,..., Pio}. On the other hand, if f € P3¢ and Vc(f) is an irreducible curve
which has 10 nodes in P}, then f € £(Ps).

The latter half of the above theorem was proved in [14, Theorem 7.2] and the
first half was proved in [4, Remark 8]. See also [3, Theorem 2.17].

Assume that u # 1, v # 1, w # 1 and u # v. If f € P5§ satisfies f(u,v,1) =0
and f(w,1,1) = 0, then Vg(f) contains 10 points (1: 1: 1), (u: v: 1), (u: 1: v),
(viw:1), (v:1l:uw), (1:u:v), (1:v:u), (w:1:1), (1:w: 1), (1: w: 1). Moreover,
if f is irreducible in Cla, b, ¢], then f € £(Ps). In this case f ¢ 33 . Because, if
f € X3¢, then f is a square of a cubic polynomial. This is impossible, because f is
irreducible.

Definition 3.2. In this section, we say 10 points P,..., Pig € P% are in general

position, if the following (1) and (2) hold.

(1) No three points are colinear.

(2) There exists no cubic homogeneous polynomial g € Cla,b,c] — {0} such that
g(P;)=0foralli=1,..., 10,

In the above definition, we don’t assume that ‘no 6 points are on a same quadric
curve’. So, this is an unusual definition.

Lemma 3.3. Let f € Ps3¢. Assume that {c,..., c10} C Vr(f) and cy,..., c19 are
in general position. Then f is irreducible in Cla,b,c] and f ¢ ¥35¢.
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Proof. (1) Assume that f = g7 +---+ g2 € X36. Then cubic polynomials g; satisfy
gi(c;) =0 for all = 1,..., 10. This contradicts to our assumption that cy,..., cig
are in general position.

(2) Assume that f is reducible in Cla, b, ¢]. Reznick has proved in [14, Lemma
7.1] that if f € P3¢ is reducible, then f € ¥35. O

Proposition 3.4. Fora, b, ¢, w € R and u = (u: v: 1) € PZ, let

d1(a,b, c,w) :=2S3(a,b,c) — (w+2)T51(a,b,c) + (6w + 6)U(a, b, c),

Sa(a, b, c,w) == (2w +1)Sa(a, b, c) — (w* 4+ 2)S1.1(a, b, c),

T {(1: 1:1), (u:v: 1), (v:u: 1), (u: 1:0), (v: 1: w), } C P2,

” (Irw:v), (L:vru), (w:1:1), (1:w: 1), (1:1: w)

Then 10 points of V,, , ., are in general position if and only if the following (1), (2)
and (3) hold:
(1) 61 (u,v,1,w) # 0 and §3(u,v,1,w) # 0.
2 u£lL,vALw#1l,u#tvandu+v+1#0.
(3) u+v#2and2u—v#1.

Proof. Let e;(a,b,c) (i = 1,..., 10) are all the monic cubic monomials and let P;
( =1,..., 10) are 10 points in V,, , . Put a; ; := e;(P;) and construct a 10 x 10
matrix A := (a;;). Then

det A =+(u—v)3(v— 121 —u)3(u+v+1)*(w— 1) (u,v, 1, w)d2(u, v, 1, w)?.

Thus, (2) of Definition 3.2 holds if and only if (1) and (2) of this proposition hold.
It is easy to see that no three points are colinear, if and only if (2) and (3)
hold.

3.2. Sextic polynomial f, -

Definition of the sextic polynomial f ., is somewhat long and complicated. But
this polynomial plays main role in this section. Please see Proposition 3.5 about
the reason why such polynomial appears.

For a = (a,b,c) € R® and [, m, n € NU {0} with [ > m > n, we denote

Timp = abme™ + a'bhe™ + a™b e + amb" e + o™ + a o™,
St.m,m = abme™ + amble™ + a™b™med,
Siim = Spg = a'b'e™ + a'b™e + a™bl
U= a't'd =U".
Note that T} .0 = T1,m, Sti,1,0 = Si.1, S1,00 =5 and U; = U.

We choose sq := S¢ — 3Ua, s1 :=T51 — 6Ua, 52 := Ty 2 — 6Us, s3 := S33 — 3Us,
54 :=541,1 —3U2, s5 :=T391 — 6U; as a basis of Hg%.

Let u = (u1,u9,us3) € R3? and w € R. Now we shall construct a polynomial
fu,w € H5% which satisfies

fuw() =0 and  fuu(w,1,1) =0.
Afterward we discuss about the condition for (u, w) for fyu,., € P5%. The polynomial
fu,w € Ha e is defined by
5

fu.,w(a7 b, C) = szF(u7 w)si(aa b, C),

=0
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where we define the coefficients p!'(a, b, ¢, w) (i = 0,..., 5) as follows:
pb (a,w) :=Tigo + (dw? —w — DTy 3 + (—dw® — w? + 2w + 4)Ts 4
+ (44w —4w? + )Ty 5
+ (2w* + 8w + 2w? — 4w — 10)Se ¢
+ 281011 + (—4w? — Tw — 8)Ty 21 + (w? + 16w + 12)Tx 3 1
+ (w* 4 8w® — 9w? — 34w — 8)Ty 41
+ (—=13w* — 16w® + 12w” + 25w + 2)Tp 5,
(8w® + 24w? + 60w + 28)Ss 2.2
(—2w* — 16w® — 59w? — 87w — 36)T73,2
(26w* + 84w® + 13502 + 88w + 23) Ty 4.2
(12uw* — — 168w? — 108w — 16)S5 5.
(— 26w4 — 56w? + 62w? + 102w + 30)S6 3.3
(—12w* — 48w® — 80w? — 38w — 2)T5 4.3
+ (30w + 24003 + 270w? + 60w — 30)Us,
i (a,w) := —2Ty11 + (—4w? + 2w + 6)T10,2 + (—2w? — 2w — 2Ty 3
+ (Bw* + 4w + 5w? — dw — 8)Tg 4 + (—w® — w* + 2w? + 2w + 4)Ty 5
+ (—2w® — 8w* — 8w® — 2w? + 4w + 4)Se ¢
(8w? + 8w + 8)S10,1,1 + (—2w* — 26w — 16)T 2.1
(—2w® + 13w? + 49w + 18)Ts 31
(—w® — Tw* — 10w — 17w? — 11w — 8)Ty 41
(13w° + 25w* 4 20w® — 2w? — 20w) T 5.1
(—6w* — 12w® — 12w? — 6w)Sg 2.2
(2w° + 14w + 42w* 4 27w? + 9w + 14)T% 5 5
(=
(=
(
(
(=3

+
+
+
+
+
+

26w° — 89w* — 136w> — 87Tw? — 24w — 10)Tp 4.

12w% + 30w* + 108w? + 132w? + 90w + 12)S55.2
26w® + 68w* + 32w3 — 18w? — 60w — 24)S6.3.3
12w° 4 48w™* + T2w? + 48w? + 12w — 6)T5,4.3

— 210w* — 300w® — 210w? — 30w + 60)Uy,

pd (a,w) := Sio ( qw? — w)Tu 1+ (120° + Tw? — 2w — )T 2
(-9 —2w? + 4w + 4)Ty 3
(2w *— 120 — 3w? + 6w + 11)Ty 4
(4w’ + 4w* + 8w + 6w? — 3w — NTr 5
(4w® — 2w* — 8w? — 8w — 10)Ss 6 + (8w® + 5w? + 8w)S10.1 .1
(—15w* — 30w® — 12w? + 18w + 10)Ty 21
(8w5 + 47w* + 54w? — 4w? — 52w — 20)Tg 3.1
(—w® — 13w® — dw* + 10w® + 4w?* — 5w) Ty 4,
(3w’ — 15w° — 24w?* — 2w® + 11w? 4+ 32w + 10)T5 5.1
(

i
n
i
i
4
n
i
i
i
i
4
S
i
n
4
n
i
i
4
i
+ (12w + 33w* — 12w — 24w? — 36w — 9)Sg 2.2
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+ (3w’ — 32w° — 44w* — 22w* + 100w? + 79w + 30)T% 3 2

+ (12w + 36w® + 42w* — 68w® — 158w? — 110w — 36)Tp 4.2

+ (3w + 12w° + 36w* + 48w + 54w? + 102w + 24)T 5

+ (3w + 2w° — 10w* — 20w> + 33w? — 24w — 20)S6.,3.3

+ (—6w® — 3w® — 6w* + 60w* + 57w? + 33w + 6)T5 .43

+ (—12w° — 120° — 93w* — 84w® — 192w? — 120w + 18)Uy,
Py (a,w) == (4w? — 2)S12 + (—8w® — 4w? + 2w +4)T11 4

+ (5w* + 4w + 5w?)Tig 2 + (—w® + 3w* — 8w® — 8w? — 2w + 4)Ty 3
(—2w® + 12w* + 8w® + 6w? — 8w — 14)Tg 4
(—=5w° + Tw* 4+ 16w® + 120w? — 8)Ty 5
(—8w® — 1dw* — 24w® — 30w? + 16w + 32)Se ¢
(1dw* + 24w® 4+ 12w — 32w — 20)S10.1.1
(=7Tw® — 27w* — 36w® + 4w? + 30w + 28)Ty 21
(w® + Tw* + 16w* — 10w? — 26w — 20)Ts 31
(3w’ — 6w® — 49w* — 80w® + 6w? + 100w + 32)T7 41
(4w’ + 2905 + 35w* + 4w® — 8w? — Tdw — 24)Ti 5 1
(2w® + 36w° + 84w + 144w> + 48w? — 36w — 38)Sg2.2
(—7w® — 27w’ — 122w* — 96w> — 130w? — 2w — 16)Tr 3.2
(
(
(
(

—32w" — 108w® — 222w* — 216w® — 48w? — 168w — 40)S5 5 2
6w + 46w° + 68w* + 112w* — 120w? — 36w + 28)56 3.3
—56w° — 92w? — 200w® — 92w? — 14w + 4)Ts 4.3
+ (54w’ + 144w° 4 486w* + 408w? + 414w? + 180w — 96)Uy,
ph(a,w) == 2812 + (8w? 4+ 2w — ) Ty1 1 + (—8w® — 4w? — 4w — 2)Typ 2
+ (6w* + 10w® + 9w? + 3w + 4)Ty 3
+ (—4w® — w? — 5w? — 2w + 6)Tg 4
(w® — 4w® + 5w* — 10w® — 17Tw? — 5w) Ty 5
(2w® + 24w* + 16w + 18w? + 12w — 12)Se ¢
(—48w® — 66w? — 48w)S10,1,1
(42w + 98w? + 143w? + 89w + 36)T9.2.1
(—16w® — 88w — 188w® — 242w? — 140w — 58)Ts 31
(3w’ + 30w® + 69w* + 168w? + 222w + 156w + 18)Ty 4 ;
(—Tw® — 22w° — 67Tw* — 118w® — 65w? — 59w + 8)Ts,5,1
(—24w° — 96w* — 120w> — 138w? — 84w — 42)Sg 2.9
(4w® + 56w° + 98w* + 226w> + 103w? + 67w — 2)T¥ 3 2
(Qw + 32w° 4 23w + 60w> + 67w? + 52w + 40)T6.4,2
(6w’ + 24w® + 42w* — T8w? — 240w — 60)S5 5.2
(—32w° — 108w® — 252w* — 300w® — 306w? — 18w + 80)Ss 3.3

+ + + + o+ o+ +
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+ (—42w® — 12w* — 60w® + 12w? — 24)T5 43

+ (54w’ + 144w° + 396w* + 288w + 324w? + 180w — 36)Uy,
pE(a,w) := (—dw? — 4w — 2)S19 + (8w + 10w? + 10w + 6)Ty; 4

+ (—9w* — 2203 — 24w? — Yw — 4) T 2

+ (5w’ + 11w + 22w* + 19w? + Tw — 2)Ty 3
(—w® +w® — 8wt + 4w® + 4w — 2w + 2)Tg 4
(—w® — 21w* — 30w® — 29w? — 17w — 4)Ty 5
(8w® + 14w + 36w® + 48w? + 30w + 8)Se 6
(—6w* + 4w® — 10w? + 2w — 8)S10.1.1
(3w® + 9w* + 14w® — 37w? — 31w — 20)Tp 2.1
(—w® — 2w° + w* + 46w* + 129w? + 81w + 40)Tx 3
(—2w® — Tw® — 19w* — 7T8w® — 119w? — 107w — 10)T¥ 4 ;
(5w’ + 2w® + 41w* 4 86w® + 27w? + 45w — 8)Th 5.1
(—18w® — 24w* — 36w® + 42w? + 66w + 42)Ss 2.0
(5w + 9w’ + 42w* — 108w® — 70w? — 82w — 12)T7 3.5
(7w’ — 37w" — 19w* — 22w® — 16w? — 25w — 30)T5 4.2
(6w® + 6w® — 42w* — 60w® — 30w? + 162w + 48) S5 5.9
(6w’ + 6w® + 96w* + 184w + 272w? + 44w — 56)S6 33
(24w® — 36w + 24w® + 6w* + 30w + 30)T5 4 3
(—24w5 + 6w® — 66w? — 48w* — 354w? — 300w — 24)Uj.
Since fau,w(@) = M fyw(a) and fuw(Aa) = A%y w(a), we may regard a € P4 and

u € P%, when we discuss sign (fu,w(a)).

Proposition 3.5. Assume that u# 1, v# 1, w # 1, u # v and p§ (u,v,1,w) # 0.
Let u= (u: v: 1). If f € H3 4 satisfies the system of equations

f(u7v, 1) = fa(uava 1) = fb(u,’l), 1) = f(w7 1u 1) = fa(wu 17 1) = fb(wu 17 1) =0 (*)
then there exists o € R such that f = afuw. Where f, := 0f(a,b,c)/0a and

fo :=0f(a,b,c)/0b.
In other word if f € P3 ¢ satisfies

flu,v,1) = f(w,1,1) =0,

then f = ofuw-

Proof. 1t is easy to check that f, , satisfies () using PC. Let s := (sq,..., S5),

Sq = —s and so on. Construct 5 x 6 matrix A aligning s(u,v,1), s.(u,v,1),
a

1
sp(u,v,1), s(w,1,1) and s,(w, 1,1). If f satisfies (), then f € Ker A. Put e; = (1,
0,..., 0) at the top of A, and construct a 6 x 6 matrix B. Then

det B = 4+2(u — v)(v — 1)(1 — u)(w — 1)*p{ (u, v, 1,w).

By our assumption, det B # 0. Thus, dim(Ker A) = 1, and we have the conclusion.
O

Note that Vi (fu,w) D Vuww if u= (u, v, 1), where V,, ,, ., was defined in Propo-
sition 3.4.
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3.3. When is f, ., PSD?

Next our work is to find an open set U C R3 such that f, ., € P36 for every (u,
v, w) € U with u = (u, v, 1). We have already proved that if fy . is PSD then
fuw € E(Ps,6) — Lz,6. We use the next lemma instead of [15].

Lemme 3.6. Take f(a, b, ¢) € H34. Let 0y := a+b+c, o2 := ab+ be + ca,
o3 := abc, and denote
f(a,b.c) = goo3 + gi(01,02) 05 + ga(01,02) (90 € R, 91(p, ), 92(p, q) € R[p, q]).
We also fix the following symbols.

D(p,q) := g1(p.@)* — 4g0g2(p. ),

hi(t) :=2sg0 + g1 (t + 2,2t + 1).
If go <0, then we put I := (. If go > 0, then we put

Li:={teR|-2<t<1andD(t+2,2t+1)>0}.

Then f € Ps¢ if and only if the following condition (1) holds, and for every t € Iy
(depending on t), one of (2) or (3) holds.

(1) f(0,0,1) >0 and f(x,1,1) > 0 for all x € R.
(2) ha(t) > 0

(3) (1+26)(4 — )y <14+_2tt> <0.

Proof. We use [1, Theorem 6.1]. In Theorem 6.1, (3) is stated as ho((1+ 2t)/(4 —
t)) <0, where ha(7) := 27290 + g1 (27 + 1,72 + 27). Put 7 := (1 +2¢t)/(4 — t). In
our case, ha(7) = 73hq(1/7). Then, ho(7) < 0 if and only if (1 + 2¢)(4 — t)hy((4 —
t)/(1+2¢t)) <0. O

Using the above Lemma, we can theoretically describe the semialgebraic set
X = {(u,v,w) eR3 | Fuw1,w € 733,6}.

But, it is not easy to describe this semialgebraic set. On the other hand, D(¢ + 2,
2t + 1) is not so complicated.

Definition 3.7. As the above lemma, we represent
fuw(a,b,¢) = go(u, w)os + gi(o1, 00,0, w) 03 + galo1, 09, 0, W),
where u € R? and w € R. Note that
90 =—9(pi +p3 +p3),
g1=(6p5 —pi —2p3 + i)} +(=12p5 +Tpi +4pg —3p; — 3pi +pg o102,
92 =Py 0} + (=6py +pi )otos + (9pg —4p7 + p3 )otos
+(=2pg +2p1 —2p5 + %o,
Symmetric polynomials §; and o are defined in Proposition 3.4. We also put
83(a,b,c,w) =S4 — (w+ 1)T31 + (w? + 2w)Sa0 — (w? — 1)US),
Sa(a, b, c,w) := 285 — (2w + 3)Ty1 + (—w? + 2w + 1) T3 2
+4(w + 1)2U Sy — (2w?® + 8w + 2)U S, 1,
S5(a, b, c,w) = (w+1)S3 — (w? +w + 1)To 1 + (w® + 3w? + 6w + 2)U
=((w+la-b—c)((w+1)b—c—a)((w+1)c—a—0b),
hy(t,u, w) := 2tgo(u, w) + g1(t + 2,2t + 1,u, w),
Dy(t,u,w) :==g1(t+2,2t + 1, u,w)? — 4go(w, w)ge(t + 2,2t + 1,u,w).
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This Dy corresponds to D in Lemma 3.6. We present an important divisor Dy, (t,
u, w) of Ds(t, u, w) as follows:

DY (a,b,c,w) = (28w — 4)S1g + (—56w? — 52w + 24)Ty 4
(24w + 128w? + 8w — 52)Tx o
(dw* — 64w® — 32w? + 24w + 32)Tr 3
(4w’ — 16w* — 24w® — 128w? — 36w + 56)T; 4
(8w® — 40w* + 128w® + 176w? + 56w — 112)S5 5
(120w® 4 200w? + 8w — 112)Sg 1 1
(—60w* — 288w® — 256w? + 296w + 200) Ty 2 1
(—20w® + 164w* 4 432w + 80w? — 416w — 168)Ts 3.1
(—=16w° + 8w* — 136w® + 32w? + 164w + 56)T5 4,1
(60w® 4 180w* + 288w? — 304w? — 796w — 292)S6 2.
(—=52w® — 376w* — 232w + 872w? + 776w + 200)Ts 3
(140w° + 284w* — 640w® — 1264w? — 568w — 112)Sy 4.
(—40w® + 128w + 680w> — 88w? — 256w — 64)S, 3.3,
(—8w — 40)S10 + (16w? + 56w + 96) Ty 1
—48w? — 16w? — 100w — 52)T 2
40w + 8w? + 40w? + 24w — 40)T7 3
4w® 4 20w + 48w? + 16w? + 108w + 92) T 4
8w® — 40w* — 16w® — 112w? — 160w — 112)S5 5
48w? — 16w? — 280w — 184)Sg 1 1
24wt — 72w — 40w? + 296w + 56)Tr 2 1
56w — 88w + T2w? + 8w? — 56w — 24)Tp 3.1
16w® — 64w?* — 208w® + 32w? — 16w + 56)T5 4.1
96w + 288w? + 720w + 272w 4 176w + 176)S6 2.2
16w® — 376w* — 736w® — 640w? — 520w — 88)T5 3.9
248w® 4 1112w* + 1520w + 1328w? + 296w — 184) Sy 4.0
184w® — 376w* — 400w® — 304w? + 392w + 152)S, 3.3,
= (16w + 8)S19 + (—32w? — 40w — 12)Ty ,
(24w® 4 68w? + 29w — 13)Ts o
(—8w* — 34w® — 26w? + 6w + 26)Tr 3
(w® — 13w* — 24w® — 68w? — 45w + 5)Ti 4
(2w’ — 10w* + 68w® + 116w? + 68w — 28)Ss 5
(48w? + 104w? + 74w — 10)Ss 1 1
(—
(
(-
(

D} (a,b,c,w) :

(=
(
(
(
(
(=
(=
(=
(
(=
(
(=

D?(a,b,c,w) :

30

24w?* — 126w> — 118w? + Tdw + 86)T7 2,1
4w® + 10dw* + 198w + 38w? — 194w — 78)T 3.1
4w 4 20w* — 16w> + 8w? + 86w + 14)T5 41
6w’ + 18w* — 36w> — 220w? — 442w — 190)S6.2,2

S A A A A A A A A A A A A A A s
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+ (—22w° — 94w* + 68w® 4 596w* + 518w + 122)T5 3
+ (8w® — 136w* — 700w® — 964w? — 358w — 10)Sy 4.0
+ (26w° + 158w* + 440w* + 32w? — 226w — 70)S4 3 3,

Dy (t,a,b,c,w) :=t*> D% (a,b,c,w) +t Dt (a,b,c,w) + D% (a,b, c,w).
Proposition 3.8. Let a, b, ¢, w € R and u = (uy: uz: uz) € P4. Then the
followings hold.

(1) d3(u,w) > 0.
(2) go(a,b,c,w) =9(a+b+c)*(Sa — S11)da2(a,b, c,w)?d5(a,b, c,w).

Especially go(u, w) > 0.

(3) For allt € R,
Dy(t,a,b,c,w) = (w—1)((2t +1)S5 — (> +2)S11)”
x 61(a, b, c,w)?ds(a,b,c,w)*Dy(t,a,b,c,w).

Especially sign (Dy(t,u,w)) = sign ((w — 1)D (¢, u,w)).

2
(4) Ds(1,a,b,c,w) = (9(w—1)(5’2—5’1’1) 01(a, b, c,w) da(a, b, e, w) d4(a, b, c, w)) .
Especially Ds(1,a,b,c,w) > 0.
(5) D¢(—2,a,b,c,w) =972(w — 1)(a + b+ ¢)®(S2 — S1,1)d1(a, b, c,w)?
xda(a, b, c,w)? d3(a, b, c,w) Is(a, b, ¢, w).

Especially sign (D¢(—2,a,b,c,w)) = sign ((w — 1)(a + b + ¢)d5(a, b, c,w)).
(6) hi(—2,u,w) = —4gp(u,w) < 0.

(7) hl(la a, b7 &) ZU) = 9(1 - w)(SQ - Sl,l) 51 (a7 ba C, w) 52(0‘7 ba ¢, w) 54(&, ba & w)
(8) fu,w(o’ -1, 1) = (1 - w)(ul +uz + u3)351(u, w)265(ua w)'
Especially, if fu,w € Ps,6, then Dy(—2,u,w) < 0.

Proof. (1) 63(1,0,0,w) = 1 > 0 and d3(x,1,1,w) = (z — 1)?(x — w)? > 0. By [1,
Proposition 5.1], we have d3(a,b,c,w) > 0 for all a, b, ¢, w € R.

(2)—(8) can be obtained by direct calculations using Mathematica. t

There are some more relations like the above proposition. But we don’t use them
in this article.

Proposition 3.9. For a, b, c, w € R, let
f(a’a ba ) ’U]) = (a’ +b+ C)(l - 'U))(Sl(a,, b7 ) ’U})(SQ(G, b7 ¢, ’IU)
Then pf (a,b, ¢, w)fuw(z,1,1) > 0 for all z € R, if and only if £(u,v,1,w) > 0.

Proof. Using PC, we know that fy ., (x,1,1) can be factored as the form

pg(u, W)fu,w(z,1,1)
= (1‘ - 1)2($ - w)Q(pg(u, w)2x2 + Zpg(u, w)fl(u7 w)x + f2(u7w))7

where fi(u,w) and fa(u,w) are certain polynomials. This can be reformed as the
form

Pl (0, 0) (@, 1,1) = (@ = 1)2(z — w)? ((pF (0, w)z + fi(w,w)”
+ (w1 — ug) (ug — us)* (uz — u1) (ug + up + uz)>(1 — w)d1 (0, w)da(u, w)s).

Thus, we have the conclusion. O
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Corollary 3.10. Take u € R3, and w € R. Let
Taw = {t € [-2,1] | (w —1)Dg(t,u,w) > 0},

hs(t,u,w) := (1 + 2t)(4 — t)hy (4;% u, w) .

(I) Assume that p{'(u,w) > 0. Then fu., € Ps if and only if £(u,w) > 0 and
for every t € I, one of the following (1) or (2) holds.
(1) hyi(t,u,w) > 0.
(2) hs(t,u,w) <0.
(IT) Assume that p§ (u,w) < 0. Then —fyu., € Ps¢ if and only if £(u,w) > 0.

It seems that if pf'(u, w) < 0 then £(u, w) < 0, and —fu & Ps6. But the author
does not have a complete proof.

Remark 3.11. If w = 1, then
fu1(a) = (SZ(U) - Sl,l(u))3<(T2,1(u) - GU(U))Sg(a)
— (Ss(u) — 3U(w))Thu(a) + (653(u) - 3T271(u))U(a)>2.
Thus, fu,1(a) € E(Ps6) N X3

Proof of Theorem 1.5. Put fyu1,0 = fuw (0 = (u,v,1)). This is the polynomial
fu,vw in Theorem 1.5. It is easy to see that fu ., (0,0,1) = p§ (u, w).
Consider the case u = (—1/2, —1/3, 1) and w = 9/10. Then
7 <1 1 9> 2838188587 -
Po\"2° 73 7 10) T 147622500 ~

s (L1 _T2
{7331 ~ 135
s (L 1 9N _ 1279
2\ b)) T
s (L 1 9N _ 255823
\ 7272 b 10) T 2130 ’
1 1 9 461719
5(‘2’ 3 b 10) 011250 ~
1 1 9 1279
byt —= —=.1, = :7(41 2597264
! < 2 3 10) 132860250000 763259726

+ 105551378172 + 53854835215t + 1028618365),

1 19
Dp(t,—= -2, 1, — ) = ————
L(7 23 ’10) 5904900000
— 1190526056662t + 202590584357).

The least root of Dy, = 0 is

595263028331 — 767469+1/464372213673
398926806344
Thus, Dy(t) < 0if =2 <t < wsy. So, I) C (wr, 1]. It is easy to check that h; > 0
on [0, 1]. Thus, f_1/2 _1/3,9/10 € P3,6, by Proposition 3.9 and 3.7. By Theorem 3.1
and Lemma 3.3, f_1/2,_1/3,9/10 satisfies (1)—(4) of Theorem 1.5.
Since pd(u, v, 1, w), &(u, v, 1, w) and hy(t, u, v, 1, w) are continuous with
respect to (u, v, w), there exists an open neighborhood U of (—1/2, —1/3, 9/10)

(398926806344t2

=0.181---

w1 =
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such that pf(u, v, 1, w) > 0, £(u, v, 1, w) > 0 and hy(t, u, v, 1, w) > 0 for all
—2<t<1and (u,v,w) € U. Thus, we have the conclusion. O

By numerical analysis, it seems that the above U is a small set.

4. EXTREMAL ELEMENTS OF P3}

In §4.1 and 4.2, we prove Theorem 1.4. We sketch our idea of proof here because
it is long.

In §4.1, we study properties of five families of polynomials e{?u, efu, e, el
and ¢. We study when these are extremal. We also study the conditions which
characterize these polynomials.

In §4.2, we prove that & (P§§) contains only the above polynomials and s3 =
U(Sz — S1,1). We prove this by a geometric observation of the boundary 9P;5%.
In Proposition 4.13, we prove that 8”P§:§ has five irreducible components. This
sentence means that the Zariski closure of 87335:.; in ‘H3 5 is a union of five irreducible
real algebraic varieties. In fact, l

E(P35) C E(F(CY) UE(F(C)) UE(F(Pr)) UE(F(P2)) UE(F(Py)),

where symbols are explained in §4.2.1. So, we study &(F(C?)), E(F(C?)), E(F(Py)),
E(F(P,)) and E(F(Ps)). Figures 4.2—4.10 show the places where the above ex-
tremal polynomials exist. These figures also show geometric structure of £ (P§Jg)
In §4.3, we present some applications. In §4.3.1 and §4.3.2, we prove that
ef,(a?, 0%, ¢?) € E(Ps10) — Us10 and e, (a%, b?, ¢?) ¢ B310 under certain con-
ditions. In §4.3.3, we study "P§%+.
In this section, we use the following symbols as §3. We denote the coordinate
system of PZ by (a: b: ¢), and put
Smomn = Sm.n(a,b,c) :=a™b" +0"c" 4+ c™a”,
Sy = Spla,b,¢) :== Spo(a,b,c) =a™ +b" + ",
Tm,n = Sm,n(a7 ba C) + Sn,m(a7 b7 C)7
U =U(a,b,c) := abe.

To state the structure of & (P;'g), it will be convenient to use the following
symbols to describe a basis of a cone. For a closed convex cone P C H, we denote

PH := (H — {0})/RX D PP := (P — {0})/RX D PE(P) := £(P)/RX = E(PP).

Note that PH is not a projective space P(H) := (H — {0})/R*. PH is isomorphic
to the real algebraic variety

{xen|x|=1}.

There exists a natural 2 : 1 map p: PH — P(#). Note that IP’”P{;Jg is a semialgebraic
variety.

For f € # — {0}, we denote its equivalence class by [f] := R} - f € PH. Note
that [af] = [f] if @ > 0, but [af] # [f] if « < 0.

We choose So = S5 - USl,l, S1 = T471 - 2U5171, SS9 = T372 - QUSLl, S3 =
USy —US11, 54 := USy 1 as a basis of H3 5. Note that {so, s1, s2, s3} is a basis of
H3Y.

The definitions of extremal polynomials efu, e, e,
following. We study these in §4.1 respectively. Let

pr(t) == 9(t —1)2,
pa(t) == (t+2)(7—1),

¢P and ¢F are as the
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piat) = min{p (), (1)} = { ) ey
pr(t) =2 — 2 +t\/(t — 1)(t +2),
s (t) = (1/2) (ur(t) — Vpr(t)? —4),

)Tt -
nz(t ) = =m0

The polynomial e{}u is defined by

4

ef"u(a, b,c) :=s0+ pr‘(hu)si (if w > 0),
i=1

efo(a,b,c) = (5t +1)%s1 + (t — 1)*(t* — 12t — 1)so
— 2(t* + 36t + 3412 + 60t + 13)s3 + 24(t — 1)*s4,
where

pA(t w) = u? — (t+2)(5t2 +t+9)u+9(t— 1)2(t+2)2
o (5t +1)(t +2)u ;
1

Pt u) = CEST) ( — 20 4 (t = 1)(Tt3 — 2 + 11t + 1)u?

+ (4 2)(17t° — 25t* + 199t — 59¢? + 76t + 8)u
FO(t— 1)4(t 4+ 2)2(12 — 12t — 1))7

1
(t+2)2(5t + 1)3u
—2(t + 2)(7t* + 42¢% + 37¢% + 48t + 10)u?
+ (t+2)2(91¢° + 125t + 682t + 1827 4 523t + 125)u

pa(t,u) == <2t3 + 4t + 5t + 1)u?

—18(t — 1)2(t + 2)3(t* + 3613 + 3442 + 60t + 13)),

(t—1)3(6t* + 6t — 12 + u)?

Py (tu) = (t+ 27205t + 1Pu

Similarly, ¢f,, ¢f, ¢f and ¢f are defined as follows:

pP(t,w) == —2w — 3,
pP(t,w) == w? + 2w + 2,
203 +4t? + 5t +1 ,  2(4t2 +5t+3) 33— T2 — 12t -8

B
t = _
Py (tw) 2itr2 Ut T a2 v t+2 ’
(t—1)3(—w? — 2t2w + t3(t — 2)
pf(S,U)) = ( 2 )7
2(t +2)
1 —1)2
wu) mut o= D
u u
4
efu(a,b, ¢) =580+ ZpiB(t, w(u))si,
1=1

¢ (a,b,¢) := 50 — (t + 1)s1 +tso + (t + 1)%s3,
eP(a,b,¢) =51 + (t2 = 1)sy — 2(t + 1)?s3,

e (a,b,¢) := 59 — 283,
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442 + 5t + 3 (t—1)3

E

¢ ,b,c) =81 — 89 — ,
¢ (a,b,¢) == 81— 82 P 83 P S4
¢Z (a,b,¢) := s4.

4.1. Extremality.

In this subsection, we prove that £(P55) contains e, (0 <t < 7,0 < u < pa(t)),
ey (6> 2, pp(t) Su <), ¢f (0<t<2),¢f (£20), 8 =52~ 253, ¢ (t>7),
¢ =s,, and s3. We also study some more properties of these polynomials.

4.1.1. Some PSD conditions.
We start from the following Lemma:

Lemme 4.1. Take f € H3 5. If f(x,1,1) > 0 and f(0,2,1) > 0 for all x > 0, then
fePst.
This lemma is a very special case of theory of test set for symmetric polynomials.

See [15, Corollary 1.3] or [16, Corollary 2.1]. See also [2, Proposition 5.1] or [15,
Theorem 1.1].

For f(a,b,c) € H3 5, we denote
2

fulabye) = 2 fa,be), funlab,c) =

T mf(av b7 C)a

and so on.

Proposition 4.2. (1) Let « > 0 and y > 0 be constants. If f € 77?5' satisfies f(x,
y, 1) =0, then
fa(,y,1) = fo(2,y,1) = fe(2,y,1) = 0.
(2) Let x > 0. If f € P§Jg satisfies f(0, z, 1) = 0, then
f5(0,2,1) = f.(0,2,1) = 0.
(3) If f € Hsp satisfies f(x,y,2) = fo(z,y,2) = fo(z,y,2) = 0 and z # 0, then
fc(xvyvz) =0.

Proof. Easy exercise. O

4.1.2. Properties of polynomial ¢ .

Since eg‘}u and efu are complicated polynomials, we treat other polynomials before
them. To begin with, we study ¢¢, and next we will study ¢ and ¢f.
Theorem 4.3. (1) If 0 <t <2, then
of =s0— (t+1)s1+tsy+ (t+1)%s5 € E(P5E).
Moreover ¢ is characterized by the following conditions:
(2) If0 <t <2, t+#1andif f € P;L satisfies

f(t1,1) = f(1,1,1) = f(0,1,1) = 0,
then [f] = [¢€].
(3) If f e P;'g satisfies

f(la Ll) = f<07 1, 1) = fa(oa 1, 1) = faa(oa Ll) =0,
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then [f] = [e€].
(4) If f € P3E satisfies
f(0,1,1) = f(1,1,1) = faa(1,1,1) =0,
then [f] = [¢€].

Proof. (0) We shall show ¢ € 73;75 if 0 <t < 2. Note that

¢ (2,1,1) = ax(x — 1)%(x — )2 >0,

ef (0,2,1) = (z = 1)*(x + 1) ((x — 1)> + (2 — t)z) >0,
if 2 > 0. Thus, ¢f € P5% by Lemma 4.1. We prove ¢f € £(P5%) later. Note that
ef ¢ Piy if t > 2, because ef (0,14 x,1) <0 for 0 <z < 1.

(2) Consider the case 0 < t < 2, t # 1. If f € P;‘g satisfies f(¢,1,1) = 0,
then f,(¢,1,1) = 0 by Proposition 4.2(2). Solve the following system of function
equations for f € Hj 5:

f(t,1,1) = fo(t,1,1) = f(1,1,1) = £(0,1,1) = 0. (*)
4
Denote f = Z pis;- Let A be the following matrix:
=0
=12+ D2+t +2) 22 —1)2 26—t +1) tt—1)2% t(2+1)
(t—1)5t2+5t2 +5t+1) 8t(t>—1) 20t—1)(3t+1) 3t>—4t+1 4t+1
0 0 0 0 3
2 2 2 0 0

and p := *(pg, p1, P2, P3, p4). The equation () can be represented by Ap = 0.
Thus, the solution space of (*) is Ker A. Since ¢$(¢,1,1) = 0, ¢¢(1,1,1) = 0 and
¢ (0,1,1) = 0, we have ¢ € Ker A.

Let e; := (1,0,0,0,0), and let A; be the square matrix obtained by putting e;
at the top line above A. Since det Ay = —12t2(t — 1)*, we have dimKer A = 1.
Thus, Ker A = R - ¢f’. This implies ¢f € £(P5E).

(3) Consider the case t = 0. In this case, we consider the following, instead of
().

F(1,1,1) = £(0,1,1) = fo(0,1,1) = f,4(0,1,1) = 0.
The left part is same with (2).

(4) Consider the case t = 1. If f € P;g satisfies f(1,1,1) = faa(1,1,1) = 0,
then f,(1,1,1) = faaa(1,1,1) = 0. In this case, we consider the following, instead
of ().

f(oa 1, 1) = f(la 1, 1) = faa(la 1, 1) = faaa(la 1, 1) =0.
The left part is same with (2).

(1) We prove ef € £(P5E). Assume that 0 <t <2,t# landef = f+gbya
certain f, g € P?f‘g Then f and g satisfy the equalities (%) in the proof of (2), by
Proposition 4.2. Thus, f, g € R-¢¢. This implies ¢ € E(ijg)

We can prove ¢f’, ¢f € £(P5¥) using (3) and (4) similarly. O

4.1.3. Properties of polynomial ¢?.

oo

. Dy _ 1.D7 __ _ . )
Note that t_l}gloo[et | =Tlese] = [s2 — 2s3] in PH3 5.
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Theorem 4.4. (1) If t > 0, then
ef =s1+ (1% —1)sy — 2(t +1)%s5 € E(PSE).

But ¢ ¢ 5(?{5). Thus E(ng) Z 5(77;5).
(2) Ift >0, t # 1 and f € P§ 5 satisfies

f(tvlvl) = f(lal’l) :f(0,0,l) =0,
then [f] = [¢P).
(3) If fe P;'g satisfies

FL1L1) = faa(1,1,1) = £(0,0,1) = 0,
then [f] = [¢P]. Especially, ef = s1 — 8s3 € £(P31).
(4) If f € P3¥ satisfies
F(1,1,1) = f(0,0,1) = fa(0,0,1) = faa(0,0,1) + far(0,0,1) =0,
then [f] = [¢2]. Especially, ¢£ = s, — 255 € £(P31).

Proof. (0) We shall show ¢ € P35 if t > 0. Note that
eP(a,b,¢) = alb—c)*((t+1)a—b—c)?
+blc—a)?((t+1)b—c—a)* +cla—b)*((t+1)c—a—b)>%
Thus ¢f € P5E, but ef ¢ E(P5 ;). We also note that
Pz, 1,1) =2 - 132 —t)?, P0,2,1) = z(x + D)((z —1)* + t°2).

4
(2)If f e P§Jg satisfies f(t,1,1) = 0, then f,(¢,1,1) = 0. Take f = Zpl-si €
i=0
H3 5, and put p := t(po, p1, P2, P3, p4)- Let A be the following matrix:

=12+ D)2+t +2) 202 —1)2 20t -1t +1) t(t—1)2 t(2t + 1)
(=162 +5t2+5t+1) 8t(t2—1) 2t —1)Bt+1) (t—1)Bt—1) 4t+1
0 0 0 0 3
1 0 0 0 0

The system of equations f(t,1,1) = fu(¢t,1,1) = f(1,1,1) = f(0,0,1) = 0 is
equivalent to Ap = 0. Using Mathematica, we can check Ker A = R -¢l.

(3) Consider f(1,1,1) = faa(1,1,1) = faaa(1,1,1) = £(0,0,1) = 0.

(1) eP € E(PSE) (t > 0) follows from (0), (2) and (3).

(4) & € P57}, because

D (x,1,1) = (x+1)2?, 2(0,2,1) =2z —1)>2%

The system of equations f(1,1,1) = f(0,0,1) = f4(0,0,1) = f4a(0,0,1)+ f4(0,0, 1)
= 0 is represented by the matrix

0 00 0 3
100 00
A= 01 000
00210
It is easy to see that Ker A =R - ¢2. 0

4.1.4. Properties of polynomials ¢ and s3.

. E1__[.E1 _ . _
Note that t_l}gloo[et | =Tlexs] = [s4] in PHs 5.

oo
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Theorem 4.5. (1) If t > 7, then
2 3
eE:281_52_4t +5t+353 (t—1)
¢ t+2 t+2

(2) Ift > 7 and f € P55 satisfies
f(t,1,1) = f(0,1,1) = f(0,0,1) = 0,

then [f] = [¢F].
(3) ¢£ =54 € S(P;E).

(4) If f € P;‘g satisfies

f(07 1, 1) = f(0707 1) = fa(ovov 1) = fab(oaov 1) =0,
then [f] = [¢Z).

Proof. (0) We shall show ef € P35 if t > 7. Note that
eZ(0,2,1) = z(x + 1)(z — 1)* >0,

t—17
E 2
L) =x(z—t)? (20 +—L) >0,
ey (z,1,1) =z(x — 1) (x ; 2) >

if 2 > 0. Thus, ¢f € P;E. Note that ef ¢ Py, ift <7.
(2) Consider the system of equations

f(t,1,1) = fo(t,1,1) = f(0,1,1) = £(0,0,1) =0

25

for f € H3 5. The solution space of this system of equations is the kernel of the

following matrix A:

=12+ D+t +2) 282 -1 2(t—1)*(¢t+1) t(t — 1)?
2(t — 1)

(
(3t+1) (t—1)3t—1)

(t—1)(5t> + 5t + 5t + 1) 8t(t> —1) 2(¢
2 2 2 0
1 0 0 0

It is easy to see that Ker A =R - ¢f.
(1) ef € £(P35%) follows from (0) and (2).

t(2t + 1)
a4+ 1
0
0

(3) e € P5L, since £ (0,2,1) = 0 for all z € Ry, and ¢Z (2,1,1) = z(2z+1) >

0.

(4) Consider £(0,1,1) = £(0,0,1) = £u(0,0,1) = fu5(0,0,1) = 0 for f € Hj 5.

This system of equations is equivalent to
2 2

O O O N
— o O O
O O OO

1
0
0

S = O

The solution space is R - s4.

Theorem 4.6. (1) s3 € £(P5%).

O

(2) Iff € Pg‘g satisfies f(0,2,1) = 0 for allz > 0, f,(0,0,1) = 0 and f(1,1,1) =0,

then [f] = [ss].

Proof. (0) s3 € P55 follows from s3(0,2,1) = 0 and s3(z,1,1) = z(z — 1) > 0 for

all z € Ry.

(2) The solution space f(1,1,1) = f(0,1,1) = f(0,0,1) = £,(0,0,1) = 0 for

FeMysis R s
(1) s3 € E(P5E) follows from (0) and (2).

O
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4.1.5. Properties of polynomial ef}u.

Now, we observe ¢f!,. Since ¢, (t,1,1) = ¢, (nz(t,u),1,1) = 0, ¢f*, has at
least six zeros interior of P%. Note that linlo[efu] = [ej'o] in PHs 5, and efl) =
u—> ’ ’ ’

36(s1 — 8s3) = 36¢P € £(P51).
Theorem 4.7. (1) If0 <t <7,t# 1 and 0 < u < pa(t), then ¢, € E(P5E).
(2) Assume that 0 < ¢t < 7, t # 1 and 0 < u < pa(t). Then t # pz(t,u). If

fe 733”5' satisfies

f(t,1,1) = f(pz(t,u),1,1) =0,

then [f] = [ef}u],

(3) e£y = 1296¢5') = 1296¢% .

Proof. (0) We shall show ¢, € P;'g if0<t<7,t#1and 0<u<puas(t).
(0-i) We shall prove ¢;,(0,2,1) >0 for # > 0. Let
hA(t 1) i= u? — (4 2) (5% — 14t + 6)u + (t + 2)% L (1),
g (t,u, w) == (t +2) (5t + 1)3uw?
(5t PRt + 2 (an(t) — 0 (ur (1) — u).
22(x + 1)g4 (t,u,z + 1/ — 2)

u(t+2)(5t + 1)3
all z > 0, it is enough to show hA(t,u) > 0. If 0 < t < 8/5, then

RA(t u) = (u+3(t — 1)(t +2))% + t(t + 2)(8 — 5t)u > 0.
If 8/5 < t < (10 + 2¢/10) /5, then 52 — 20t + 12 < 0. Thus,
hA(tu) = (u—3(t = 1)(t+2))” = (£ +2)(5> — 20t + 12)u > 0.
If t > (10 4 21/10) /5, then
(t+ 2)(5t22— 14t +6) st = (t+ 2)(5t22— 12t — 8) > 0.
Thus, h?(t,u) is decreasing on 0 < u < pug(t), and
At u) > R p (t) = (t —4)2(t+2)%(5t + 1) > 0.
Thus, we have ¢}, (0,2,1) > 0 for z > 0.

(0-ii) Assume ¢ and v are the same as in (0). Then,

2 (2t +2)(us(t) = u)
At = = 0P = st (o+ ZEZUD =) - g
for all z > 0. Thus, e{}u € ng, by Lemma 4.1.

(2)Let 0<t<T7,t#1and 0 <wu < pa(t). It is easy to see that t = pz (¢, u) if
and only if u = —(t—1)(t+2)(5¢t+7). If t > 1, then —(t —1)(t+2)(5t+7) <0 < w.
If0 <t <1, then u < pa(t) = pr(t) < —( —1)(t + 2)(5¢t + 7). Thus we have
t# pz(t,u).

Assume that f € Hj 5 satisfies

f(t7 1, 1) = fa(ta 1, 1) = f(uz(tvu)v 1, 1) = fa(:uz(t?u)’ 1, 1) =0.
Construct the 4 x5 matrix A from these equalities as before. Put the vector e4 = (0,
0, 0, 1, 0) above the top line of A, and construct the 5 x 5 matrix B. Then,
4t —DHu+6(t—1)(t+2) (u+ (t—1)(t+2)(5t+7))4
(t+2)8(5t+1)8 '

Then ¢/, (0,2,1) =

. To prove eéu(O,x, 1) > 0 for

det B = —
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Note that u+ (t — 1)(t + 2)(5t + 7) # 0 if t # pz(t,u). It is easy to see that
ut+6(t—1)(t+2) A0 0<u<pa(t). Thus, det B #0 and Ker A =R - ef}u.

(3) follows from a direct calculation.

(1) ¢ft, € E(P5%) follows from (0) and (2). O

Remark 4.8. (1) Let ug = 3(t — 1)%(t +2)/(2t + 1). Then

SZ(ta 17 1)

2
_ 751’1@7 17 1) Sl7l(a, b, C)) .

eéuo (aa b, C) = (CL +b+ C) <SQ (CL, b, C)

(2) The following typical polynomials often appear:

A t2+5 t2—t+3 t* — 63 + 10t + 18t + 13
[ (t):Sof S1 So
ML t+2 t+2 (t +2)2

when 0 <t < 5/2.

t2 —5t—5 2 — 6t + 2 (t+2)(t? — 3t —2) (t—1)3
A _
Cun(n TS0 T S T s 7t BT T

(t—
53+3t+ 254,

when 5/2 <t < 7.

4.1.6. Properties of polynomial efu.

The polynomial efu is hard to treat. But efu will be the most important element
in £(P5%). The fact ¢f, € £(P5 ;) will be proved in Theorem 4.28. To treat ¢f,,
we need the following lemma. We denote the discriminant of c,z™ + c,_12" ! +
<-4+ 1z + ¢o = 0 by Discp(¢n, ¢n_1,---, €o)-

Lemma 4.9. Let f(z) = 2® + az? + bz + c. Then f(z) > 0 for all x > 0 if and
only if one of (1), (2) or (3) holds:

(1) a>0,b>0andc>0.

(2) ¢=0 and a® —4b < 0.

(3) ¢ >0 and Disc3(1,a,b,c) = a?b? — 4b* — 4a3c + 18abc — 27¢ < 0.

Proof. If f(x) > 0 for all x > 0, then ¢ = f(0) > 0.
(i) If ¢ = 0, considering a condition for that z? + az +b > 0 for all z > 0, we
have (1) “a >0 and b > 07, or (2) a® —4b < 0.

Y

) "
\ a

Fig. 4.1. Graph of D3(1,d/,b',1) =0

(ii) Assume ¢ > 0. If we consider o’ := a//c, b/ := b/V/c2, ¢ == ¢/Vc3 =1, and
2’ := x//c, we can reduce to the case ¢ = 1. Then Discz(1,a,b,1) = disc§* (a,b),
where disc§t was defined in [1, Theorem 3.1] (see Fig.4.1). Thus, by the same
argument with the proof of [1, Theorem 3.1], we have the conclusion. O
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Theorem 4.10. (1) Ift > 2 and pp(t) < w <1, then ¢, € E(P5}).
(2) Let t, u be constants such that t > 2 and pp(t) <u < 1. If f € Pj 5 satisfies
f(t, 1, 1) = f(O,U, 1) = fb<0’uv 1) =0,
then [f] = [ef,].
(3) Assume that t > 2. If f € P35 satisfies
f(t,1,1) = f(0,1,1) = frp(0,1,1) =0,
then [f] = [ef].
(4) ey = 5.

Proof. (0) We shall show that ef, P?f}t if t > 2 and pp(t) < w < 1. Using
computer, we have

efu(O,x, 1) = (z+ 1)(z —u)*(z - 1/u)®> >0,

if x > 0. But, our proof of efu (z,1,1) > 0 is not so easy. We shall prove this as
the following steps (0-1)—(0-iv).

(0-1) Put w(u) = uw — 2+ 1/u. Note that pup(t) < v < 1 is equivalent to
0 <w(u) < pg(t) —2. Let

4

fiw(a,bc) i =s0+ pr(t,w)si,

i=1
cB(t,w) =3t +2),
P (t,w) := 202 (t + 2)(—2w + t — 3),
cB(t,w) == —(5t + 1)w? — 2t3(t — T)w + t3(t — 4),
cB(t,w) == 2(t + 2)w?,
gB(t,w,x) == cB(t,w)a® + P (t,w)x? + B (t, w)x + & (t,w).

(x —1)°
Then efu(x, 1,1) = ffw(u) (x,1,1) = ng (t, w(u), ). Thus, ef,(t,1,1) >0

is equivalent to gZ(t,w,z) > 0 for w = w(u).
Note that ¢ (t,w) > 0 and ¢ (t,w) > 0. We also note that ¢f,(¢,1,1) = 0.
(0-ii) We shall show that c2(t,w) > 0if t > 2 and 0 < w < pg(t) — 2.
cB(t,w) is a concave quadric function on w, and ¢ (¢,0) = 2(t — 4)2 > 0. Since
B (tpur(t) —2) =t2(t+2)(8t\/(t — 1)(t +2) — (8° + 4t — 9)),
(8t/(t— 1)t +2))” — (8% + 4t — 9)> = 9(8¢ — 9) > 0,
we have ¢ (t,w) > 0.
(0-iii) Consider the case cP(t,w) > 0, ¢t > 2 and 0 < w < ug(t) — 2. Then
B B _ B B
g (t,w,z) > g” (t,w,0) = c3 (t,w) > 0. By Lemma 4.9(1), we have g” (¢, w,z) > 0.
(0-iv) We assume c? (¢, w) < 0. Then w > (t — 3)/2.
(0-iv-a) Counsider the case w = 0. Since 0 = w > (t — 3)/2, we have 2 <t < 3.
Then ¢? — 3t — 1 < 0. Thus
cB(t,0)2 —4cB(t,0)cB(t,0) = 4t*(#> —4)(t* =3t — 1) < 0.
By Lemma 4.9(2), we have gZ(¢,w,z) > 0.

(0-iv-b) Consider the case 0 < w < pgr(t) — 2 under assumptions ¢ > 2 and
cP(t,w) < 0. It is enough to show Discz(cF,cP, P cP) > 0 by Lemma 4.9(3).
Using PC, we have

Discs (cf (t,w), ef (t,w), ¥ (t,w), ¢F (t,w)) = 463t + 2)bf (¢, )b (t,w)bF (¢, w),
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VP (t,w) i= (2t + Dw — t(t — 4),
b2 (t,w) := —w? — 262w + t3(t — 2),
bE (t,w) := (t +1)(5t + 1)%w?
+ 2t (t* — 133 + 25t2 + 27t — A)w — t2(t — 4)*(t> — 3t — 1).
Note that bF (t, ur(t) — 2) = 0. Since bZ(t,w) is a concave quadric function on w,
it is easy to see that bF(t,w) > 0, if t > 2 and 0 < w < pg(t) — 2. Thus, to show

Discs(cf’, cB, el cB) > 0, it is enough to show b¥ (¢, w) > 0.
(0-iv-b-1) We shall show bf(uw) >0if2<t<3and 0 <w. Let

t4 — 133 + 25¢t2 + 27t — 4) e 33 —t)3(t+2)*
(t+ D)5t + 1) = e
Note that b2 (¢, w) = (t+ 1)(5t+1)2(w—w3(t))2 +wvs(t). Thus b2 (t,w) > v3(t) >0

if2<t<3,
(0-iv-b-2) We shall show b (t,w) > 0 if ¢t > 3 and (t — 3)/2 < w. Let

ug(t) := 2t° —t* +10t3 — 40t2 — 40t — 3,  ds(t) := 5t° — 15t* — 6t> — 26t> + 141 + 9.
Then

ws(t) 1=

t—3 U3(t)
_— < t = — - .
5wl = e e
Since uz(s+3) = 255 +29s* + 178s% 4 5365% + 6925 + 192 > 0 when s > 0, we have
(t —3)/2 > ws(t) if t > 3. Thus b¥(¢,w) is strictly increasing on w > (¢t — 3)/2.

Therefore 3 ds(6)
t— 3(t

bE (¢ b3(t,— | =
3 (t,w) > 3(, 3 ) 1

Since ds(s + 3) = 55 + 60s* + 264s> + 460s? + 228s + 36 > 0 if s > 0, we have
b2 (t,w) > 0. Thus, Discz > 0.
(1) Thus, we have ¢f, € P55. We obtain e, € £(P;5%), if we prove (2) and (3).
(2) Consider f(t,1,1) = fa(t,1,1) = f(0,u,1) = f(0,u,1) = 0 for f € H3;.
The solution space is Ker A, where
-2t —t4+2 22 —-1)2 2(t—1)2¢t+1) tt—-1)2 t(2t+1)
5t —4t—1  8t(t?—1) 62 —4t—2 32 —4t+1 4t+1
u® +1 ut +u u® + u? 0 0
Sut 4u +1 3u? + 2u 0 0
Put (1,0,0,0,0) above A, and make a square matrix B. Then
det B = 2u?(u — 1)(u + 1)32(t — 1)(t + 2).
Since t > 2 and 0 < pup(t) < u < 1, we have det B # 0. Thus, Ker A =R - efu.
(3) Consider f(t,1,1) = fa(t,1,1) = £(0,1,1) = fpp(0,1,1) = 0.
(4) follows from a direct calculation. O

A=

Remark 4.11. (1) If ¢t > 2, then
¢y = 50+ (1= 2ur(t)s1 + (82 + 262 — 2 = 2(t* — 1)ur(t))s2

—((t+1)%(2t +3) — 4(t + 1)%ur(t))ss.

(2) Since tliin [¢2,] = [s4] for any pup(t) <u < 1, we regard ¢Z  :=s4 =eZ.
—+oo” 7’ ’

(3) If b2 (t, w(u)) = (2t + Dw(u) — t(t — 4) = 0, then
QEU(G,ZL C) = SI(S2 - kSl,l)Qa
Sz(t,l,l) SQ(O,’LL,l)

here k = = .
where 5171(t,1,1) 51,1(0,11,1)
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4.2. Structure of £(PP;5¥).

We define @ : P32 — P((H355)") by ®(a) = (so(a): s1(a): s2(a): s3(a): si(a)).
The semialgebraic set X = X§45' ;= ®(P%) is called the characteristic variety of
’P;E (see [1, §1.2]). We regard X as a semialgebraic variety. About the definition
of semialgebraic varieties, please see [2, §5] or [3, §2].

The symmetric group &3 acts on P2 naturally. Let o1(a, b, ¢) = a+b+c, o2(a,
b, ¢) = ab + bc + ca, o3(a, b, ¢) = abc, and define 7: P — P2 /&5 C Pr(1,2,3)
by m(a) = (o1(a): 02(a): o3(a)), where Pr(1,2,3) is the real weighted projective
space which is the real part of the complex weighted projective space P¢(1,2,3).
There exists a natural rational map ¥: P4 /S3--- — X such that ® = Uor. By
[2, Proposition 2.14] and [1, Proposition 2.12—2.14], ¥: P2 /&3 — X is a regular
map and is an isomorphism.

4.2.1. Structure of 6PP§E.

For a semialgebraic variety Y, we denote its boundary by 9Y. At [1, Definition

dimY
1.5], we defined a critical decomposition A(Y |_| A Y)of Y. If A(YY) =
{Dl, .oy Dy } then all D; are non-singular 1rredu01ble sermalgebralc varieties with

ODj=0andY = |_| D; (disjoint union). If D; € AY(Y), then dim D; = i.

Jj=1

Since ¥: P2 /&3 — X is an isomorphism, we have A*(P2 /&3) = AY(X). The

critical decomposition of P% /&3 is given in [1, Proposition 2.13]. Using this, we
shall describe the critical decomposition of X. Let

Cl:={®(t:1:1)e X |0<t<lorl<t},

C’:={®0:t: 1) e X |0<t <1},

P, :=®(0: 0: 1) =(1: 0: 0: 0: 0),

Py :=®(0:1:1)=(1:1:2:0:0),

Py:=®(1:1:1) =(0: 0: 0: 0: 1).

Proposition 4.12. The critical decomposition of X is given by

A%(X)={Int(X)}, ANX)={C’ C’, AX)={P, P, Ps}.

Proof. This follows from [1, Proposition 2.13, 2.14] or [2, Proposition 2.14]. O

For D € A(X), a semialgebraic variety (D) C 0P;% is defined as [1, Definition
1.19] (see also [1, Theorem 1.18] or [2, Theorem 2.6]). Roughly speaking, F(D) is
obtained from the dual semialgebraic variety of D ([1, Theorem 1.18]). Note that
F(P3) = P5%F.

Proposition 4.13.

OPsE = F(C*)UF(C®) UF(Py) UF(P)UF(Ps).
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Proof. By [1, Theorem 1.18] or [2, Theorem 2.6], we have
opst= |J F
DeA(X)
But F(Int(X)) is not a face component of P5% by [2, Theorem 2.21]. O
For D € A(X), we denote
Fp = (F(D) —{0})/RY C OPP5E C PH; 5.

Since 73;;45' is a convex set, Fp is also a convex set.
For a subset A of R™ or PR, we denote its Zariski closure by Zar(A4). Fori =1, 2
and 3, Zar(Fp,) is a hypersurface of PH3 5 (see [1, Remark 1.21(3)]). This sentence

means that Zar (F(P;)) is a hypersurface of M35 So, we may regard Fp, as a
compact convex domain in R3. Since

PE(P3E) = E(PP55) C E(Fen) UE(Feo) UE(Fp,) UE(Fp,) UE(Fp,),

we need to study Fes, Feo, Fp,, Fp, and Fp, to prove Theorem 1.4.
For f # g € Hj 5, the line segment connecting [f] and [g] € PH] 5 is denoted by

Lif, gl :={[1—t)f +tg] e PH3 5 | 0 <t <1} CPHj ;.

Since dim Fp < 3, a line segment L[f, g] often appears in the irreducible components
of Fp, N Fp, N Fp,.

4.2.2. Structure of Fgo.
For t > 0, we put
b._ _ by b b 1 b
Ly ={lfl€ Fer } f@,1,1) =0}, L2 := tlginooﬁt’ Ly = tl—lgrloﬁt'

Note that dim Fee = 3 and dim £2 < 2. If [f], [g] € £b, then L[f,g] € £b. Thus
Zar(L?) is included in a two dimensional plane in PH} 5.

If P € O, then there exists ¢t > 0 such that P = ®(¢: 1: 1). Thus, if f € F(C?)
and f(1,0,0) # 0, then there exists ¢ > 0 such that f(¢,1,1) = 0. Therefore,

Foo= |J £
t€(0,00]
This implies
EFa)c | ).

te[0,00]

Thus, we shall study 5(5”)
For a € R?, {f e F(D | fla)= O} is a linear subset of H3 5. So, we may regard
L% as a compact convex domaln in R2. We study the shape of L?.

Theorem 4.14. (1) If 0 <t < 2, then
5(£§):{[e;§}u}]0§ugm )} U {lef], ]}
(2) If2 <t <5/2, then
£(£h) = {le] |0 <u < un (0} U {eB,] | nal®) < w< 13U (]}
(3) If 5/2 <t < 7, then
E(ED) = {6t [0 w < (0} U AP | mn(®) < w <1} U {(ePT}
(4) Ift > 7, then
(L) = {[eP) | up(t) <u< 1} U{[el], [F]}.
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(5) £(£%) = {[e2], [ex]}
(6)
EFen)={lef ] |0<t<7,0<u<pa®)}U{lel,] |t e (2,00, up(t) <u<l}
U{lefT|0<t<2yU{[e] |t €[0,00]} U{[ef] ]|t € [7,00]}.
Proof. Put
Si={leff)€Fer |0<t<T, t#1and 0<u< pa(t)}.
Since [ef!,] € Ebﬂﬁb sty Dy Theorem 4.7, and since £+ b we have

nz(tu)
S C Sing (F¢» ). Note that

E(LY) c oLt c SUFeoUFp, UFp, UFp,.
So, we study S N LY, Foo N LY, Fp, N LY, Fp, N LY and Fp, N LY.

(1) We consider the case 0 <t <2 and t # 1. (Fig.4.2)

By Theorem 4.7, we have S N LY = {[ef},] | 0 <u < pp(t)}.

By Theorem 4.10, we have Fco N LY = (.

Since Zar(Fp,) and Zar(L?) are linear subspaces of PH3 5 of dimensions 3 and 2,
we have dim(Fp, NL}) < 1. Note that Fp, N\ Fp,NLY =0, Fp,NFp,NLY = {[ef]},
and Fp, N Fp, N LY = {[¢P]}, by Theorem 4.3, 4.4 and 4.7. Since Zar(Fp,) is a
hyperplane of PH3 5, and Zar(L}) is a two dimensional plane in PH] 5, we have

Fp, ﬂﬁf = L[efo, ef)], Fp, ﬂﬁf = L[efuL(t), etCL Fp, ﬂﬁb = L[et ) € ].

When we draw these boundary components of £, we obtain Fig.4.2. Since £? is a
convex set, (1) is proved.
When ¢t =1, (1) can be obtained if we take a limit ¢t — 1.

Feo (etupl | 7P 7
€] 2] /7 [ef e’

Fp, Fp, b Fp,
4 A
Je7) (et o)] \AK [eflo]
]:(;b [et,u} \
Fig.4.2. £0 (0<t<2) Fig.4.3. £ (2<t<5/2)

(2) We consider the case 2 <t < 5/2. (Fig.4.3)
By similar arguments as in (1), we conclude that
(i) SNnLy={] etu ’ 0<u<puL(t)}. (Theorem 4.7)
i) Foo N Ll ={[eB,] | pp(t) <u < 1}. (Theorem 4.10
t t u
(i) Fp, N LY = Llefy, ef]. (Theorem 4. 7 4.4)
(iv) Fp, N LY =1]e éur(t)’ efl] (Theorem 4.7, 4.10)
(v) Fp, N LY =Tle fﬂ () © ¢P]. (Theorem 4.10, 4.4)
hus, we have Fig.4.3, and (2) is proved.
) We consider the case 5/2 <t < 7. (Fig.4.4)
y

T
(3
By similar arguments as in (1), we conclude that

(i) SNLy={[ef,] | 0<u<pg(t)}. (Theorem 4.7)
(i) FoonLb = {[et . | pe(t) < u <1}, (Theorem 4.10)
(iii) Fp, N LY = Llesy, eP]. (Theorem 4.4, 4.7)

)
)

Llef!
(iv) Fp,NLE = [efu (1) ¢ B 1. (Theorem 4.7, 4.10)
L[

efu (1) ¢ ¢P]. (Theorem 4.4, 4.10)

(V ]:pgﬁﬁg—
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Thus, we have Fig.4.4, and (3) is proved.

[ef ¢ ] ]:Ps /
]_- B (
B [ef’] ' D
[e;1] [eB] [er’]
]:Pz C? ]:P1 ]:PI
E
A s
[et,im(t)] A\ [ef‘o} ]
]:Cb [ef“,u] \
Fig.4.4. £b (5/2 <t <T) Fig.4.5. £ (t>7)

(4) We consider the case t > 7. (Fig.4.5)
By similar arguments as in (1), we conclude that
(i) Sncb=0. (Theorem 4.7)
(i) Feon Ly ={[ef,] | up(t) <u <1}. (Theorem 4.10)
(iii) Fp, N LY = [e?, eﬂ (Theorem 4.4, 4.5)
(iv) Fp, N LY =L[ef), ¢f]. (Theorem 4.5, 4.10)

(v) Fp,NLY = [fﬂ ) © ¢P]. (Theorem 4.4, 4.10)

)
Thus, we have Fig.4.5, and ( ) is proved.

t,u

(5) follows from hm [eB 1=1e Oo], if up(t) <u<1.
) B

(6

t€[0,00]

4.2.3. Structures of Fp, and Fp,.
We start from Fp,.
Theorem 4.15.

E(Fp) = {lefo) [0 <t <TYU{[eP] |+ € [0,00]} U {[eF] | t € [7,00]} U {[ss]}.

Proof. Since Zar(Fp,) = P2, Fp, is non-singular. Thus,
E(Fp,) C For UFcoUFp, UFp,.
By Theorem 4.14, we have
E(Fer NFp) = {[efo] |[0<t <7}
U {[e] | t€[0,00]}U {[ef] | t €[7,00]}.
We need to observe Foo N Fp,, Fp, N Fp, and Fp, N Fp,.

33

(1)—(4), we have E(Fgs) D U E(LY). The inclusion C is clear. [

(1) Tt is easy to see that FooNFp, is a triangle whose vertices are [e2] = [s2 — s3],

[s3] and [s4] = [¢Z] = [%Bo,l] (Fig.4.6).
(2) We observe Fp, N Fp,. (Fig.4.7)
As the proof of (1) in Theorem 4.14, we obtain:
(i) Feo N Fp, N Fp, = L[e?, e7 JU{[ef] | t €[7,00]}. (Theorem 4.4, 4.5)
(ii) Foo N Fp, N Fp, = L[s3, ¢£]. (Theorem 4. 5 4.6)
(iii) Fp, N Fp, N Fp, = L[ed, s3]. (Theorem 4.4, 4.6)
Thus, we can draw Fig.4.7. This implies

E(Fp, NFpy) = {[er] | t € [7,00]} U {[eg], [s3]}-
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fcb [27E] ]:017

Fig.4.6. Fco N Fp, Fig.4.7. Fp, N Fp, Fig.4.8. Fp, N Fp,

(3) We observe Fp, N Fp,. (Fig.4.8)

As the proof of (1) in Theorem 4.14, we obtain:

(i) Foo NFp, N Fp, = {[eP] | t € [0,00]}. (Theorem 4.4)
(ii) FeoNFp, NFp, = L[, s3]. (Theorem 4.4, 4.6)
(iii) Fp, N Fp, N Fp, = L[eL, s3]. (Theorem 4.4, 4.6)
Thus, we can draw Fig.4.8, and we have

5(]:133 ﬂfpl) = {[2?} ’ te [0,00]} U {[83]}

Thus, we complete the proof of the theorem. O
Next, we observe Fp,.

Theorem 4.16.
E(Fp,) ={lefo] |0<t <7 U{[ef)] | t € [2,00]}
U {[e?] | te [0,2}} U {[e{?]} U {[EF] ‘ te [7,00]} U {[55]}

Proof. Since Zar(Fp,) is 3 dimensional affine space, we have
E(Fp,) C Fevr UFco U Fp, UFp,.
By Theorem 4.14, we have
EFer N Fp,) ={lef ] |0 <t <TU{[ef] | £ > 2}
U{lef]]0<t<2yU{[ef]]|t € [7,00]}.
By Theorem 4.15, E(Fp,NFp,) is as Fig.4.7. Thus, we need to observe E(FooNFp,)

and 5(]:133 n .FPQ).

(1) We observe Foo N Fp,. (Fig.4.9)
As the proof of (1) in Theorem 4.14, we obtain:
(i) Fev NFeo NFp, = {[ef)] | t € [2,00]}. (Theorem 4.10)
(ii) Fp, N Feo N Fp, = L[ss, e&], where [e£] = [eZ ,]. (Theorem 4.5, 4.6)
(ili) Fp, N Feo N Fp, = L[ed}, s3]. (Theorem 4.6, 4.10)
Thus, we obtain Fig.4.9.

[ (s3]
Fr

Ll

eC
e

Fig.4.9. ]:CU N ]:Pz Fig.4.10. ]:p3 N ]:P2
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(2) We observe Fp, N Fp,. (Fig.4.10)
As the proof of (1) in Theorem 4.14, we obtain:
(i) Feo NFp, N Fp, = L[e, eP]U{[ef] | 0 <t < 2}. (Theorem 4.3, 4.4)
(i) Feo NFp, N Fp, = L[eS, s3]. (Theorem 4.3, 4.6)
(iii) Fp, NFp, N Fp, = L[ef, s3]. (Theorem 4.4, 4.6)
Thus, we obtain Fig.4.10.
By these observations, we obtain the theorem. O

4.2.4. Discriminants of P§‘g

To determine £(Fco), we need to prove that Fgo is non-singular.

4

An element f € Hj 5 is represented by f = Zpisi. We use (po,. .., p4) as a
i=0

coordinate system of H3 5, and write f = (po,. .., pa). We represent discriminants

using this coordinate system.

If D € A(X) satisfies dimF(D) = dim?’s'|r 1, the defining equation of
Zar(F(D)) in Hj 5 is called a discriminant of ’P35, and is written by disc(D),
discp or discp(p). To describe discos (p), we put
cs(p) :==po, ca(P):=2p1, c3(p):=2p2+ps,
c2(p) := —2(po + 2p1 + p2 + ps — pa),

(p)

c1(p) := —po — 2p2 + p3 +pa, co(p) == 2(po + p1 + p2)-

5
Note that if f = (po,..., p4), then f(x,1,1) ch
=0

Theorem 4.17. All the discriminants of ’P?fg are

discp, (p) = po,

discp, (p) = po + p1 + p2,

discp, (P) = pa,

discco(p) = 5p§ + 2pop1 + p; — 4popo,

Discs (¢5(p), ca(p), e3(p), c2(p), c1(p), co(p)) .

discee (p) = 16ps

Proof. We obtain discp, (i =1, 2, 3) by [1, Remark 1.21(3)]. Discriminants discgo
and disces can be obtained by the calculation explained in [1, Remark 1.21(1)]. We
can obtain discco without a computer, but the calculation of discos took very long
time even if we used a computer. So, we present an alternative method to justify
the above discee is really discriminant.

Let F(po,. .., p4) be the right hand side of discos (p) presented in the theorem.
Ve(discen) must contains ef, (0<t<7,0<u< pa(t)), ef, (t>2, pup(t) <u<
1), ¢ (0<t<2), ¢l (t>0),and ¢ (¢t > 7), by Theorem 4.14(6).

Using computer, it is easy to see all of these are on V¢ (F). An irreducible
polynomial G(po,..., p4) such that V¢(G) contains all the above ¢ is unique up to
constant multiplication. It is easy to check that F' is irreducible. Thus, F' is a
discriminant. ]

Corollary 4.18. The real algebraic variety Zar(Fco) = Vr(discoo) is non-singular.
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4.2.5. Proof of Theorem 1.4.
We shall determine £(F¢o) and E(Fp,).
Corollary 4.19.

E(Fco):{etu}t€200] up(t) <u }U{ }

Proof. Since Zar(F¢o) is non-singular, we have
E(Feo) C Fev UFp, UFp, UFp,.

By Theorem 4.14, we have

g(}—C” m]:CO) = {[efu] | te [Q,OO], /U'B(t) <u< 1}
Fp, N Fe, is given in Fig.4.6, and Fp, N Feo is given in Fig.4.9.

Thus, it is enough to observe Fp, N Foo. By the proofs of Theorem 4.14, 4.15

and 4.16, we have

E(Fpy) NFoo = {[e,,] | t € [2,00]} U{[e2], [sa]}-

Here, note that pp(2) = 1, ¢2 1= =¢f and 22 1 = ¢§. Thus, we have the conclusion.

O
Corollary 4.20.
EFp) ={lel., ) |te 2oo}u{ ]0<t<2}
@] { Qt ‘ t E } @] { 83
Proof. This is already proved in the proofs till here. O
Corollary 4.21. All the elements of E(PP5E) are [eft,] (0 <t < 7,0 <u < pa(t)),
[efu] (t € [2,00], pp(t) Su < 1), [ef] (0 <t <2), [ef] (t €[0,00]), [¢f] (t € [7,00]),

and [s3].

Thus, we complete the proof of Theorem 1.4.

4.3. Application.

4.3.1. Reducible extremal elements.

In this subsection, we study when f € & (P?f"g) is irreducible. We need some
lemmata for it.

Lemma 4.22. Assume that f € 5(735 ) is reducible in Cla, b, ¢]. Then, there exists
an integer d € {1, 2}, g € 5(P§+) and h € 8(733 t_4) such that f = gh.
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Proof. (1) We shall show that if f € £(P5E) is reducible in C[a,b,c], then there
exists g, h € R[a, b, ¢] — R such that f = gh.

Assume that f/g € Cla, b, c] by non-constant g € Cla, b, c]. We may assume g is
irreducible in Cla, b, c] and deg g is odd. If ag ¢ R[a, b, ¢] for any o € C*, then the
complex conjugate g divides f. Then gg € R[a, b, c| and f/(g9) € R|a, b, ¢|.

(2) We shall show that if f is reducible, we can find a symmetric divisor of f.
Assume that f = gh by g, h € R[a,b,¢]. We may assume that g is irreducible in
R[a, b, c]. If ¢ is not symmetric, o(g) is also a divisor of f by any o € &3. So, there
exists a symmetric divisor of f.

Assume that f = gh by g € P5h and h € P5i_,. If g ¢ E(P5h), then f ¢
E(Ps5). O

Lemma 4.23. (1) PE(P5T) = {[S1]}-
(2) PE(P3E) = {[S2 — S1al}
(3) PE(P5E) = {[S5 + 3U — Ta,l, [To.1 — 6U], [U]}.

Proof. (1) and (2) are trivial. (3) is proved in [1, Corollary 3.4]. O
Lemma 4.24. Let
gi(a,byc) =Sy — (t+ 1)T31 + (£ +2t)S90 — (2 — )T 1 1.
Then
PE(PY) = {loe) [t 2 0} U {[(S2 — t511)°] [ ¢ = 1} U{[T31 — 2520}

Proof. This is a corollary of [1, Theorem 4.10]. This g; is equal to gét—l,—t—l in [1,
Theorem 4.10]. Note that g;(z,1,1) = (z — 1)?(z — )% O

Theorem 4.25. Let bP(t,w) := (2t + 1)w — t(t — 4) as in the proof of Theorem
4.10. If f € 5(773”5;) is reducible in Cla, b, ¢|, then f is a positive multiple of one of
the following polynomials.

2 2 2
(1) S (52 — ;tisl’l> = eéﬂo(t) = effa, where pg(t) := W and o
is a root of bf (t, w(a)) = 0.
(2) (SQ — 5171)(53 +3U — T271) = B?.
(3) (SQ — 5171)(T211 — GU) = 21D.
(4) (SQ — Sl’l)U = S3.

Proof. If f € E(Pg‘g) is reducible, then there exists an integer d € {1, 2}, g €
5(73;:;) and h € E(ng:g_d) such that f = gh.

(I) Consider the case degg = 1. Then, we may assume g =51 =a+b+c.

By the previous lemma, h = (Sy —S11)? (¢t > 1), or h = g; (t > 0), or
h = T371 - 28272. If h = (SQ — t5171)2, this is the case (1)

If h =gy, then f = Sy1g¢ = ¢f + ¢ ¢ E(P5E).

If h = (SQ - t51’1)2, then f = Sl(T371 — 2522) = QOD + 4s3 ¢ E(ng)

(IT) Consider the case deg g = 2. Then, we may assume g = Sy — 57 1.

Since h € S(Pg,‘g), we have h = S3+3U —T 1 or f =151 —6U or f =U. Thus,
we have (2), (3) or (4). O

4.3.2. ¢f,(a%,0%,¢?) € E(Ps10) — U310 and e}, (a%, 0%, ¢?) ¢ 33 10.
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t—1)2(t+2
Theorem 4.26. (1) If0 <t <7, t#1,0 < u < a(t), and u # %
then ¢!, (a?, b2, ¢*) ¢ Y310
(2) Ift > 2 and pp(t) <u <1 and bP (¢, w(u)) # 0, then ¢, (a?, b?, ¢?) ¢ 3 10.

Proof. (1) Let 0 <t < 7,t# 1,0 < u < pa(t), p := Vuz(t,u), ¢ := v/t, and
F(a,b,c) :== ef}u(aQ, b%, c?). Note that p > 0, p> # 1, ¢ > 0, ¢*> # 1 and p? # ¢°.
Consider the zero point set Z := Vg(F) C PZ. Remember that ¢, (p? 1,1) =
efu(q2,1,1) = 0. Thus, F(+p, +1, 1) = F(4q, +1, 1) = F(£1, +p, 1) = F(1,
+q, 1) = F(1, £1, £p) = F(1, £1, £q) = 0. Therefore #Z > 24.

Assume that ' € X3 19. Then, there exists r € N and ¢;,.. ., g» € Hs 5 such that
F=g}+ - -+g% Ifa€ Z, then gi;(a) = --- = g.(a) = 0. Note that dim Hs 5 = 21.
So, let’s find 21 points a; € Z (1 < i < 21) such that there exists no g € Hs 5 — {0}
which satisfy g(a;) =0 for all 1 < < 21.

Let a; := (—p:1: 1), a3 := (p: —1:1), a3 := (p: 1: — 1), a4 := (1: p: 1),
as = (—1l:p: 1), a6 :== (1: —p:1), a7 := (Ll:p: —1), ag := (1: 1: p), ag :=
(=1:1:p), a19 ;= (1: —1:p), a1 :=(q: 1: 1), aj2 := (—q: 1: 1), ay3 := (¢: —
1: 1), a14 :=(¢: 1: = 1), a15 :=(1:g: 1), a16 := (—1: q: 1), a1y := (1: —q: 1),

ajg:=(l:q: —1),a19:=(1:1:¢q), a0 :=(—1:1:¢q), agy :=(1: —1: q). Take 21
monic monomials e1,.. ., €21 as a basis of H3 5, and denote g = cie1 4+ - +ca1€21 €
Hs5. Let A= (a;,;) be the 21 x 21-matrix such that a; ; = ej(a;). Then

det A = +£262144p* (p* — 1)°¢°(¢* — 1)"(0° — )" 20 +p° + ¢ — 4)°.

3(t—1)2%(t+2)

Note that 2p¢* + p* + ¢*> —4 = 0, if and only if u = 2%+ 1

det A # 0, and we obtain (1).
(2) Tet £ > 2, pup(t) < u < 1, pi= Vi, ¢ := /i, and F(a,b,c) i= eB, (a, 1, 2).

t,u
Note that 0 < ¢ < 1 and p > v/2. By the same argument with (1), it is enough to
find 21 points b; € Z (1 < i < 21) such that there exists no g € Hs s — {0} which
satisfy g(b;) =0 for all 1 <4 < 21.

Let by :=(p: 1: 1), by :=(=p: 1: 1), bg :=(p: —1: 1), by :=(p: 1: —1), b5 :=
(I:p: 1), bg:=(=1:p: 1), by :=(1: —p:1),bg:=(1:p: —1), bg:=(1:1: p),
b1 := (—1:1: p), by := (1: —1:p), byz := (¢: 1: 0), byz := (¢: 0: 1), byy :=
(—q:1:0), bys := (—q: 0: 1), byg := (1: ¢: 0), by7 := (1: 0: @), byg := (1: 0: —q),
big :=(0: —q: 1), byy :=(0: 1: q), byy :=(0: 1: —q).

Let B = (b; ;) be the 21 x 21-matrix such that b; ; = e;(b;). Then

det B = +16384p°(p*> — 1)7(p* + 2)¢*(¢ — 1)°(¢ + D*(¢* + 1)*((¢ + 1)* + p*q)
x (2(p* +1) — 1)(p*e® — 2p°¢* — 2p* — (¢* — 1)?)%.

Thus, if det B = 0, then ¢?(p* +1) — 1 = 0 or p*¢® — 2p%¢* — 2p* — (¢* — 1)? = 0.
If >(p2 +1) —1 =0, then pup(t) <u=1/(t+1) < up(t). A contradiction.

On the other hand, p*¢® — 2p?¢* — 2p? — (¢®> — 1)?2 = 0 is equivalent to bP(t,
w(u)) = 0. Thus, we have det B # 0. O

Thus,

It seems that ¢!, & £(P5;) and ¢, (a2, b?, ¢*) ¢ £(Ps10). But the author does
not have a proof. We can prove the following;:

Corollary 4.27. Assume that 0 < t < 7, ¢t # 1, 0 < u < pa(t), and u #

3(t—1)>2(t+2
%’ Ife?,u(a’27 b25 82) = fl + - +fT b.y certain fl:' ) fr € 7)3,107 then

S fr & 2310-
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Theorem 4.28. Assume t > 2, pup(t) < v < 1 and bP(t, w(u)) # 0. Then
etu € S(PS 5) and et u( 2,b2702) S 5(P3,10)'

Proof. Put p := Vi, q := y/u. When we discuss H3 19, we denote the coordinate
system of P2 by (z: y: 2z). When we discuss H3 5, we denote the coordinate system
of P2 by (a: b: ¢), with x = a?, y = b?, 2 = 2.

Let e1,..., egs are all the monic monomials of H3 19. We choose these so that
ess = 2'°. Then eq,..., egs is a basis of the vector space Hsz10. We define 7 €
Aut(P3) by 7(x: y: z) = (—x: y: 2). Let G C Aut(P%) be the subgroup generated
by 7 and the symmetric group &3. Put

Z:={o(p:1:1), 0(q: 1: 0) | 0 € G}.
Note that Z consists of 24 points. Align these points as Z = {cy,..., cas}. Let

Oe; Oe;
asi—2,j = €;(¢;), asi—1,j:= afé(ci), azi,j = 5‘; (ci),

and construct the 72 x 66 matrix A = (a;,;). By Theorem 4.10(2), we have
811)327(12 (a?,b%,c?) € Ker A. Thus, if rank A = 65, then Ker A = R - 21?2qu (a?,b%,c?),
and e, (a?, 0%, ¢?) € E(Ps10). Note that if e, (a? 0% ¢?) € E(Ps10), then ¢f, €
E(Pgs).

We choose a 65 x 65 minor of A as the following way. We delete the column

corresponding to egs = 2'°. Next, we delete the seven lines corresponding to
of of of of of of

1:1 1101 1: 1: 2 1: 1:¢q:
G0t LD, Gl (pt 1 1), G 1t <1), 5 (g2 1:0), G (a2 1:0), 50 (1 g 0)

of

and 8—y(1: —q: 0), where f = (eq,..., eg5). We denote this 65 x 65 square matrix
by B. Let

L pa) =0 —d*+1,

15 (pa) =0 +p* -1,

15 (0,9) = a* = (P* +2)a + 1,

fE(poq) = 20" + 1)(¢* = 1)? = p*( — 4).
Using Mathematica, we obtain
det B = +2417851639229258349412352

X ¥ (p? — 1% (p% + 2)5¢°1 (1 — )% (p%q + (¢ + 1)2)5

< fL (@)’ 15 (0. @) 5 (0, 0)° 1 (0, 0)°
Since p = vt > V2, 0 < Ju = q < 1, we have

P = DR +2°¢ (1= )P PP+ (g + 1)) > 0.
Since p* > 1 > ¢, we have f{'(p,q) = p* —¢*+1> 0, and f§ (p,q) = p*¢> +p° — 1
> (. Note that
£ (p:q) = °b7 (0, w(d®)) #

by the assumption. Thus, it is enough to show f§ (p, q) 7é 0. Put

t+2+pVt+2

g5 (t) = 5

When p > 2 and 0 < ¢ < 1, f§(p,q) = 0 is equivalent to u = g§(t). It is easy to
see g5 (t) < pp(t) if t > 2. Thus, we have £$ (p,q) # 0. O
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Note that if (2t + 1)(u — 1)? — t(t — 4)u = 0, then ¢f, ¢ £(P5;), by Theorem
4.26(1).

4.3.3. Extremal elements of P§%+.

The author should apologize for that [1, Corollary 5.7] is not correct. It must be
replaced by the following:

Theorem 4.29. All the extremal rays of’P§?5+ are generated by efus(t) (t € [2,00]),
¢ (0<t<2), el (t€[0,00]) or s3.

Proof. Since P;?;' = F(P3), this follows from Theorem 4.20. O
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