
SOME EXTREMAL SYMMETRIC INEQUALITIES

TETSUYA ANDO

Abstract. Let Hn,d := R[x1,. . ., xn]d be the set of all the homogeneous poly-

nomials of degree d, and let Hs
n,d := HSn

n,d be the subset of all the symmetric

polynomials. For a semialgebraic subset of A ⊂ Rn and a vector subspace

H ⊂ Hn,d, we define a PSD cone P(A, H) by P(A, H) :=
{
f ∈ H

∣∣ f(a) ≥ 0

(∀a ∈ A)
}

. In this article, we study a family of extremal symmetric polynomi-

als of P3,6 := P(R3, H3,6) and that of P4,4 := P(R4, H4,4). We also determine

all the extremal polynomials of Ps+
3,5 := P(R3

+, Hs
3,5) where R+ :=

{
x ∈ R,

x ≥ 0
}

. Some of them provide extremal polynomials of P3,10.

1. Introduction

First, we should explain what an extremal inequality is. Let Hn,d := R[x1,. . .,
xn]d (the part of degree d), and H ⊂ Hn,d be a vector subspace. For a semialgebraic

subset A of Rn or Pn−1
R , the closed convex cone

P(A, H) :=
{
f ∈ H

∣∣ f(a) ≥ 0 for all a ∈ A
}

is called the PSD cone on A in H. PSD means Positive Semi-Definite. This is a
semialgebraic set whose boundary is a finite union of irreducible semialgebraic sets
(see [2, Theorem 2.7]). An element of P(A, H) can be regarded as an inequality on
A. In general, for a closed convex cone P, a half line R+ · f (f ∈ P −{0}) or R×+ · f
is called an extremal ray, if g, h ∈ P satisfy g + h = f then g, h ∈ R+ · f , where
R+ :=

{
x ∈ R

∣∣ x ≥ 0
}

and R×+ := R+ − {0}. In this case, f is called an extremal
element of P. The set of all the extremal elements of P is denoted by E(P). Any
element of P can be written as a sum of some elements of E(P).

The notion of ‘extremal’ is relative. When H′ ⊂ H is a vector subspace, E(P(A,
H′)) 6⊂ E(P(A, H)) may occur. But it is useful to study E(P(A, H′)) to find
relations of P(A, H′) and P(A, H).

When A = Rn or A = Rn+, there are many cases that we have better to study

P(Pn−1
R , H) or P(Pn−1

+ , H) instead of P(Rn, H) or P(Rn+, H). One of reasons is
as follows. For f ∈ Hn,d and K = R or C, we denote

VK(f) :=
{
x ∈ Pn−1

K

∣∣ f(x) = 0
}
.

In the theory of inequalities, elements of VR(f) are treated as ‘equality conditions’.
In many cases some points of VR(f) are singular points of VC(f), if f ∈ P(A,
H). Especially, when f is an irreducible polynomial, the structure of an algebraic
variety VC(f), or the structure of singular points in VR(f) plays an important role
for studies of inequality f ≥ 0. When f is extremal, VR(f) usually contains many
points. The set VR(f) often determines f itself. This fact is recognized at least
from [10]. For more details, please see [6] and [3, §2].

There is another reason. Consider the case that a finite group G (for example,
the symmetric group G = Sn) acts on A, and H is a G-invariant set HG = H.
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Then P(A, H) can be identified with P(A/G, H). In many cases, the structure of
A/G plays an important role to study E(P(A, H)). In our cases, the structure of
Pn−1
R /Sn or Pn−1

+ /Sn is more essential than that of Rn/Sn or Rn+/Sn (see §4.2).
By the way, PSD cones Pn,2d := P(Rn, Hn,2d) are studied in many articles with

interest for SOS problem. An element f ∈ Pn,2d is called SOS (Sum Of Squares), if
there exists r ∈ N and g1,. . ., gr ∈ Hn,d such that f = g2

1 + · · ·+ g2
r . The set of all

the SOS elements of Pn,2d is denoted by Σn,2d, and is called a SOS cone. Hilbert
proved that Pn,2d = Σn,2d if and only if (n, d) = (3, 2) or d = 1 or n ≤ 2 ([13]).
In many articles, Pn,2d − Σn,2d are studied, but I feel that not so many elements
of Pn,2d − Σn,2d are known yet. One of reasons will be that dimHn,2d is too large
to proceed precise analysis. Studies on P(A, H) for some small H often bring new
results.

The set of symmetric polynomials Hsn,d := HSn

n,d is one of nice vector subspace
which is easy to treat. For example, a nice condition to distinguish PSD is provided
in [15]. By our experience, the equality condition f(a,. . ., a) = 0 (i.e. f(1,. . .,
1) = 0) also often makes situation simple. Now, we fix some symbols. Let

Hsn,d := HSn

n,d =
{
f ∈ Hn,d

∣∣ f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn) for all σ ∈ Sn

}
,

H0
n,d :=

{
f ∈ Hn,d

∣∣ f(a, a, . . . , a) = 0 for all a ∈ R
}
,

and Hs0n,d := Hsn,d ∩ H0
n,d. We denote Pn,d := P(Rn, Hn,d), P+

n,d := P(Rn+, Hn,d),
Psn,d := P(Rn, Hsn,d), Ps+n,d := P(Rn+, Hsn,d), Ps0n,d := P(Rn, Hs0n,d), and Ps0+

n,d :=

P(Rn+, Hs0n,d). The rule of indexing will be clear. “s” means symmetric, “0” means

an equality condition f(a,. . ., a) = 0, and “+” means A = Rn+. These symbols are

used in [1, 2]. In [7], Psn,2d is denoted by PSn,2d. The symbols Hen,2d := Hn,2d ∩
R[x2

1,. . ., x2
n] and Pen,2d := Pn,2d ∩Hen.2d (even PSD cone) are also often used.

Note that if f ∈ E(Pn,2d), then there exists a ∈ Rn such that f(a) = 0. By
a linear bijective map ϕ : Rn → Rn such that ϕ(1,. . ., 1) = a. Then we have
f ◦ ϕ ∈ E(P0

n,2d). Moreover, E(P0
n,2d) ⊂ E(Pn,2d) holds. Thus, studies of E(P0

n,2d)

is useful to study E(Pn,2d).
About the cone Psn,2d of PSD symmetric forms, there are many studies relating

Σn,2d. Many famous elements of Pn,2d − Σn,2d are found out from Ps0n,2d or Psn,2d.
So, symmetric inequalities are studied in many articles with special interests (for
example [12, 15, 16, 17, 18]).

When d is odd, there are a few studies about Ps+n,d. But the cone Ps+n,d is also

useful, since P+
n,d
∼= Pen,2d and Ps+n,d ∼= Pesn,2d := Pen,2d ∩ Psn,2d, by the corresponding

f(x1,. . ., xn) −→ f(x2
1,. . ., x2

n).
As is already commented, E(Psn,2d) ⊂ E(Pn,2d) is not always correct. But

E(Ps0n,2d) ⊂ E(Psn,2d) and E(Ps0+
n,d ) ⊂ E(Ps+n,d) always hold. This is one of the reasons

why we study Ps0n,2d and Ps0+
n,d .

We review easy cases that n = 3 and d is small. Let

Si := xi + yi + zi, Si,j := xiyj + yizj + zixj , Ti,j := Si,j + Sj,i,

and U := xyz. The following proposition will be well known.

Proposition 1.1. The three dimensional PSD cone Ps+3,3 is a triangular cone which

has three extremal rays. Each edge of E(Ps+3,3) is generated by one of f3,s
1 :=

T2,1−6U , f3,s
2 := S3+3U−T2,1 or f3,s

3 := U . The polynomials f3,s
i are characterized

in Ps+3,3 by the equality conditions f3,s
1 (1, 0, 0) = f3,s

1 (1, 1, 1) = 0, f3,s
2 (1, 1, 0) =

f3,s
2 (1, 1, 1) = 0 and f3,s

3 (1, 0, 0) = f3,s
3 (1, 1, 0) = 0.
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The sentence ‘f ∈ P is characterized by the condition (∗)’ means that if g ∈ P
satisfies the condition (∗) then there exists α ≥ 0 such that g = αf .

The inequality f3,s
2 ≥ 0 is called Schur’s inequality of degree 3. Note that

f3,s
1 , f3,s

2 , f3,s
3 ∈ E(P+

3,3). Thus E(Ps+3,3) ⊂ E(P+
3,3). Note that all the elements of

E(P+
3,3) are determined in [3]. It is also proved that if f(x, y, z) ∈ E(P+

3,3), then

f(x2, y2, z2) ∈ E(P3,6) ([3, Theorem 1.7]). If f(x, y, z) ∈ E(P+
3,3) is irreducible, then

f(x2, y2, z2) /∈ Σ3,6. So, the study of E(P+
n,d) may bring us new aspects.

The following proposition follows from [1, Proposition 4.13].

Proposition 1.2. Each extremal ray of the four dimensional PSD cone Ps3,4 is
generated by one of the following polynomials:
(1) f4,s

t := S4 − (t+ 1)T3,1 + (t2 + 2t)S2,2 − (t2 − 1)US1 where t ∈ R.
(2) f4,s

∞ := S2,2 − US1.
(3) eXk := (kS2 − S1,1)2 where −1/2 ≤ k ≤ 1.

The polynomial f4,s
t is characterized in Ps3,4 by the equality condition f4,s

t (t, 1, 1)

= f4,s
t (1, 1, 1) = 0.

Note that the inequality f4,s
0 ≥ 0 is the Schur’s inequality of degree 4. We should

mention that eXk ∈ E(P4,4) but f4,s
t , f4,s

∞ /∈ E(P4,4). For example, f4,s
t /∈ E(P4,4)

since

6f4,s
t (x1, x2, x3) =

3∑
i=1

(
2x2

i − x2
i+1− x2

i+2− (t+ 1)(xixi+1 + xixi+2− 2xi+1xi+2)
)2
,

where xi+3 := xi. Moreover, f4,s
t (x, y, z) is a product of two imaginal quadratic

polynomials. The following proposition follows from [1, Therem 4.10].

Proposition 1.3. Each extremal ray of the four dimensional PSD cone Ps+3,4 is

generated by one of the following polynomials: f4,s
t (t ≥ 0), f4,s

∞ , eXk (0 ≤ k ≤ 1),
T3,1 − 2S2,2 or US1.

In §4 of this article, we determine all the elements of E(Ps+3,5). Since the definitions

of extremal polynomials eAt,u, eBt,u, eCt , eDt and eEt are long, we give them in §4.1.

Theorem 1.4. Each extremal ray of the five dimensional PSD cone Ps+3,5 is gen-

erated by one of the following polynomials: eAt,u (0 ≤ t ≤ 7, 0 ≤ u ≤ µA(t)),

eBt,u (t ≥ 2, µB(t) ≤ u ≤ 1), eCt (0 ≤ t ≤ 2), eDt (t ∈ [0,∞]), eEt (t ∈ [7,∞]) or

U(S2−S1,1). Polynomials eAt,u, eBt,u, eCt , eDt and eEt are characterized in Ps+3,5 by the
following conditions for general t and u:

eAt,u(t, 1, 1) = eAt,u

(
(t+ 2)(7− t)− u

(t+ 2)(5t+ 1)
, 1, 1

)
= 0,

eBt,u(t, 1, 1) = eBt,u(0, u, 1) =
∂eBt,u
∂y

(0, u, 1) = 0,

eCt (t, 1, 1) = eCt (1, 1, 1) = eCt (0, 1, 1) = 0,

eDt (t, 1, 1) = eDt (1, 1, 1) = eDt (0, 0, 1) = 0,

eEt (t, 1, 1) = eEt (0, 1, 1) = eEt (0, 0, 1) = 0.

Note that the condition (∂eBt,u/∂y)(0, u, 1) = 0 can be described using the notion
of ‘infinitely near zero’ introduced in [3, §2]. We also prove that if (u, t) satisfies
certain conditions, then eBt,u ∈ E(P+

3,5), and

eBt,u(x2, y2, z2) ∈ E(P3,10)− Σ3,10,
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in Theorem 4.26 and 4.28. On the other hand, eDt /∈ E(P+
3,5) (Theorem 4.4). Thus,

E(Ps+3,5) 6⊂ E(P+
3,5) and E(Ps+3,5) ∩ E(P+

3,5) 6= ∅.
The cones P3,6 and P4,4 are studied with special interests (for example [11, 5]).

The cones Ps3,6 and Ps4,4 are also studied in many articles (for example [9, 12]). Let
P be a closed convex cone which contains no line. An element f ∈ E(P) is called
an exposed, if there exists a hyperplane H of H such that H ∩ P = R+ · f . For
example, if P is an polyhedral convex cone, then all f ∈ E(P) are exposed. In
[4], it is proved that if f ∈ E(P3,6) − Σ3,6 is exposed, then VC(f) is an irreducible
rational curve with 10 acnodes. All the extremal even sextics are determined in [3].
It provides many elements of E(P3,6)− Σ3,6. Some important symmetric elements
of E(P3,6) are also provided in [8, 12]. But, all the symmetric elements of E(P3,6)
are not determined yet. In §3 of this article, we prove the following theorem about
the six dimensional PSD cone Ps03,6.

Theorem 1.5. There exists a non-empty open subset U ⊂ R3 such that for every
(u, v, w) ∈ U there exists fu,v,w ∈ Ps03,6 which satisfies the following (1), (2), (3)
and (4):
(1) fu,v,w(u, v, 1) = fu,v,w(w, 1, 1) = fu,v,w(1, 1, 1) = 0.
(2) fu,v,w is irreducible in C[x, y, z].
(3) fu,v,w ∈ E(P3,6)− Σ3,6.
(4) VC(fu,v,w) is an irreducible rational curve which has 10 acnodes.

The structure of U is very complicated to describe it. So, it will not be easy to
determine all the symmetric elements of E(P3,6).

Next, we consider the cases n=4. Let

S4
d :=

4∑
i=1

xdi ,

T 4
p,q :=

4∑
i=1

xpi (x
q
i+1 + xqi+2 + xqi+3),

S4
p,p :=

∑
1≤i<j≤4

xpi x
p
j ,

T 4
p,q,q :=

4∑
i=1

xpi (x
q
i+1x

q
i+2 + xqi+1x

q
i+3 + xqi+2x

q
i+3),

S4
p,p,p :=

4∑
i=1

xpi x
p
i+1x

p
i+2,

U4 := x1x2x3x4

wherer xi±4 = xi. We also use (a, b, c, d) instead of (x1, x2, x3, x4). The following
proposition is easy to prove but may not be well known. A proof will be given in
§2.2.

Proposition 1.6. The three dimensional PSD cone Ps+4,3 is a quadrangular cone

which has four extremal rays. Each edge of E(Ps+4,3) is generated by one of g3,s
1 :=

T 4
2,1−3S4

1,1,1, g3,s
2 := 3S4

3 +3S4
1,1,1−2T 4

2,1, g3,s
3 := S4

1,1,1, or g3,s
4 := S4

3 +3S4
1,1,1−T 4

2,1.

These g3,s
i are characterized in Ps+4,3 by the equality conditions

g3,s
1 (1, 0, 0, 0) = g3,s

1 (1, 1, 1, 1) = 0,

g3,s
2 (1, 1, 1, 0) = g3,s

2 (1, 1, 1, 1) = 0,
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g3,s
3 (1, 0, 0, 0) = g3,s

3 (1, 1, 0, 0) = 0,

g3,s
4 (1, 1, 0, 0) = g3,s

4 (1, 1, 1, 0) = 0.

Note that g3,s
1 , g3,s

2 , g3,s
3 /∈ E(P+

4,3). But g3,s
4 ∈ E(P+

4,3), and

g3,s
4 (a2, b2, c2, d2) ∈ E(P4,6)− Σ4,6.

All the elements of E(Ps04,4) and E(Ps0+
4,4 ) are completely determined in [2].

Theorem 1.7. ([2, Theorem 1.2]) Each extremal ray of the four dimensional PSD
cone Ps04,4 is generated by one of the following polynomials:

3gt(a, b, c, d) :=
(
a2 + b2 − c2 − d2 + (t+ 1)(cd− ab)

)2
+
(
a2 − b2 + c2 − d2 + (t+ 1)(bd− ac)

)2
+
(
a2 − b2 − c2 + d2 + (t+ 1)(bc− ad)

)2
(t ∈ R),

g∞(a, b, c, d) := (ab− cd)2 + (ac− bd)2 + (ad− bc)2,

p(a, b, c, d) := (a− b)2(c− d)2 + (a− c)2(b− d)2 + (a− d)2(b− c)2.

Conversely, these are extremal elements of Ps04,4.
gt (t 6= 1, −3) is characterized by the equality conditions gt(t, 1, 1, 1) = gt(−1,

−1, 1, 1) = 0. g1 is characterized by the equality conditions g1(x, x, 1, 1) = 0 for all
x ∈ P1

R. g−3 is characterized by the equality conditions g−3(a, b, c, −a− b− c) = 0
for all a, b, c ∈ R. g∞ is characterized by the equality conditions g∞(0, 0, 0,
1) = g∞(−1, −1, 1, 1) = 0.

p is characterized by the equality conditions p(0, 0, 0, 1) = 1 and p(s, 1, 1, 1) = 0
for all s ∈ R.

Using this, we have Ps04,4 ⊂ Σ4,4 and E(Ps04,4) ∩ E(P4,4) = ∅.

Theorem 1.8. ([2, Theorem 1.4]) Each extremal ray of the four dimensional PSD
cone Ps0+

4,4 is generated by one of the following polynomials:

3fabt (a, b, c, d) := 3S4
4 − 2(t+ 1)T 4

3,1 + 2(2t− 1)S4
2,2

+ (t2 + 3)T 4
2,1,1 − 12(t2 + 1)U4 (0 ≤ t ≤ 5),

9fct(a, b, c, d) := 9S4
4 − 6(t+ 1)T 4

3,1 + (t2 + 2t+ 19)S4
2,2

+ 2(t2 + 5t− 8)T 4
2,1,1 − 6(5t2 + 10t− 19)U4 (t ≥ 5),

p(a, b, c, d) := S4
2,2 − T 4

2,1,1 + 6U4.

q1(a, b, c, d) := T 4
3,1 − 2S4

2,2,

q2(a, b, c, d) := T 4
2,1,1 − 12U4.

Conversely, these are extremal elements of Ps0+
4,4 .

fabt (0 ≤ t < 1 or 1 < t ≤ 5) is characterized by the equality conditions

fabt (t, 1, 1, 1) = fabt (0, 0, 1, 1) = 0.

fab1 is characterized by the equality conditions fab1 (t, t, 1, 1) = 0 for all t ≥ 0 and
∂2

∂a2
fab1 (1, 1, 1, 1) = 0. fct (t > 5) is characterized by the equality conditions

fct(t, 1, 1, 1) = fct(0, 0, u, 1) = 0,

where u ∈ R+ is any root of 3u2 − (t+ 1)u+ 3 = 0. Moreover fct ∈ E(P+
4,4) if t > 5.

Thus E(Ps0+
4,4 ) ∩ E(P+

4,4) 6= ∅. p is characterized by the equality conditions

p(0, 0, 0, 1) = pa(0, 0, 0, 1) = p(x, 1, 1, 1) = 0
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for all x ≥ 0. q1 is characterized by the equality conditions

q1(1, 1, 1, 0) = q1(1, 1, 0, 0) = q1(1, 0, 0, 0) = 0.

q2 is characterized by the equality conditions q2(s, 1, 0, 0) = 0 for all s ≥ 0.

By the above representation, we have p(a2, b2, c2, d2), qi(a
2, b2, c2, d2) ∈ Σ4,8

(i = 1, 2). But if 0 < t ≤ 5 and t 6= 1 then fabt (a2, b2, c2, d2) /∈ Σ4,8, and if t > 5
then fct(a

2, b2, c2, d2) /∈ Σ4,8.

The set P4,4 −Σ4,4 is studied in many articles . Extremal elements of P4,4 have
similar properties with that of E(P3,6). If f ∈ E(P4,4) − Σ4,4 is irreducible, then
VC(f) is a K3-surface with 10 real rational double points of A1-type (see [4]). In
§2 of this article, we prove the following theorem about the five dimensional PSD
cone Ps4,4.

Theorem 1.9. There exists a non-empty open subset U ⊂ R2 (this U is described in
Theorem 2.5 and Theorem 2.6) and polynomials gt,u(a, b, c, d) ∈ Ps4,4 for (t, u) ∈ U
(this gt,u will be defined in Definition 2.1) which satisfy the following properties:
(1) gt,u(t, 1, 1, 1) = 0 and gt,u(u, u, 1, 1) = 0.
(2) gt,u ∈ E(P4,4)− Σ4,4.
(3) gt,u is irreducible in C[a, b, c, d].
(4) VR(gt,u) is a set of 10 isolated points.

As is stated after Theorem 1.7, we know that E(Ps04,4) ⊂ E(Ps4,4) ∩ Σ4,4 and

E(Ps04,4) ∩ E(P4,4) = ∅. But E(Ps4,4) ∩
(
E(P4,4) − Σ4,4

)
6= ∅ by the above theorem.

This fact suggests that E(Ps4,4) is very complicated.
In this article, many complicated calculations appear. In most of them, we use

the software Mathematica. The code for Mathematica can be found on the link of
the authors WEB or in arXiv’s anc folder.

2. Some extremal elements of Ps4,4
Among Theorem 1.4, 1.5 and 1.9, Theorem 1.9 is most easy to prove. So, we

start from this.

2.1. Quartic polynomial gt,u.

In this subsection, we prove Theorem 1.9. We have studied the structure of Ps04,4

in [2]. It is fairly simple. But the structure of Ps4,4 is very complicated. We only
provide here a family of extremal elements of Ps4,4. But these extremal elements
will be interesting with a view of theory of K3 surfaces.

In this section, we use the following symbols. We denote the standard coordinate
system of P3

R by (a0 : a1 : a2 : a3). We also denote a := a0, b := a1, c := a2, d := a3.
We choose the following s0,. . ., s4 as a basis of Hs4,4:

s0(a, b, c, d) := S4
4 − 4U4 = a4 + b4 + c4 + d4 − 4abcd,

s1(a, b, c, d) := T 4
3,1 − 12U4 =

1

2

∑
σ∈S4

a2
σ(0)aσ(1) − 12abcd,

s2(a, b, c, d) := S4
2,2 − 6U4 =

∑
0≤i<j≤3

a2
i a

2
j − 6abcd,

s3(a, b, c, d) := T 4
2,1,1 − 12U4 =

1

2

∑
σ∈S4

a2
σ(0)aσ(1)aσ(2) − 12abcd,

s4(a, b, c, d) := U4 = abcd.
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Note that {s0, s1, s2, s3} is a basis of Hs04,4. Let s(a, b, c, d) be the vector (s0, s1,

s2, s3, s4). We denote sa :=

(
∂s0

∂a
, . . . ,

∂s4

∂a

)
and so on.

Definition 2.1. For t, w, u, a, b, c, d ∈ R, we put

ω(u) := u+
1

u
− 2 =

(u− 1)2

u
,

pG0 (t, w) := (4t+ 2)w2 − 3(t− 1)2w,

pG1 (t, w) := −2(t+ 1)2w2 + 2(t+ 1)(t− 1)2w,

pG2 (t, w) := 4t2w2 − 2(t− 1)2(2t− 1)w + 2(t− 1)4,

pG3 (t, w) := 2(t+ 1)2w2 − (t− 1)2(t2 + 3)w − 2(t− 1)4,

pG4 (t, w) := 2(t− 1)4w2,

gt,u(a, b, c, d) := u2
4∑
i=0

pGi (t, ω(u))si(a, b, c, d).

Note that if (t, u) = (1, 1), then g1,1 = 0.

Theorem 2.2. Let t, u ∈ R. Aline 4 vectors s(t, 1, 1, 1), sa(t, 1, 1, 1), s(u, u, 1, 1),
sa(u, u, 1, 1) and make a 4 × 5 matrix A(t, u). Moreover, put e1 = (1, 0, 0, 0, 0) at
the top of A(t, u), and make 5× 5 matrix B(t, u). Then

detB(t, u) = 3(t− 1)2(u2 − 1)u2pG0 (t, ω(u)).

If detB(t, u) 6= 0, then KerA(t, u) is generated by gt,u.

Proof. This follows from a direct calculation using Mathematica. �

By the above theorem, if gt,u ∈ Ps4,4 and detB(t, u) 6= 0, then gt,u ∈ E(Ps4,4).
As a special case of [15, Corollary 1.3] or [16, Corollary 2.1], we have the following
Lemma. See also [17] and [18].

Lemma 2.3. Let f ∈ Hs4,4. Then, f ∈ Ps4,4 if and only if the following (1) and (2)
hold:
(1) f(x, x, 1, 1) ≥ 0 for all x ∈ R.
(2) f(x, 1, 1, 1) ≥ 0 for all x ∈ R.

Theorem 2.4. Let

VF (t, w) := (3 + 6t− t2)w2 − 6(t− 1)2w.

Assume that u 6= 0, 1. Then gt,u ∈ Ps4,4 if and only if VF (t, ω(u)) ≥ 0. Moreover,
−gt,u /∈ Ps4,4 for any t, u ∈ R.

Proof. If u 6= 0, 1, then w := ω(u) 6= 0. Let

g∗t,w(a, b, c, d) :=

4∑
i=0

pGi (t, w)si(a, b, c, d).

Then gt,u(a, b, c, d) = u2g∗t,ω(u)(a, b, c, d). Thus, gt,u ∈ Ps4,4 if and only if g∗t,ω(u) ∈
Ps4,4. Since g∗t,w(1, 0, 0, 0) = pG0 (t, w), if f ∈ Ps4,4 then pG0 (t, w) ≥ 0. Since

2pG0 (t, w)− VF (t, w) = (t+ 1)2w2 > 0,

if VF (t, w) ≥ 0 then pG0 (t, w) > 0. Since

g∗t,w(x, x, 1, 1) = 2(t− 1)4
(
xw − (x− 1)2

)2 ≥ 0,
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(1) of Lemma 2.3 holds. This also proves that −gt,u /∈ Ps4,4 if t 6= 1. −g1,u /∈ Ps4,4
follows from pG0 (1, w) = 6w2 > 0. On the other hand,

g∗t,w(x, 1, 1, 1) = (x− t)2

(
pG0 (t, w)

(
x− a1(t, w)

pG0 (t, w)

)2

+
(t− 1)2w2VF (t, w)

pG0 (t, w)

)
,

where a1(t, w) := (3 + 4t − t2)w2 − 3(t − 1)2w. Thus, if VF (t, w) ≥ 0, then (2)
of Lemma 2.3 holds. Conversely, consider the case x = a1(t, w)/pG0 (t, w), VF (t,
w) ≥ 0 is necessary for (2). �

Theorem 2.5. Let

DF (t, u) := (3 + 6t− t2)− (13 + 6t+ 5t2)u

+ (10 + 9t+ 4t2 + t3)u2 − (1 + 6t+ t2)u3.

Assume that t /∈ {0, 1}, u /∈ {0, ±1}, 2u 6= t + 1, tu + u 6= 2, DF (t, u) 6= 0 and
VF (t, ω(u)) > 0. Then gt,u ∈ E(P4,4).

Proof. Let ei(a, b, c, d) (i = 1,. . ., 35) be all the monic monomials of H4,4. Every
f ∈ H4,4 can be written as f = c1e1 + · · ·+ c35e35 (∃ci ∈ R).

Let a1 := (t, 1, 1, 1), a2 := (1, t, 1, 1), a3 := (1, 1, t, 1), a4 := (1, 1, 1, t), a5 :=
(u, u, 1, 1), a6 := (u, 1, u, 1), a7 := (u, 1, 1, u), a8 := (1, u, u, 1), a9 := (1, u, 1, u),
a10 := (1, 1, u, u). Consider the following 34 equations for f .

f(ai) = 0, fa(ai) = 0, fb(ai) = 0, fc(ai) = 0 (i = 1,. . ., 7),

f(a8) = 0, fa(a8) = 0, fb(a8) = 0,

f(a9) = 0, fa(a9) = 0,

f(a10) = 0.

This system of equalities can be written using a 34 × 35 matrix At,u and a vector
cf := t(c1,. . ., c35) as At,ucf = 0. Note that if f = gt,u, the condition Acf = 0 is
satisfied. Thus, gt,u ∈ KerAt,u.

Let Bt,u be the 35× 35 matrix obtained by putting e1 = (1, 0,. . ., 0) at the top
of A. Then

detBt,u = ±t(t− 1)29u5(u− 1)27(u+ 1)9(t− 2u+ 1)4(tu+ u− 2)3

× pG0 (t, ω(u))VF (t, ω(u))DF (t, u)2.

Remember that if VF (t, w) > 0, then pG0 (t, w) > 0. Thus, under the given condition,
we have detBt,u 6= 0. Therefore, dim KerAt,u = 1 and KerAt,u = R ·gt,u. We have
gt,u ∈ P4,4 by the previous theorem.

Assume that gt,u = f + g (f , g ∈ P4,4). Then f , g ∈ KerAt,u = R · gt,u. Thus
we have gt,u ∈ E(P4,4). �

Theorem 2.6. Assume that t 6= 1, u /∈ {0, ±1} and VF (t, ω(u)) > 0. Moreover,
we assume gt,u ∈ E(P4,4). then gt,u(a, b, c, d) is irreducible in C[a, b, c, d] and gt,u /∈
Σ4,4.

Proof. Let a1 := (t, 1, 1, 1),. . ., a10 := (1, 1, u, u) be the same as in the proof of
Theorem 2.5.

(1) We prove that if t 6= 1, u /∈ {0, ±1} and VF (t, ω(u)) > 0, then there exists
no quadric g ∈ C[a, b, c, d] such that g(ai) = 0 for all i = 1,. . ., 10.

Let q1,. . ., q10 be all the monic monomials of H4,2. Every g ∈ H4,2 can be
written as g = c1q1 + · · · + c10q10 (∃ci ∈ R). Consider the 10 equations g(ai) = 0
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for all i = 1,. . ., 10. This system of equalities can be written by a 10 × 10 matrix
Bt,u =

(
ei(aj)

)
, and a vector cg := t(c1,. . ., c10) as Bt,ucg = 0. Using PC, we have

detBt,u = ±(t− 1)6(u− 1)5(u+ 1)3u2VF (t, ω(u)) 6= 0.

Thus, KerBt,u = 0 and we have (1).

(2) Note that if f ∈ E(P4,4) ∩ Σ4,4, then there exists a quadric g ∈ H4,2 such

that f = g2. If gt,u = g2, then
(
g(ai)

)2
= gt,u(ai) = 0. But this is impossible by

(1). Thus, g /∈ Σ4,4.

(3) We shall show that gt,u is irreducible if gt,u ∈ E(P4,4). Assume that gt,u = gh
(∃g, h ∈ C[a, b, c, d]− C) with deg g ≤ deg h. Then deg g ≤ 2. As is well known, g
and h are homogeneous.

(3-1) Consider the case deg g = 2 and αg /∈ R[a, b, c, d] for any α ∈ C×.
Then gt,u can be divided by the complex conjugate g. We may assume that

gt,u = gg. Then g(ai) = 0 for all i = 1,. . ., 10. This is impossible by (1).

(3-2) Consider the case deg g = 2 and g ∈ R[a, b, c, d].
Note that VC(gt,u) = VC(g) ∪ VC(h). If VC(g) = VC(h), then there exists α ∈ R

such that h = αg. Thus, gt,u = αg2. Then g(ai) = 0 for all i = 1,. . ., 10. This is
impossible by (1). So VC(g) 6= VC(h). It is easy to see that g, h ∈ E(P4,2), otherwise
f /∈ E(P4,4). Since P4,2 = Σ4,2, there exists g1, h1 ∈ H4,1 such that g = g2

1 , h = h2
1.

So, at least 5 points among a1,. . ., a10 lie on the line VR(g1) or VR(h1). This is
impossible.

(3-3) Consider the case deg g = 1 and αg ∈ R[a, b, c, d] for any α ∈ C×.
Then gt,u change the signature across VR(g) unless gt,u is divisible by g2. This

is impossible by (3-2).

(3-4) Consider the case deg g = 1 and g /∈ R[a, b, c, d].
Then gt,u can be divided by the complex conjugate g. So, we can write gt,u =

ggh. This is impossible by (3-2). �

Thus, we obtain Theorem 1.9.

2.2. Proof of Proposition 1.6.

There are many ways to prove Proposition 1.6. We give a short direct proof
which use theory of PSD cone. Note that by [15, Corollary 1.3], the following
lemma holds.

Lemma 2.7. Let f ∈ Hs4,3. Then f ∈ Ps+4,3 if and only if

f(0, 0, x, 1) ≥ 0, f(0, x, 1, 1) ≥ 0, f(x, x, 1, 1) ≥ 0, f(x, 1, 1, 1) ≥ 0

for all x ≥ 0.

Proof of Proposition 1.6. Choose s0 := S4
3 −S4

1,1,1, s1 := T 4
2,1− 3S4

1,1,1, s2 := S4
1,1,1

as a basis of Hs4,3, where S4
3 = a3 + b3 + c3 + d3, S4

1,1,1 := bcd + acd + abd + abc,

and T 4
2,1 := a2(b+ c+ d) + b2(a+ c+ d) + c2(a+ b+ d) + d2(a+ b+ c). Remember

that g3,s
1 = s1, g3,s

2 = 3s0 − 2s1, g3,s
3 = s2 and g3,s

4 = s0 − s1 + s2.
Define Φs4,3 : P3

+ → P2
R by Φs4,3(a) =

(
s0(a) : s1(a) : s2(a)

)
. Let Xs+

4,3 := Φs4,3(P3
+).

As [2, Example 3.2(4)],

A+
s :=

{
(a : b : c : 1) ∈ P3

R
∣∣ 0 ≤ a ≤ b ≤ c ≤ 1

}
is a fundamental domain of Φs4,3. Let Φ: A+

s → Xs+
4,3 be the restriction of Φs4,3.

The above lemma implies that ∂Xs+
4,3 is included in the image of 6 edges of the
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tetrahedron A+
s by Φ. Using this, it is easy to see that the convex closure of Xs+

4,3

is a quadrilateral P0P1P2P3, where

P0 = Φ(0: 0 : 0 : 1) = (1: 0 : 0), P1 = Φ(0: 0 : 1 : 1) = (1: 1 : 0),

P2 = Φ(0: 1 : 1 : 1) = (2: 3 : 1), P3 = Φ(1: 1 : 1 : 1) = (0: 0 : 1).

By [1, Proposition 1.14(2)], P(Ps+4,3) is the dual of the convex closure of Xs+
4,3 . Thus,

P(Ps+4,3) is a quadrilateral whose vertices are g3,s
1 = s1 (dual of P3P0), g3,s

2 = 3s0−2s1

(dual of P2P3), g3,s
3 = s2 (dual of P0P1), and g3,s

4 = s0− s1 + s2 (dual of P1P2).

Corollary 2.8. Let f ∈ Hs4,3. Then f ∈ Ps+4,3 if and only if

f(0, 0, 0, 1) ≥ 0, f(0, 0, 1, 1) ≥ 0, f(0, 1, 1, 1) ≥ 0, and f(1, 1, 1, 1) ≥ 0.

We define the map ϕn : Hsn,d −→ Hsn+1,d by

ϕn
(
f(a1, . . . , an)

)
:=

n∑
i=1

f(a1, . . . , ai−1, ai+1, . . . , an+1).

If n ≥ d, then ϕn is an isomorphism (see [7, Proposition 2.3]). In general, ϕn(Ps+n,d)
⊂ Ps+n+1,d. Especially ϕ3 : Hs3,3 −→ Hs4,3 is an isomorphism. Note that ϕ3(f3,s

1 ) =

2g3,s
1 , ϕ3(f3,s

2 ) = g3,s
2 and ϕ3(f3,s

3 ) = g4,s
3 , where f3,s

i are defined in Proposition

1.1. This implies g3,s
1 , g3,s

2 , g3,s
3 /∈ E(P4,3). Thus, we have:

Corollary 2.9. ϕ3

(
E(Ps+3,3)

)
⊂ E(Ps+4,3) 6⊂ E(P+

4,3).

But, it seems that ϕn(E(Ps+n,d)) ⊂ E(Ps+n+1,d) and ϕn(E(Psn,2d)) ⊂ E(Psn+1,2d)
don’t hold in general.

Theorem 2.10. g3,s
4 (a2, b2, c2, d2) ∈ E(P4,6)− Σ4,6 and g3,s

4 (a, b, c, d) ∈ E(P+
4,3).

Proof. (1) We prove g3,s
4 (a2, b2, c2, d2) ∈ E(P4,6).

Put g(a, b, c, d) := g3,s
4 (a2, b2, c2, d2) ∈ P4,6. Let e1,. . ., e84 be all the monic

monomials in H4,6. We define τ ∈ Aut(H4,6) by τ(a, b, c, d) = (−a, b, c, d). Let
G ⊂ Aut(H4,6) be the subgroup generated by τ and the symmetric group S4, and
let

Z1 :=
{
σ(1, 1, 1, 0)

∣∣ σ ∈ G}, Z2 :=
{
σ(1, 1, 0, 0)

∣∣ σ ∈ G}.
The set Z1 consists of 4× 4 = 16 points and Z2 consists of 6× 2 = 12 points. Let
Z1 ∪ Z2 = {z1,. . ., z28}, and

a5i−4,j := ej(zi), a5i−3,j :=
∂ej
∂a

(zi), a5i−2,j :=
∂ej
∂b

(zi),

a5i−1,j :=
∂ej
∂c

(zi), a5i,j :=
∂ej
∂d

(zi),

for 1 5 i 5 28 and 1 5 j 5 84. Construct a 140× 84 matrix A = (ai,j).
Note that g(a, b, c, d) ∈ KerA. Using Mathematica, we have rankA = 83.

Thus KerA = R · g(a, b, c, d). This implies g(a, b, c, d) ∈ E(P4,6). Therefore,

g3,s
4 (a, b, c, d) ∈ E(P+

4,3).

(2) We prove g(a, b, c, d) /∈ Σ4,6.
Assume that g(a, b, c, d) ∈ Σ4,6. Then, there exists h(a, b, c, d) ∈ H4,3 such

that g(a, b, c, d) = h(a, b, c, d)2. We have h(zi) = 0 for i = 1,. . ., 28, because
g(zi) = 0. Using Mathematica, we can check that there exists no such cubic
h(a, b, c, d) ∈ H4,3. In fact, we can check this as the following. Let e′1,. . ., e′20 be all
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the monic monomials in H4,3, and construct 28 × 20 matrix B :=
(
e′i(zj)

)
. Then

rankB = 20 and KerB = 0. �

Conjecture 2.11. Let n ≥ 3 and bi := (0, . . . , 0︸ ︷︷ ︸
n−i

, 1, . . . , 1︸ ︷︷ ︸
i

). The three dimensional

PSD cone Ps+n,3 will be a polyhedral cone whose basis is a n-gon. The extremal rays

R+ · fi of Ps+n,3 will satisfy the following: fi(bi) = fi(bi+1) = 0 for i = 1,. . ., n− 1,

and fn(bn) = fn(b1) = 0.

3. Some extremal elements of Ps03,6

In this section, we prove Theorem 1.5. Our idea of proof is similar to that of
Theorem 1.9. But it is more difficult to judge whether f ∈ Hs03,6 is PSD or not.

In this section, we use the following symbols. We denote the coordinate system
of P2

R by (a : b : c), and put

Sm,n = Sm,n(a, b, c) := ambn + bmcn + cman,

Sn := Sn(a, b, c) = Sn,0(a, b, c) = an + bn + cn,

Tm,n := Sm,n(a, b, c) + Sn,m(a, b, c),

U = U(a, b, c) := abc.

3.1. Preparation.

We use the following theorem.

Theorem 3.1. If f ∈ P3,6 is an exposed extremal element and f /∈ Σ3,6, then
VC(f) is an irreducible rational curve which has 10 acnodes P1,. . ., P10, and VR(f) =
{P1,. . ., P10}. On the other hand, if f ∈ P3,6 and VC(f) is an irreducible curve
which has 10 nodes in P2

R, then f ∈ E(P3,6).

The latter half of the above theorem was proved in [14, Theorem 7.2] and the
first half was proved in [4, Remark 8]. See also [3, Theorem 2.17].

Assume that u 6= 1, v 6= 1, w 6= 1 and u 6= v. If f ∈ Ps03,6 satisfies f(u, v, 1) = 0
and f(w, 1, 1) = 0, then VR(f) contains 10 points (1 : 1 : 1), (u : v : 1), (u : 1 : v),
(v : u : 1), (v : 1 : u), (1 : u : v), (1 : v : u), (w : 1 : 1), (1 : w : 1), (1 : w : 1). Moreover,
if f is irreducible in C[a, b, c], then f ∈ E(P3,6). In this case f /∈ Σ3,6. Because, if
f ∈ Σ3,6, then f is a square of a cubic polynomial. This is impossible, because f is
irreducible.

Definition 3.2. In this section, we say 10 points P1,. . ., P10 ∈ P2
R are in general

position, if the following (1) and (2) hold.
(1) No three points are colinear.
(2) There exists no cubic homogeneous polynomial g ∈ C[a, b, c] − {0} such that

g(Pi) = 0 for all i = 1,. . ., 10,

In the above definition, we don’t assume that ‘no 6 points are on a same quadric
curve’. So, this is an unusual definition.

Lemma 3.3. Let f ∈ P3,6. Assume that {c1,. . ., c10} ⊂ VR(f) and c1,. . ., c10 are
in general position. Then f is irreducible in C[a, b, c] and f /∈ Σ3,6.
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Proof. (1) Assume that f = g2
1 + · · ·+ g2

r ∈ Σ3,6. Then cubic polynomials gi satisfy
gi(ci) = 0 for all i = 1,. . ., 10. This contradicts to our assumption that c1,. . ., c10

are in general position.

(2) Assume that f is reducible in C[a, b, c]. Reznick has proved in [14, Lemma
7.1] that if f ∈ P3,6 is reducible, then f ∈ Σ3,6. �

Proposition 3.4. For a, b, c, w ∈ R and u = (u : v : 1) ∈ P2
R, let

δ1(a, b, c, w) := 2S3(a, b, c)− (w + 2)T2,1(a, b, c) + (6w + 6)U(a, b, c),

δ2(a, b, c, w) := (2w + 1)S2(a, b, c)− (w2 + 2)S1,1(a, b, c),

Vu,v,w :=

{
(1 : 1 : 1), (u : v : 1), (v : u : 1), (u : 1 : v), (v : 1 : u),

(1 : u : v), (1 : v : u), (w : 1 : 1), (1 : w : 1), (1 : 1 : w)

}
⊂ P2

R.

Then 10 points of Vu,v,w are in general position if and only if the following (1), (2)
and (3) hold:
(1) δ1(u, v, 1, w) 6= 0 and δ2(u, v, 1, w) 6= 0.
(2) u 6= 1, v 6= 1, w 6= 1, u 6= v and u+ v + 1 6= 0.
(3) u+ v 6= 2 and 2u− v 6= 1.

Proof. Let ei(a, b, c) (i = 1,. . ., 10) are all the monic cubic monomials and let Pj
(j = 1,. . ., 10) are 10 points in Vu,v,w. Put ai,j := ei(Pj) and construct a 10 × 10
matrix A := (ai,j). Then

detA = ±(u− v)3(v − 1)3(1− u)3(u+ v + 1)2(w − 1)4δ1(u, v, 1, w)δ2(u, v, 1, w)2.

Thus, (2) of Definition 3.2 holds if and only if (1) and (2) of this proposition hold.
It is easy to see that no three points are colinear, if and only if (2) and (3)

hold. �

3.2. Sextic polynomial fu,w.

Definition of the sextic polynomial fu,w is somewhat long and complicated. But
this polynomial plays main role in this section. Please see Proposition 3.5 about
the reason why such polynomial appears.

For a = (a, b, c) ∈ R3 and l, m, n ∈ N ∪ {0} with l > m > n, we denote

Tl,m,n := albmcn + albncm + amblcn + ambncl + anblcm + anbmcl,

Sl,m,m := albmcm + amblcm + ambmcl,

Sl,l,m := Sm,l,l = alblcm + albmcl + amblcl,

Ul := alblcl = U l.

Note that Tl,m,0 = Tl,m, Sl,l,0 = Sl,l, Sl,0,0 = Sl and U1 = U .
We choose s0 := S6 − 3U2, s1 := T5,1 − 6U2, s2 := T4,2 − 6U2, s3 := S3,3 − 3U2,

s4 := S4,1,1 − 3U2, s5 := T3,2,1 − 6U2 as a basis of Hs03,6.

Let u = (u1, u2, u3) ∈ R3 and w ∈ R. Now we shall construct a polynomial
fu,w ∈ Hs03,6 which satisfies

fu,w(u) = 0 and fu,w(w, 1, 1) = 0.

Afterward we discuss about the condition for (u, w) for fu,w ∈ Ps03,6. The polynomial
fu,w ∈ H3,6 is defined by

fu,w(a, b, c) :=

5∑
i=0

pFi (u, w)si(a, b, c),
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where we define the coefficients pFi (a, b, c, w) (i = 0,. . ., 5) as follows:

pF0 (a, w) := T10,2 + (4w2 − w − 4)T9,3 + (−4w3 − w2 + 2w + 4)T8,4

+ (4 + w − 4w2 + w4)T7,5

+ (2w4 + 8w3 + 2w2 − 4w − 10)S6,6

+ 2S10,1,1 + (−4w2 − 7w − 8)T9,2,1 + (w2 + 16w + 12)T8,3,1

+ (w4 + 8w3 − 9w2 − 34w − 8)T7,4,1

+ (−13w4 − 16w3 + 12w2 + 25w + 2)T6,5,1

+ (8w3 + 24w2 + 60w + 28)S8,2,2

+ (−2w4 − 16w3 − 59w2 − 87w − 36)T7,3,2

+ (26w4 + 84w3 + 135w2 + 88w + 23)T6,4,2

+ (12w4 − 56w3 − 168w2 − 108w − 16)S5,5,2

+ (−26w4 − 56w3 + 62w2 + 102w + 30)S6,3,3

+ (−12w4 − 48w3 − 80w2 − 38w − 2)T5,4,3

+ (30w4 + 240w3 + 270w2 + 60w − 30)U4,

pF1 (a, w) := −2T11,1 + (−4w2 + 2w + 6)T10,2 + (−2w2 − 2w − 2)T9,3

+ (3w4 + 4w3 + 5w2 − 4w − 8)T8,4 + (−w5 − w4 + 2w2 + 2w + 4)T7,5

+ (−2w5 − 8w4 − 8w3 − 2w2 + 4w + 4)S6,6

+ (8w2 + 8w + 8)S10,1,1 + (−2w2 − 26w − 16)T9,2,1

+ (−2w3 + 13w2 + 49w + 18)T8,3,1

+ (−w5 − 7w4 − 10w3 − 17w2 − 11w − 8)T7,4,1

+ (13w5 + 25w4 + 20w3 − 2w2 − 20w)T6,5,1

+ (−6w4 − 12w3 − 12w2 − 6w)S8,2,2

+ (2w5 + 14w4 + 42w3 + 27w2 + 9w + 14)T7,3,2

+ (−26w5 − 89w4 − 136w3 − 87w2 − 24w − 10)T6,4,2

+ (−12w5 + 30w4 + 108w3 + 132w2 + 90w + 12)S5,5,2

+ (26w5 + 68w4 + 32w3 − 18w2 − 60w − 24)S6,3,3

+ (12w5 + 48w4 + 72w3 + 48w2 + 12w − 6)T5,4,3

+ (−30w5 − 210w4 − 300w3 − 210w2 − 30w + 60)U4,

pF2 (a, w) := S12 + (−4w2 − w)T11,1 + (12w3 + 7w2 − 2w − 7)T10,2

+ (−9w4 − 8w3 − 2w2 + 4w + 4)T9,3

+ (2w5 − 4w4 − 12w3 − 3w2 + 6w + 11)T8,4

+ (4w5 + 4w4 + 8w3 + 6w2 − 3w − 4)T7,5

+ (4w5 − 2w4 − 8w2 − 8w − 10)S6,6 + (8w3 + 5w2 + 8w)S10,1,1

+ (−15w4 − 30w3 − 12w2 + 18w + 10)T9,2,1

+ (8w5 + 47w4 + 54w3 − 4w2 − 52w − 20)T8,3,1

+ (−w6 − 13w5 − 4w4 + 10w3 + 4w2 − 5w)T7,4,1

+ (−3w6 − 15w5 − 24w4 − 2w3 + 11w2 + 32w + 10)T6,5,1

+ (12w5 + 33w4 − 12w3 − 24w2 − 36w − 9)S8,2,2
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+ (−3w6 − 32w5 − 44w4 − 22w3 + 100w2 + 79w + 30)T7,3,2

+ (12w6 + 36w5 + 42w4 − 68w3 − 158w2 − 110w − 36)T6,4,2

+ (3w6 + 12w5 + 36w4 + 48w3 + 54w2 + 102w + 24)T5,5,2

+ (3w6 + 2w5 − 10w4 − 20w3 + 33w2 − 24w − 20)S6,3,3

+ (−6w6 − 3w5 − 6w4 + 60w3 + 57w2 + 33w + 6)T5,4,3

+ (−12w6 − 12w5 − 93w4 − 84w3 − 192w2 − 120w + 18)U4,

pF3 (a, w) := (4w2 − 2)S12 + (−8w3 − 4w2 + 2w + 4)T11,1

+ (5w4 + 4w3 + 5w2)T10,2 + (−w5 + 3w4 − 8w3 − 8w2 − 2w + 4)T9,3

+ (−2w5 + 12w4 + 8w3 + 6w2 − 8w − 14)T8,4

+ (−5w5 + 7w4 + 16w3 + 12w2 − 8)T7,5

+ (−8w5 − 14w4 − 24w3 − 30w2 + 16w + 32)S6,6

+ (14w4 + 24w3 + 12w2 − 32w − 20)S10,1,1

+ (−7w5 − 27w4 − 36w3 + 4w2 + 30w + 28)T9,2,1

+ (w6 + 7w4 + 16w3 − 10w2 − 26w − 20)T8,3,1

+ (3w6 − 6w5 − 49w4 − 80w3 + 6w2 + 100w + 32)T7,4,1

+ (4w6 + 29w5 + 35w4 + 4w3 − 8w2 − 74w − 24)T6,5,1

+ (2w6 + 36w5 + 84w4 + 144w3 + 48w2 − 36w − 38)S8,2,2

+ (−7w6 − 27w5 − 122w4 − 96w3 − 130w2 − 2w − 16)T7,3,2

+ (2w6 + 68w5 + 175w4 + 292w3 + 217w2 + 92w + 46)T6,4,2

+ (−32w6 − 108w5 − 222w4 − 216w3 − 48w2 − 168w − 40)S5,5,2

+ (6w6 + 46w5 + 68w4 + 112w3 − 120w2 − 36w + 28)S6,3,3

+ (−56w5 − 92w4 − 200w3 − 92w2 − 14w + 4)T5,4,3

+ (54w6 + 144w5 + 486w4 + 408w3 + 414w2 + 180w − 96)U4,

pF4 (a, w) := 2S12 + (8w2 + 2w − 4)T11,1 + (−8w3 − 4w2 − 4w − 2)T10,2

+ (6w4 + 10w3 + 9w2 + 3w + 4)T9,3

+ (−4w5 − w4 − 5w2 − 2w + 6)T8,4

+ (w6 − 4w5 + 5w4 − 10w3 − 17w2 − 5w)T7,5

+ (2w6 + 24w4 + 16w3 + 18w2 + 12w − 12)S6,6

+ (−48w3 − 66w2 − 48w)S10,1,1

+ (42w4 + 98w3 + 143w2 + 89w + 36)T9,2,1

+ (−16w5 − 88w4 − 188w3 − 242w2 − 140w − 58)T8,3,1

+ (3w6 + 30w5 + 69w4 + 168w3 + 222w2 + 156w + 18)T7,4,1

+ (−7w6 − 22w5 − 67w4 − 118w3 − 65w2 − 59w + 8)T6,5,1

+ (−24w5 − 96w4 − 120w3 − 138w2 − 84w − 42)S8,2,2

+ (4w6 + 56w5 + 98w4 + 226w3 + 103w2 + 67w − 2)T7,3,2

+ (2w6 + 32w5 + 23w4 + 60w3 + 67w2 + 52w + 40)T6,4,2

+ (6w6 + 24w5 + 42w4 − 78w2 − 240w − 60)S5,5,2

+ (−32w6 − 108w5 − 252w4 − 300w3 − 306w2 − 18w + 80)S6,3,3
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+ (−42w5 − 12w4 − 60w3 + 12w2 − 24)T5,4,3

+ (54w6 + 144w5 + 396w4 + 288w3 + 324w2 + 180w − 36)U4,

pF5 (a, w) := (−4w2 − 4w − 2)S12 + (8w3 + 10w2 + 10w + 6)T11,1

+ (−9w4 − 22w3 − 24w2 − 9w − 4)T10,2

+ (5w5 + 11w4 + 22w3 + 19w2 + 7w − 2)T9,3

+ (−w6 + w5 − 8w4 + 4w3 + 4w2 − 2w + 2)T8,4

+ (−w6 − 21w4 − 30w3 − 29w2 − 17w − 4)T7,5

+ (8w5 + 14w4 + 36w3 + 48w2 + 30w + 8)S6,6

+ (−6w4 + 4w3 − 10w2 + 2w − 8)S10,1,1

+ (3w5 + 9w4 + 14w3 − 37w2 − 31w − 20)T9,2,1

+ (−w6 − 2w5 + w4 + 46w3 + 129w2 + 81w + 40)T8,3,1

+ (−2w6 − 7w5 − 19w4 − 78w3 − 119w2 − 107w − 10)T7,4,1

+ (5w6 + 2w5 + 41w4 + 86w3 + 27w2 + 45w − 8)T6,5,1

+ (−18w5 − 24w4 − 36w3 + 42w2 + 66w + 42)S8,2,2

+ (5w6 + 9w5 + 42w4 − 108w3 − 70w2 − 82w − 12)T7,3,2

+ (−7w6 − 37w5 − 19w4 − 22w3 − 16w2 − 25w − 30)T6,4,2

+ (6w6 + 6w5 − 42w4 − 60w3 − 30w2 + 162w + 48)S5,5,2

+ (6w6 + 6w5 + 96w4 + 184w3 + 272w2 + 44w − 56)S6,3,3

+ (24w5 − 36w4 + 24w3 + 6w2 + 30w + 30)T5,4,3

+ (−24w6 + 6w5 − 66w4 − 48w3 − 354w2 − 300w − 24)U4.

Since fλu,w(a) = λ12fu,w(a) and fu,w(λa) = λ6fu,w(a), we may regard a ∈ P2
R and

u ∈ P2
R, when we discuss sign

(
fu,w(a)

)
.

Proposition 3.5. Assume that u 6= 1, v 6= 1, w 6= 1, u 6= v and pF0 (u, v, 1, w) 6= 0.
Let u = (u : v : 1). If f ∈ Hs3,6 satisfies the system of equations

f(u, v, 1) = fa(u, v, 1) = fb(u, v, 1) = f(w, 1, 1) = fa(w, 1, 1) = fb(w, 1, 1) = 0 (∗)
then there exists α ∈ R such that f = αfu,w. Where fa := ∂f(a, b, c)/∂a and
fb := ∂f(a, b, c)/∂b.

In other word if f ∈ Ps3,6 satisfies

f(u, v, 1) = f(w, 1, 1) = 0,

then f = αfu,w.

Proof. It is easy to check that fu,w satisfies (∗) using PC. Let s := (s0,. . ., s5),

sa :=
∂

∂a
s and so on. Construct 5 × 6 matrix A aligning s(u, v, 1), sa(u, v, 1),

sb(u, v, 1), s(w, 1, 1) and sa(w, 1, 1). If f satisfies (∗), then f ∈ KerA. Put e1 = (1,
0,. . ., 0) at the top of A, and construct a 6× 6 matrix B. Then

detB = ±2(u− v)(v − 1)(1− u)(w − 1)4pF0 (u, v, 1, w).

By our assumption, detB 6= 0. Thus, dim(KerA) = 1, and we have the conclusion.
�

Note that VR(fu,w) ⊃ Vu,v,w if u = (u, v, 1), where Vu,v,w was defined in Propo-
sition 3.4.
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3.3. When is fu,w PSD?

Next our work is to find an open set U ⊂ R3 such that fu,w ∈ P3,6 for every (u,
v, w) ∈ U with u = (u, v, 1). We have already proved that if fu,w is PSD then
fu,w ∈ E(P3,6)− Σ3,6. We use the next lemma instead of [15].

Lemme 3.6. Take f(a, b, c) ∈ Hs3,6. Let σ1 := a + b + c, σ2 := ab + bc + ca,
σ3 := abc, and denote

f(a, b, c) = g0σ
2
3 + g1(σ1, σ2)σ3 + g2(σ1, σ2) (g0 ∈ R, g1(p, q), g2(p, q) ∈ R[p, q]).

We also fix the following symbols.

D(p, q) := g1(p, q)2 − 4g0g2(p, q),

h1(t) := 2sg0 + g1(t+ 2, 2t+ 1).

If g0 ≤ 0, then we put I1 := ∅. If g0 > 0, then we put

I1 :=
{
t ∈ R

∣∣ −2 ≤ t ≤ 1 and D(t+ 2, 2t+ 1) > 0
}
.

Then f ∈ P3,6 if and only if the following condition (1) holds, and for every t ∈ I1
(depending on t), one of (2) or (3) holds.

(1) f(0, 0, 1) ≥ 0 and f(x, 1, 1) ≥ 0 for all x ∈ R.
(2) h1(t) ≥ 0.

(3) (1 + 2t)(4− t)h1

(
4− t
1 + 2t

)
≤ 0.

Proof. We use [1, Theorem 6.1]. In Theorem 6.1, (3) is stated as h2((1 + 2t)/(4−
t)) ≤ 0, where h2(τ) := 2τ2g0 + g1(2τ + 1, τ2 + 2τ). Put τ := (1 + 2t)/(4 − t). In
our case, h2(τ) = τ3h1(1/τ). Then, h2(τ) ≤ 0 if and only if (1 + 2t)(4− t)h1((4−
t)/(1 + 2t)) ≤ 0. �

Using the above Lemma, we can theoretically describe the semialgebraic set

X :=
{

(u, v, w) ∈ R3
∣∣ fu,v,1,w ∈ P3,6

}
.

But, it is not easy to describe this semialgebraic set. On the other hand, D(t+ 2,
2t+ 1) is not so complicated.

Definition 3.7. As the above lemma, we represent

fu,w(a, b, c) = g0(u, w)σ2
3 + g1(σ1, σ2,u, w)σ3 + g2(σ1, σ2,u, w).

where u ∈ R3 and w ∈ R. Note that

g0 = −9(pF1 + pF2 + pF5 ),

g1 = (6pF0 − pF1 − 2pF2 + pF4 )σ3
1 + (−12pF0 + 7pF1 + 4pF2 − 3pF3 − 3pF4 + pF5 )σ1σ2,

g2 = pF0 σ
6
1 + (−6pF0 + pF1 )σ4

1σ2 + (9pF0 − 4pF1 + pF2 )σ2
1σ

2
2

+ (−2pF0 + 2pF1 − 2pF2 + pF3 )σ3
2 .

Symmetric polynomials δ1 and δ2 are defined in Proposition 3.4. We also put

δ3(a, b, c, w) := S4 − (w + 1)T3,1 + (w2 + 2w)S2,2 − (w2 − 1)US1,

δ4(a, b, c, w) := 2S5 − (2w + 3)T4,1 + (−w2 + 2w + 1)T3,2

+ 4(w + 1)2US2 − (2w2 + 8w + 2)US1,1,

δ5(a, b, c, w) := (w + 1)S3 − (w2 + w + 1)T2,1 + (w3 + 3w2 + 6w + 2)U

= ((w + 1)a− b− c)((w + 1)b− c− a)((w + 1)c− a− b),
h1(t,u, w) := 2tg0(u, w) + g1(t+ 2, 2t+ 1,u, w),

Df (t,u, w) := g1(t+ 2, 2t+ 1,u, w)2 − 4g0(u, w)g2(t+ 2, 2t+ 1,u, w).
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This Df corresponds to D in Lemma 3.6. We present an important divisor DL(t,
u, w) of Df (t, u, w) as follows:

D0
L(a, b, c, w) := (28w − 4)S10 + (−56w2 − 52w + 24)T9,1

+ (24w3 + 128w2 + 8w − 52)T8,2

+ (4w4 − 64w3 − 32w2 + 24w + 32)T7,3

+ (4w5 − 16w4 − 24w3 − 128w2 − 36w + 56)T6,4

+ (8w5 − 40w4 + 128w3 + 176w2 + 56w − 112)S5,5

+ (120w3 + 200w2 + 8w − 112)S8,1,1

+ (−60w4 − 288w3 − 256w2 + 296w + 200)T7,2,1

+ (−20w5 + 164w4 + 432w3 + 80w2 − 416w − 168)T6,3,1

+ (−16w5 + 8w4 − 136w3 + 32w2 + 164w + 56)T5,4,1

+ (60w5 + 180w4 + 288w3 − 304w2 − 796w − 292)S6,2,2

+ (−52w5 − 376w4 − 232w3 + 872w2 + 776w + 200)T5,3,2

+ (140w5 + 284w4 − 640w3 − 1264w2 − 568w − 112)S4,4,2

+ (−40w5 + 128w4 + 680w3 − 88w2 − 256w − 64)S4,3,3,

D1
L(a, b, c, w) := (−8w − 40)S10 + (16w2 + 56w + 96)T9,1

+ (−48w3 − 16w2 − 100w − 52)T8,2

+ (40w4 + 8w3 + 40w2 + 24w − 40)T7,3

+ (4w5 + 20w4 + 48w3 + 16w2 + 108w + 92)T6,4

+ (8w5 − 40w4 − 16w3 − 112w2 − 160w − 112)S5,5

+ (48w3 − 16w2 − 280w − 184)S8,1,1

+ (−24w4 − 72w3 − 40w2 + 296w + 56)T7,2,1

+ (−56w5 − 88w4 + 72w3 + 8w2 − 56w − 24)T6,3,1

+ (−16w5 − 64w4 − 208w3 + 32w2 − 16w + 56)T5,4,1

+ (96w5 + 288w4 + 720w3 + 272w2 + 176w + 176)S6,2,2

+ (−16w5 − 376w4 − 736w3 − 640w2 − 520w − 88)T5,3,2

+ (248w5 + 1112w4 + 1520w3 + 1328w2 + 296w − 184)S4,4,2

+ (−184w5 − 376w4 − 400w3 − 304w2 + 392w + 152)S4,3,3,

D2
L(a, b, c, w) := (16w + 8)S10 + (−32w2 − 40w − 12)T9,1

+ (24w3 + 68w2 + 29w − 13)T8,2

+ (−8w4 − 34w3 − 26w2 + 6w + 26)T7,3

+ (w5 − 13w4 − 24w3 − 68w2 − 45w + 5)T6,4

+ (2w5 − 10w4 + 68w3 + 116w2 + 68w − 28)S5,5

+ (48w3 + 104w2 + 74w − 10)S8,1,1

+ (−24w4 − 126w3 − 118w2 + 74w + 86)T7,2,1

+ (4w5 + 104w4 + 198w3 + 38w2 − 194w − 78)T6,3,1

+ (−4w5 + 20w4 − 16w3 + 8w2 + 86w + 14)T5,4,1

+ (6w5 + 18w4 − 36w3 − 220w2 − 442w − 190)S6,2,2



18 TETSUYA ANDO

+ (−22w5 − 94w4 + 68w3 + 596w2 + 518w + 122)T5,3,2

+ (8w5 − 136w4 − 700w3 − 964w2 − 358w − 10)S4,4,2

+ (26w5 + 158w4 + 440w3 + 32w2 − 226w − 70)S4,3,3,

DL(t, a, b, c, w) := t2D2
L(a, b, c, w) + tD1

L(a, b, c, w) +D0
L(a, b, c, w).

Proposition 3.8. Let a, b, c, w ∈ R and u = (u1 : u2 : u3) ∈ P2
R. Then the

followings hold.
(1) δ3(u, w) ≥ 0.
(2) g0(a, b, c, w) = 9(a+ b+ c)2(S2 − S1,1) δ2(a, b, c, w)2 δ3(a, b, c, w).

Especially g0(u, w) ≥ 0.
(3) For all t ∈ R,

Df (t, a, b, c, w) = (w − 1)
(
(2t+ 1)S2 − (t2 + 2)S1,1

)2
× δ1(a, b, c, w)2δ2(a, b, c, w)2DL(t, a, b, c, w).

Especially sign
(
Df (t,u, w)

)
= sign

(
(w − 1)DL(t,u, w)

)
.

(4) Df (1, a, b, c, w) =
(

9(w−1)(S2−S1,1) δ1(a, b, c, w) δ2(a, b, c, w) δ4(a, b, c, w)
)2

.

Especially Df (1, a, b, c, w) ≥ 0.
(5) Df (−2, a, b, c, w) = 972(w − 1)(a+ b+ c)5(S2 − S1,1)δ1(a, b, c, w)2

×δ2(a, b, c, w)2 δ3(a, b, c, w) δ5(a, b, c, w).
Especially sign

(
Df (−2, a, b, c, w)

)
= sign

(
(w − 1)(a+ b+ c)δ5(a, b, c, w)

)
.

(6) h1(−2,u, w) = −4g0(u, w) ≤ 0.
(7) h1(1, a, b, c, w) = 9(1− w)(S2 − S1,1) δ1(a, b, c, w) δ2(a, b, c, w) δ4(a, b, c, w).
(8) fu,w(0,−1, 1) = (1− w)(u1 + u2 + u3)3δ1(u, w)2δ5(u, w).

Especially, if fu,w ∈ P3,6, then Df (−2,u, w) ≤ 0.

Proof. (1) δ3(1, 0, 0, w) = 1 > 0 and δ3(x, 1, 1, w) = (x − 1)2(x − w)2 ≥ 0. By [1,
Proposition 5.1], we have δ3(a, b, c, w) ≥ 0 for all a, b, c, w ∈ R.

(2)—(8) can be obtained by direct calculations using Mathematica. �

There are some more relations like the above proposition. But we don’t use them
in this article.

Proposition 3.9. For a, b, c, w ∈ R, let

ξ(a, b, c, w) := (a+ b+ c)(1− w)δ1(a, b, c, w)δ2(a, b, c, w).

Then pF0 (a, b, c, w)fu,w(x, 1, 1) ≥ 0 for all x ∈ R, if and only if ξ(u, v, 1, w) ≥ 0.

Proof. Using PC, we know that fu,w(x, 1, 1) can be factored as the form

pF0 (u, w)fu,w(x, 1, 1)

= (x− 1)2(x− w)2
(
pF0 (u, w)2x2 + 2pF0 (u, w)f1(u, w)x+ f2(u, w)

)
,

where f1(u, w) and f2(u, w) are certain polynomials. This can be reformed as the
form

pF0 (u, w) fu,w(x, 1, 1) = (x− 1)2(x− w)2
( (
pF0 (u, w)x+ f1(u, w)

)2
+ (u1 − u2)4(u2 − u3)4(u3 − u1)4(u1 + u2 + u3)3(1− w)δ1(u, w)δ2(u, w)3

)
.

Thus, we have the conclusion. �
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Corollary 3.10. Take u ∈ R3, and w ∈ R. Let

Iu,w :=
{
t ∈ [−2, 1]

∣∣ (w − 1)DL(t,u, w) > 0
}
,

h3(t,u, w) := (1 + 2t)(4− t)h1

(
4− t
1 + 2t

, u, w

)
.

(I) Assume that pF0 (u, w) > 0. Then fu,w ∈ P3,6 if and only if ξ(u, w) ≥ 0 and
for every t ∈ Iu,w one of the following (1) or (2) holds.

(1) h1(t,u, w) ≥ 0.
(2) h3(t,u, w) ≤ 0.

(II) Assume that pF0 (u, w) < 0. Then −fu,w ∈ P3,6 if and only if ξ(u, w) ≥ 0.

It seems that if pF0 (u, w) < 0 then ξ(u, w) < 0, and −fu,w /∈ P3,6. But the author
does not have a complete proof.

Remark 3.11. If w = 1, then

fu,1(a) =
(
S2(u)− S1,1(u)

)3((
T2,1(u)− 6U(u)

)
S3(a)

−
(
S3(u)− 3U(u)

)
T2,1(a) +

(
6S3(u)− 3T2,1(u)

)
U(a)

)2

.

Thus, fu,1(a) ∈ E(P3,6) ∩ Σ3,6.

Proof of Theorem 1.5. Put fu,v,1,w = fu,w (u = (u, v, 1)). This is the polynomial
fu,v,w in Theorem 1.5. It is easy to see that fu,w(0, 0, 1) = pF0 (u, w).

Consider the case u = (−1/2, −1/3, 1) and w = 9/10. Then

pF0

(
−1

2
, −1

3
, 1,

9

10

)
=

2838188587

147622500
> 0,

δ1

(
−1

2
, −1

3
, 1,

9

10

)
=

722

135
> 0,

δ2

(
−1

2
, −1

2
, 1,

9

10

)
=

1279

225
> 0,

δ4

(
−1

2
, −1

2
, 1,

9

10

)
=

255823

24300
> 0,

ξ

(
−1

2
, −1

3
, 1,

9

10

)
=

461719

911250
> 0,

h1

(
t, −1

2
, −1

3
, 1,

9

10

)
=

1279

132860250000

(
− 4763259726t3

+ 10555137817t2 + 53854835215t+ 1028618365
)
,

DL

(
t, −1

2
, −1

3
, 1,

9

10

)
=

1

5904900000

(
398926806344t2

− 1190526056662t+ 202590584357
)
.

The least root of DL = 0 is

ω1 :=
595263028331− 767469

√
464372213673

398926806344
= 0.181 · · · .

Thus, Df (t) ≤ 0 if −2 ≤ t ≤ ω1. So, I1 ⊂ (ω1, 1]. It is easy to check that h1 > 0
on [0, 1]. Thus, f−1/2,−1/3,9/10 ∈ P3,6, by Proposition 3.9 and 3.7. By Theorem 3.1
and Lemma 3.3, f−1/2,−1/3,9/10 satisfies (1)—(4) of Theorem 1.5.

Since pF0 (u, v, 1, w), ξ(u, v, 1, w) and h1(t, u, v, 1, w) are continuous with
respect to (u, v, w), there exists an open neighborhood U of (−1/2, −1/3, 9/10)
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such that pF0 (u, v, 1, w) > 0, ξ(u, v, 1, w) > 0 and h1(t, u, v, 1, w) > 0 for all
−2 ≤ t ≤ 1 and (u, v, w) ∈ U . Thus, we have the conclusion.

By numerical analysis, it seems that the above U is a small set.

4. Extremal elements of Ps+3,5

In §4.1 and 4.2, we prove Theorem 1.4. We sketch our idea of proof here because
it is long.

In §4.1, we study properties of five families of polynomials eAt,u, eBt,u, eCt , eDt
and eEt . We study when these are extremal. We also study the conditions which
characterize these polynomials.

In §4.2, we prove that E(Ps+3,5) contains only the above polynomials and s3 =

U(S2 − S1,1). We prove this by a geometric observation of the boundary ∂Ps+3,5 .

In Proposition 4.13, we prove that ∂Ps+3,5 has five irreducible components. This

sentence means that the Zariski closure of ∂Ps+3,5 in Hs3,5 is a union of five irreducible
real algebraic varieties. In fact,

E(Ps+3,5) ⊂ E(F(Cb)) ∪ E(F(C0)) ∪ E(F(P1)) ∪ E(F(P2)) ∪ E(F(P3)),

where symbols are explained in §4.2.1. So, we study E(F(Cb)), E(F(C0)), E(F(P1)),
E(F(P2)) and E(F(P3)). Figures 4.2—4.10 show the places where the above ex-
tremal polynomials exist. These figures also show geometric structure of E(Ps+3,5).

In §4.3, we present some applications. In §4.3.1 and §4.3.2, we prove that
eBt,u(a2, b2, c2) ∈ E(P3,10) − Σ3,10 and eAt,u(a2, b2, c2) /∈ Σ3,10 under certain con-

ditions. In §4.3.3, we study Ps0+
3,5 .

In this section, we use the following symbols as §3. We denote the coordinate
system of P2

R by (a : b : c), and put

Sm,n = Sm,n(a, b, c) := ambn + bmcn + cman,

Sn = Sn(a, b, c) := Sn,0(a, b, c) = an + bn + cn,

Tm,n := Sm,n(a, b, c) + Sn,m(a, b, c),

U = U(a, b, c) := abc.

To state the structure of E(Ps+3,5), it will be convenient to use the following
symbols to describe a basis of a cone. For a closed convex cone P ⊂ H, we denote

PH := (H− {0})/R×+ ⊃ PP := (P − {0})/R×+ ⊃ PE(P) := E(P)/R×+ = E(PP).

Note that PH is not a projective space P(H) := (H − {0})/R×. PH is isomorphic
to the real algebraic variety {

x ∈ H
∣∣ |x| = 1.

}
.

There exists a natural 2 : 1 map ρ : PH → P(H). Note that PPs+3,5 is a semialgebraic
variety.

For f ∈ H − {0}, we denote its equivalence class by [f ] := R×+ · f ∈ PH. Note
that [αf ] = [f ] if α > 0, but [αf ] 6= [f ] if α < 0.

We choose s0 := S5 − US1,1, s1 := T4,1 − 2US1,1, s2 := T3,2 − 2US1,1, s3 :=
US2 −US1,1, s4 := US1,1 as a basis of Hs3,5. Note that {s0, s1, s2, s3} is a basis of

Hs03,5.

The definitions of extremal polynomials eAt,u, eBt,u, eCt , eDt and eEt are as the
following. We study these in §4.1 respectively. Let

µL(t) := 9(t− 1)2,

µH(t) := (t+ 2)(7− t),
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µA(t) := min{µL(t), µH(t)} =

{
µL(t) (if 0 ≤ t ≤ 5/2),
µH(t) (if 5/2 < t ≤ 7),

µR(t) := 2− t2 + t
√

(t− 1)(t+ 2),

µB(t) := (1/2)
(
µR(t)−

√
µR(t)2 − 4

)
,

µZ(t, u) :=
(t+ 2)(7− t)− u

(t+ 2)(5t+ 1)
.

The polynomial eAt,u is defined by

eAt,u(a, b, c) := s0 +

4∑
i=1

pAi (t, u)si (if u > 0),

eAt,0(a, b, c) := (5t+ 1)2s1 + (t− 1)2(t2 − 12t− 1)s2

− 2(t4 + 36t3 + 34t2 + 60t+ 13)s3 + 24(t− 1)4s4,

where

pA1 (t, u) :=
u2 − (t+ 2)(5t2 + t+ 9)u+ 9(t− 1)2(t+ 2)2

(5t+ 1)(t+ 2)u
,

pA2 (t, u) :=
1

(5t+ 1)3(t+ 2)u

(
− t2u3 + (t− 1)(7t3 − t2 + 11t+ 1)u2

+ (t+ 2)(17t5 − 25t4 + 199t3 − 59t2 + 76t+ 8)u

+ 9(t− 1)4(t+ 2)2(t2 − 12t− 1)
)
,

pA3 (t, u) :=
1

(t+ 2)2(5t+ 1)3u

(
2t3 + 4t2 + 5t+ 1)u3

− 2(t+ 2)(7t4 + 42t3 + 37t2 + 48t+ 10)u2

+ (t+ 2)2(91t5 + 125t4 + 682t3 + 182t2 + 523t+ 125)u

− 18(t− 1)2(t+ 2)3(t4 + 36t3 + 34t2 + 60t+ 13)
)
,

pA4 (t, u) :=
(t− 1)3(6t2 + 6t− 12 + u)3

(t+ 2)2(5t+ 1)3u
.

Similarly, eBt,u, eCt , eDt and eEt are defined as follows:

pB1 (t, w) := −2w − 3,

pB2 (t, w) := w2 + 2w + 2,

pB3 (t, w) := −2t3 + 4t2 + 5t+ 1

t2(t+ 2)
w2 +

2(4t2 + 5t+ 3)

t+ 2
w − 3t3 − 7t2 − 12t− 8

t+ 2
,

pB4 (s, w) :=
(t− 1)3

(
− w2 − 2t2w + t2(t− 2)

)
t2(t+ 2)

,

ω(u) := u+
1

u
− 2 =

(u− 1)2

u
,

eBt,u(a, b, c) := s0 +

4∑
i=1

pBi
(
t, ω(u)

)
si,

eCt (a, b, c) := s0 − (t+ 1)s1 + ts2 + (t+ 1)2s3,

eDt (a, b, c) := s1 + (t2 − 1)s2 − 2(t+ 1)2s3,

eD∞(a, b, c) := s2 − 2s3,
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eEt (a, b, c) := s1 − s2 −
4t2 + 5t+ 3

t+ 2
s3 +

(t− 1)3

t+ 2
s4,

eE∞(a, b, c) := s4.

4.1. Extremality.

In this subsection, we prove that E(Ps+3,5) contains eAt,u (0 ≤ t ≤ 7, 0 ≤ u ≤ µA(t)),

eBt,u (t ≥ 2, µB(t) ≤ u ≤ 1), eCt (0 ≤ t ≤ 2), eDt (t ≥ 0), eD∞ = s2 − 2s3, eEt (t ≥ 7),

eE∞ = s4, and s3. We also study some more properties of these polynomials.

4.1.1. Some PSD conditions.

We start from the following Lemma:

Lemme 4.1. Take f ∈ Hs3,5. If f(x, 1, 1) ≥ 0 and f(0, x, 1) ≥ 0 for all x ≥ 0, then

f ∈ Ps+3,5 .

This lemma is a very special case of theory of test set for symmetric polynomials.
See [15, Corollary 1.3] or [16, Corollary 2.1]. See also [2, Proposition 5.1] or [15,
Theorem 1.1].

For f(a, b, c) ∈ Hs3,5, we denote

fa(a, b, c) :=
∂

∂a
f(a, b, c), fab(a, b, c) :=

∂2

∂a∂b
f(a, b, c),

and so on.

Proposition 4.2. (1) Let x > 0 and y > 0 be constants. If f ∈ Ps+3,5 satisfies f(x,

y, 1) = 0, then
fa(x, y, 1) = fb(x, y, 1) = fc(x, y, 1) = 0.

(2) Let x > 0. If f ∈ Ps+3,5 satisfies f(0, x, 1) = 0, then

fb(0, x, 1) = fc(0, x, 1) = 0.

(3) If f ∈ H3,5 satisfies f(x, y, z) = fa(x, y, z) = fb(x, y, z) = 0 and z 6= 0, then
fc(x, y, z) = 0.

Proof. Easy exercise. �

4.1.2. Properties of polynomial eCt .

Since eAt,u and eBt,u are complicated polynomials, we treat other polynomials before

them. To begin with, we study eCt , and next we will study eDt and eEt .

Theorem 4.3. (1) If 0 ≤ t ≤ 2, then

eCt = s0 − (t+ 1)s1 + ts2 + (t+ 1)2s3 ∈ E(Ps+3,5).

Moreover eCt is characterized by the following conditions:
(2) If 0 < t ≤ 2, t 6= 1 and if f ∈ Ps+3,5 satisfies

f(t, 1, 1) = f(1, 1, 1) = f(0, 1, 1) = 0,

then [f ] = [eCt ].
(3) If f ∈ Ps+3,5 satisfies

f(1, 1, 1) = f(0, 1, 1) = fa(0, 1, 1) = faa(0, 1, 1) = 0,
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then [f ] = [eC0 ].
(4) If f ∈ Ps+3,5 satisfies

f(0, 1, 1) = f(1, 1, 1) = faa(1, 1, 1) = 0,

then [f ] = [eC1 ].

Proof. (0) We shall show eCt ∈ P+
3,5 if 0 ≤ t ≤ 2. Note that

eCt (x, 1, 1) = x(x− 1)2(x− t)2 ≥ 0,

eCt (0, x, 1) = (x− 1)2(x+ 1)
(
(x− 1)2 + (2− t)x

)
≥ 0,

if x ≥ 0. Thus, eCt ∈ Ps+3,5 by Lemma 4.1. We prove eCt ∈ E(Ps+3,5) later. Note that

eCt /∈ P+
3,5 if t > 2, because eCt (0, 1 + x, 1) < 0 for 0 < x� 1.

(2) Consider the case 0 < t ≤ 2, t 6= 1. If f ∈ Ps+3,5 satisfies f(t, 1, 1) = 0,

then fa(t, 1, 1) = 0 by Proposition 4.2(2). Solve the following system of function
equations for f ∈ Hs3,5:

f(t, 1, 1) = fa(t, 1, 1) = f(1, 1, 1) = f(0, 1, 1) = 0. (∗)

Denote f =

4∑
i=0

pisi. Let A be the following matrix:

(t− 1)2(t+ 1)(t2 + t+ 2) 2(t2 − 1)2 2(t− 1)2(t+ 1) t(t− 1)2 t(2t+ 1)
(t− 1)(5t3 + 5t2 + 5t+ 1) 8t(t2 − 1) 2(t− 1)(3t+ 1) 3t2 − 4t+ 1 4t+ 1

0 0 0 0 3
2 2 2 0 0


and p := t(p0, p1, p2, p3, p4). The equation (∗) can be represented by Ap = 0.
Thus, the solution space of (∗) is KerA. Since eCt (t, 1, 1) = 0, eCt (1, 1, 1) = 0 and
eCt (0, 1, 1) = 0, we have eCt ∈ KerA.

Let e1 := (1, 0, 0, 0, 0), and let A1 be the square matrix obtained by putting e1

at the top line above A. Since detA1 = −12t2(t − 1)4, we have dim KerA = 1.
Thus, KerA = R · eCt . This implies eCt ∈ E(Ps+3,5).

(3) Consider the case t = 0. In this case, we consider the following, instead of
(∗).

f(1, 1, 1) = f(0, 1, 1) = fa(0, 1, 1) = faa(0, 1, 1) = 0.

The left part is same with (2).

(4) Consider the case t = 1. If f ∈ Ps+3,5 satisfies f(1, 1, 1) = faa(1, 1, 1) = 0,

then fa(1, 1, 1) = faaa(1, 1, 1) = 0. In this case, we consider the following, instead
of (∗).

f(0, 1, 1) = f(1, 1, 1) = faa(1, 1, 1) = faaa(1, 1, 1) = 0.

The left part is same with (2).

(1) We prove eCt ∈ E(Ps+3,5). Assume that 0 < t ≤ 2, t 6= 1 and eCt = f + g by a

certain f , g ∈ Ps+3,5 . Then f and g satisfy the equalities (∗) in the proof of (2), by

Proposition 4.2. Thus, f , g ∈ R · eCt . This implies eCt ∈ E(Ps+3,5).

We can prove eC0 , eC1 ∈ E(Ps+3,5) using (3) and (4) similarly. �

4.1.3. Properties of polynomial eDt .

Note that lim
t→+∞

[eDt ] = [eD∞] = [s2 − 2s3] in PH3,5.
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Theorem 4.4. (1) If t ≥ 0, then

eDt = s1 + (t2 − 1)s2 − 2(t+ 1)2s3 ∈ E(Ps+3,5).

But eDt /∈ E(P+
3,5). Thus E(Ps+3,5) 6⊂ E(P+

3,5).

(2) If t > 0, t 6= 1 and f ∈ Ps3,5 satisfies

f(t, 1, 1) = f(1, 1, 1) = f(0, 0, 1) = 0,

then [f ] = [eDt ].
(3) If f ∈ Ps+3,5 satisfies

f(1, 1, 1) = faa(1, 1, 1) = f(0, 0, 1) = 0,

then [f ] = [eD1 ]. Especially, eD1 = s1 − 8s3 ∈ E(Ps+3,5).

(4) If f ∈ Ps+3,5 satisfies

f(1, 1, 1) = f(0, 0, 1) = fa(0, 0, 1) = faa(0, 0, 1) + fab(0, 0, 1) = 0,

then [f ] = [eD∞]. Especially, eD∞ = s2 − 2s3 ∈ E(Ps+3,5).

Proof. (0) We shall show eDt ∈ Ps+3,5 if t ≥ 0. Note that

eDt (a, b, c) = a(b− c)2((t+ 1)a− b− c)2

+ b(c− a)2((t+ 1)b− c− a)2 + c(a− b)2((t+ 1)c− a− b)2.

Thus eDt ∈ Ps+3,5 , but eDt /∈ E(P+
3,5). We also note that

eDt (x, 1, 1) = 2(x− 1)2(x− t)2, eDt (0, x, 1) = x(x+ 1)
(
(x− 1)2 + t2x

)
.

(2) If f ∈ Ps+3,5 satisfies f(t, 1, 1) = 0, then fa(t, 1, 1) = 0. Take f =

4∑
i=0

pisi ∈

Hs3,5, and put p := t(p0, p1, p2, p3, p4). Let A be the following matrix:(t− 1)2(t+ 1)(t2 + t+ 2) 2(t2 − 1)2 2(t− 1)2(t+ 1) t(t− 1)2 t(2t+ 1)
(t− 1)(5t3 + 5t2 + 5t+ 1) 8t(t2 − 1) 2(t− 1)(3t+ 1) (t− 1)(3t− 1) 4t+ 1

0 0 0 0 3
1 0 0 0 0

 .

The system of equations f(t, 1, 1) = fa(t, 1, 1) = f(1, 1, 1) = f(0, 0, 1) = 0 is
equivalent to Ap = 0. Using Mathematica, we can check KerA = R · eDt .

(3) Consider f(1, 1, 1) = faa(1, 1, 1) = faaa(1, 1, 1) = f(0, 0, 1) = 0.

(1) eDt ∈ E(Ps+3,5) (t ≥ 0) follows from (0), (2) and (3).

(4) eD∞ ∈ Ps+3,5 , because

eD∞(x, 1, 1) = (x+ 1)x2, eD∞(0, x, 1) = 2(x− 1)2.

The system of equations f(1, 1, 1) = f(0, 0, 1) = fa(0, 0, 1) = faa(0, 0, 1)+fab(0, 0, 1)
= 0 is represented by the matrix

A =


0 0 0 0 3
1 0 0 0 0
0 1 0 0 0
0 0 2 1 0

 .

It is easy to see that KerA = R · eD∞. �

4.1.4. Properties of polynomials eEt and s3.

Note that lim
t→+∞

[eEt ] = [eE∞] = [s4] in PH3,5.
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Theorem 4.5. (1) If t ≥ 7, then

eEt := s1 − s2 −
4t2 + 5t+ 3

t+ 2
s3 +

(t− 1)3

t+ 2
s4 ∈ E(Ps+3,5).

(2) If t ≥ 7 and f ∈ Ps+3,5 satisfies

f(t, 1, 1) = f(0, 1, 1) = f(0, 0, 1) = 0,

then [f ] = [eEt ].
(3) eE∞ = s4 ∈ E(Ps+3,5).

(4) If f ∈ Ps+3,5 satisfies

f(0, 1, 1) = f(0, 0, 1) = fa(0, 0, 1) = fab(0, 0, 1) = 0,

then [f ] = [eE∞].

Proof. (0) We shall show eEt ∈ Ps+3,5 if t ≥ 7. Note that

eEt (0, x, 1) = x(x+ 1)(x− 1)2 ≥ 0,

eEt (x, 1, 1) = x(x− t)2

(
2x+

t− 7

t+ 2

)
≥ 0,

if x ≥ 0. Thus, eEt ∈ Ps+3,5 . Note that eEt /∈ P+
3,5 if t < 7.

(2) Consider the system of equations

f(t, 1, 1) = fa(t, 1, 1) = f(0, 1, 1) = f(0, 0, 1) = 0

for f ∈ Hs3,5. The solution space of this system of equations is the kernel of the
following matrix A:(t− 1)2(t+ 1)(t2 + t+ 2) 2(t2 − 1)2 2(t− 1)2(t+ 1) t(t− 1)2 t(2t+ 1)
(t− 1)(5t3 + 5t2 + 5t+ 1) 8t(t2 − 1) 2(t− 1)(3t+ 1) (t− 1)(3t− 1) 4t+ 1

2 2 2 0 0
1 0 0 0 0

 .

It is easy to see that KerA = R · eEt .

(1) eEt ∈ E(Ps+3,5) follows from (0) and (2).

(3) eE∞ ∈ Ps+3,5 , since eE∞(0, x, 1) = 0 for all x ∈ R+, and eE∞(x, 1, 1) = x(2x+1) ≥
0.

(4) Consider f(0, 1, 1) = f(0, 0, 1) = fa(0, 0, 1) = fab(0, 0, 1) = 0 for f ∈ Hs3,5.
This system of equations is equivalent to

2 2 2 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

p = 0.

The solution space is R · s4. �

Theorem 4.6. (1) s3 ∈ E(Ps+3,5).

(2) If f ∈ Ps+3,5 satisfies f(0, x, 1) = 0 for all x ≥ 0, fa(0, 0, 1) = 0 and f(1, 1, 1) = 0,

then [f ] = [s3].

Proof. (0) s3 ∈ Ps+3,5 follows from s3(0, x, 1) = 0 and s3(x, 1, 1) = x(x− 1)2 ≥ 0 for
all x ∈ R+.

(2) The solution space f(1, 1, 1) = f(0, 1, 1) = f(0, 0, 1) = fa(0, 0, 1) = 0 for
f ∈ Hs3,5 is R · s3.

(1) s3 ∈ E(Ps+3,5) follows from (0) and (2). �
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4.1.5. Properties of polynomial eAt,u.

Now, we observe eAt,u. Since eAt,u(t, 1, 1) = eAt,u(µZ(t, u), 1, 1) = 0, eAt,u has at

least six zeros interior of P3
+. Note that lim

u→+0
[eAt,u] = [eAt,0] in PH3,5, and eA1,0 =

36(s1 − 8s3) = 36eD1 ∈ E(Ps+3,5).

Theorem 4.7. (1) If 0 ≤ t ≤ 7, t 6= 1 and 0 ≤ u ≤ µA(t), then eAt,u ∈ E(Ps+3,5).

(2) Assume that 0 ≤ t ≤ 7, t 6= 1 and 0 ≤ u ≤ µA(t). Then t 6= µZ(t, u). If
f ∈ Ps+3,5 satisfies

f(t, 1, 1) = f(µZ(t, u), 1, 1) = 0,

then [f ] = [eAt,u].

(3) eA7,0 = 1296eA0,0 = 1296eE7 .

Proof. (0) We shall show eAt,u ∈ Ps+3,5 if 0 ≤ t ≤ 7, t 6= 1 and 0 ≤ u ≤ µA(t).

(0-i) We shall prove eAt,u(0, x, 1) ≥ 0 for x ≥ 0. Let

hA(t, u) := u2 − (t+ 2)(5t2 − 14t+ 6)u+ (t+ 2)2µL(t),

gA(t, u, w) := (t+ 2)(5t+ 1)3uw2

+ (5t+ 1)2hA(t, u)w + t2(µH(t)− u)2(µL(t)− u).

Then eAt,u(0, x, 1) =
x2(x+ 1)gA (t, u, x+ 1/x− 2)

u(t+ 2)(5t+ 1)3
. To prove eAt,u(0, x, 1) ≥ 0 for

all x ≥ 0, it is enough to show hA(t, u) ≥ 0. If 0 ≤ t ≤ 8/5, then

hA(t, u) = (u+ 3(t− 1)(t+ 2))2 + t(t+ 2)(8− 5t)u ≥ 0.

If 8/5 < t ≤ (10 + 2
√

10)/5, then 5t2 − 20t+ 12 ≤ 0. Thus,

hA(t, u) =
(
u− 3(t− 1)(t+ 2)

)2 − (t+ 2)(5t2 − 20t+ 12)u ≥ 0.

If t > (10 + 2
√

10)/5, then

(t+ 2)(5t2 − 14t+ 6)

2
− µH(t) =

(t+ 2)(5t2 − 12t− 8)

2
> 0.

Thus, hA(t, u) is decreasing on 0 ≤ u ≤ µH(t), and

hA(t, u) ≥ hA(t, µH(t)) = (t− 4)2(t+ 2)2(5t+ 1) ≥ 0.

Thus, we have eAt,u(0, x, 1) ≥ 0 for x ≥ 0.

(0-ii) Assume t and u are the same as in (0). Then,

eAt,u(x, 1, 1) = (x− t)2
(
x− µZ(t, u)

)2(
x+

2(t+ 2)(µL(t)− u)

(5t+ 1)u

)
≥ 0

for all x ≥ 0. Thus, eAt,u ∈ Ps+3,5 , by Lemma 4.1.

(2) Let 0 ≤ t ≤ 7, t 6= 1 and 0 ≤ u ≤ µA(t). It is easy to see that t = µZ(t, u) if
and only if u = −(t−1)(t+2)(5t+7). If t > 1, then −(t−1)(t+2)(5t+7) < 0 ≤ u.
If 0 ≤ t < 1, then u ≤ µA(t) = µL(t) < −(t − 1)(t + 2)(5t + 7). Thus we have
t 6= µZ(t, u).

Assume that f ∈ Hs3,5 satisfies

f(t, 1, 1) = fa(t, 1, 1) = f(µZ(t, u), 1, 1) = fa(µZ(t, u), 1, 1) = 0.

Construct the 4×5 matrix A from these equalities as before. Put the vector e4 = (0,
0, 0, 1, 0) above the top line of A, and construct the 5× 5 matrix B. Then,

detB = −4(t− 1)4(u+ 6(t− 1)(t+ 2))4(u+ (t− 1)(t+ 2)(5t+ 7))4

(t+ 2)8(5t+ 1)8
.
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Note that u + (t − 1)(t + 2)(5t + 7) 6= 0 if t 6= µZ(t, u). It is easy to see that
u+ 6(t− 1)(t+ 2) 6= 0 if 0 ≤ u ≤ µA(t). Thus, detB 6= 0 and KerA = R · eAt,u.

(3) follows from a direct calculation.
(1) eAt,u ∈ E(Ps+3,5) follows from (0) and (2). �

Remark 4.8. (1) Let u0 = 3(t− 1)2(t+ 2)/(2t+ 1). Then

eAt,u0
(a, b, c) = (a+ b+ c)

(
S2(a, b, c)− S2(t, 1, 1)

S1,1(t, 1, 1)
S1,1(a, b, c)

)2

.

(2) The following typical polynomials often appear:

eAt,µL(t) = s0−
t2 + 5

t+ 2
s1 +

t2 − t+ 3

t+ 2
s2 +

t4 − 6t3 + 10t2 + 18t+ 13

(t+ 2)2
s3 + 3

(t− 1)4

(t+ 2)2
s4,

when 0 ≤ t ≤ 5/2.

eAt,µH(t) = s0 +
t2 − 5t− 5

7− t s1 −
t2 − 6t+ 2

7− t s2 −
(t+ 2)(t2 − 3t− 2)

7− t s3 +
(t− 1)3

7− t s4,

when 5/2 ≤ t < 7.

4.1.6. Properties of polynomial eBt,u.

The polynomial eBt,u is hard to treat. But eBt,u will be the most important element

in E(Ps+3,5). The fact eBt,u ∈ E(P+
3,5) will be proved in Theorem 4.28. To treat eBt,u,

we need the following lemma. We denote the discriminant of cnx
n + cn−1x

n−1 +
· · ·+ c1x+ c0 = 0 by Discn(cn, cn−1,. . ., c0).

Lemma 4.9. Let f(x) = x3 + ax2 + bx + c. Then f(x) ≥ 0 for all x ≥ 0 if and
only if one of (1), (2) or (3) holds:
(1) a ≥ 0, b ≥ 0 and c ≥ 0.
(2) c = 0 and a2 − 4b ≤ 0.
(3) c > 0 and Disc3(1, a, b, c) = a2b2 − 4b3 − 4a3c+ 18abc− 27c2 ≤ 0.

Proof. If f(x) ≥ 0 for all x ≥ 0, then c = f(0) ≥ 0.
(i) If c = 0, considering a condition for that x2 + ax + b ≥ 0 for all x ≥ 0, we

have (1) “a ≥ 0 and b ≥ 0”, or (2) a2 − 4b ≤ 0.

-
a′

6
b′

(3, 3)

−

+

−

P+
2,3

P+
2,3

Fig. 4.1. Graph of D3(1, a
′, b′, 1) = 0

(ii) Assume c > 0. If we consider a′ := a/ 3
√
c, b′ := b/

3
√
c2, c′ := c/

3
√
c3 = 1, and

x′ := x/ 3
√
c, we can reduce to the case c = 1. Then Disc3(1, a, b, 1) = discc+3 (a, b),

where discc+3 was defined in [1, Theorem 3.1] (see Fig.4.1). Thus, by the same
argument with the proof of [1, Theorem 3.1], we have the conclusion. �
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Theorem 4.10. (1) If t ≥ 2 and µB(t) ≤ u ≤ 1, then eBt,u ∈ E(Ps+3,5).

(2) Let t, u be constants such that t ≥ 2 and µB(t) ≤ u < 1. If f ∈ Ps3,5 satisfies

f(t, 1, 1) = f(0, u, 1) = fb(0, u, 1) = 0,

then [f ] = [eBt,u].
(3) Assume that t ≥ 2. If f ∈ Ps3,5 satisfies

f(t, 1, 1) = f(0, 1, 1) = fbb(0, 1, 1) = 0,

then [f ] = [eBt,1].

(4) eB2,1 = eC2 .

Proof. (0) We shall show that eBt,u ∈ Ps+3,5 if t ≥ 2 and µB(t) ≤ u ≤ 1. Using
computer, we have

eBt,u(0, x, 1) = (x+ 1)(x− u)2(x− 1/u)2 ≥ 0,

if x ≥ 0. But, our proof of eBt,u(x, 1, 1) ≥ 0 is not so easy. We shall prove this as
the following steps (0-i)—(0-iv).

(0-i) Put ω(u) = u − 2 + 1/u. Note that µB(t) ≤ u ≤ 1 is equivalent to
0 ≤ ω(u) ≤ µR(t)− 2. Let

fBt,w(a, b, c) := s0 +

4∑
i=1

pBi (t, w)si,

cB0 (t, w) := t2(t+ 2),

cB1 (t, w) := 2t2(t+ 2)(−2w + t− 3),

cB2 (t, w) := −(5t+ 1)w2 − 2t2(t− 7)w + t2(t− 4)2,

cB3 (t, w) := 2(t+ 2)w2,

gB(t, w, x) := cB0 (t, w)x3 + cB1 (t, w)x2 + cB2 (t, w)x+ cB3 (t, w).

Then eBt,u(x, 1, 1) = fBt,ω(u)(x, 1, 1) =
(x− t)2

t2(t+ 2)
gB (t, ω(u), x). Thus, eBt,u(t, 1, 1) ≥ 0

is equivalent to gB(t, w, x) ≥ 0 for w = ω(u).
Note that cB0 (t, w) > 0 and cB3 (t, w) ≥ 0. We also note that eBt,u(t, 1, 1) = 0.

(0-ii) We shall show that cB2 (t, w) ≥ 0 if t ≥ 2 and 0 ≤ w ≤ µR(t)− 2.
cB2 (t, w) is a concave quadric function on w, and cB2 (t, 0) = t2(t− 4)2 ≥ 0. Since

cB2
(
t, µR(t)− 2

)
= t2(t+ 2)

(
8t
√

(t− 1)(t+ 2)− (8t2 + 4t− 9)
)
,(

8t
√

(t− 1)(t+ 2)
)2 − (8t2 + 4t− 9)2 = 9(8t− 9) > 0,

we have cB2 (t, w) ≥ 0.

(0-iii) Consider the case cB1 (t, w) ≥ 0, t ≥ 2 and 0 ≤ w ≤ µR(t) − 2. Then
gB(t, w, x) ≥ gB(t, w, 0) = cB3 (t, w) ≥ 0. By Lemma 4.9(1), we have gB(t, w, x) ≥ 0.

(0-iv) We assume cB1 (t, w) < 0. Then w > (t− 3)/2.

(0-iv-a) Consider the case w = 0. Since 0 = w > (t − 3)/2, we have 2 ≤ t < 3.
Then t2 − 3t− 1 < 0. Thus

cB1 (t, 0)2 − 4cB0 (t, 0)cB2 (t, 0) = 4t4(t2 − 4)(t2 − 3t− 1) < 0.

By Lemma 4.9(2), we have gB(t, w, x) ≥ 0.

(0-iv-b) Consider the case 0 < w ≤ µR(t) − 2 under assumptions t ≥ 2 and
cB1 (t, w) < 0. It is enough to show Disc3(cB0 , c

B
1 , c

B
2 , c

B
3 ) ≥ 0 by Lemma 4.9(3).

Using PC, we have

Disc3

(
cB0 (t, w), cB1 (t, w), cB2 (t, w), cB3 (t, w)

)
= 4t2(t+ 2)bB1 (t, w)2bB2 (t, w)bB3 (t, w),
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bB1 (t, w) := (2t+ 1)w − t(t− 4),

bB2 (t, w) := −w2 − 2t2w + t2(t− 2),

bB3 (t, w) := (t+ 1)(5t+ 1)2w2

+ 2t(t4 − 13t3 + 25t2 + 27t− 4)w − t2(t− 4)2(t2 − 3t− 1).

Note that bB2
(
t, µR(t)− 2

)
= 0. Since bB2 (t, w) is a concave quadric function on w,

it is easy to see that bB2 (t, w) ≥ 0, if t ≥ 2 and 0 ≤ w ≤ µR(t) − 2. Thus, to show
Disc3(cB0 , c

B
1 , c

B
2 , c

B
3 ) ≥ 0, it is enough to show bB3 (t, w) ≥ 0.

(0-iv-b-1) We shall show bB3 (t, w) > 0 if 2 ≤ t < 3 and 0 ≤ w. Let

w3(t) :=
−t(t4 − 13t3 + 25t2 + 27t− 4)

(t+ 1)(5t+ 1)2
, v3(t) :=

t3(3− t)3(t+ 2)4

(t+ 1)(5t+ 1)2
.

Note that bB3 (t, w) = (t+1)(5t+1)2
(
w−w3(t)

)2
+v3(t). Thus bB3 (t, w) ≥ v3(t) > 0

if 2 ≤ t < 3,
(0-iv-b-2) We shall show bB3 (t, w) > 0 if t ≥ 3 and (t− 3)/2 ≤ w. Let

u3(t) := 2t5− t4 + 10t3−40t2−40t−3, d3(t) := 5t5−15t4−6t3−26t2 + 141t+ 9.

Then
t− 3

2
− w3(t) =

u3(t)

2(t+ 1)(5t+ 1)2
.

Since u3(s+ 3) = 2s5 + 29s4 + 178s3 + 536s2 + 692s+ 192 > 0 when s ≥ 0, we have
(t − 3)/2 > w3(t) if t ≥ 3. Thus bB3 (t, w) is strictly increasing on w ≥ (t − 3)/2.
Therefore

bB3 (t, w) > b3

(
t,
t− 3

2

)
=
d3(t)

4
.

Since d3(s + 3) = 5s5 + 60s4 + 264s3 + 460s2 + 228s + 36 > 0 if s ≥ 0, we have
bB3 (t, w) > 0. Thus, Disc3 ≥ 0.

(1) Thus, we have eBt,u ∈ Ps+3,5 . We obtain eBt,u ∈ E(Ps+3,5), if we prove (2) and (3).

(2) Consider f(t, 1, 1) = fa(t, 1, 1) = f(0, u, 1) = fb(0, u, 1) = 0 for f ∈ Hs3,5.
The solution space is KerA, where

A :=


t5 − 2t2 − t+ 2 2(t2 − 1)2 2(t− 1)2(t+ 1) t(t− 1)2 t(2t+ 1)

5t4 − 4t− 1 8t(t2 − 1) 6t2 − 4t− 2 3t2 − 4t+ 1 4t+ 1
u5 + 1 u4 + u u3 + u2 0 0

5u4 4u3 + 1 3u2 + 2u 0 0

 .

Put (1, 0, 0, 0, 0) above A, and make a square matrix B. Then

detB = 2u2(u− 1)(u+ 1)3t2(t− 1)(t+ 2).

Since t ≥ 2 and 0 < µB(t) ≤ u < 1, we have detB 6= 0. Thus, KerA = R · eBt,u.

(3) Consider f(t, 1, 1) = fa(t, 1, 1) = f(0, 1, 1) = fbb(0, 1, 1) = 0.
(4) follows from a direct calculation. �

Remark 4.11. (1) If t ≥ 2, then

eBt,µB(t) = s0 + (1− 2µR(t))s1 + (t3 + 2t2 − 2− 2(t2 − 1)µR(t))s2

− ((t+ 1)2(2t+ 3)− 4(t+ 1)2µR(t))s3.

(2) Since lim
t→+∞

[eBt,u] = [s4] for any µB(t) ≤ u ≤ 1, we regard eB∞,u := s4 = eE∞.

(3) If bB1 (t, ω(u)) = (2t+ 1)ω(u)− t(t− 4) = 0, then

eBt,u(a, b, c) = S1(S2 − kS1,1)2,

where k =
S2(t, 1, 1)

S1,1(t, 1, 1)
=

S2(0, u, 1)

S1,1(0, u, 1)
.
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4.2. Structure of E(PPs+3,5).

We define Φ : P2
+ −→ P

(
(Hs3,5)∨

)
by Φ(a) =

(
s0(a) : s1(a) : s2(a) : s3(a) : s4(a)

)
.

The semialgebraic set X = Xs+
3,5 := Φ(P2

+) is called the characteristic variety of

Ps+3,5 (see [1, §1.2]). We regard X as a semialgebraic variety. About the definition

of semialgebraic varieties, please see [2, §5] or [3, §2].
The symmetric group S3 acts on P2

+ naturally. Let σ1(a, b, c) = a+ b+ c, σ2(a,
b, c) = ab + bc + ca, σ3(a, b, c) = abc, and define π : P2

+ −→ P2
+/S3 ⊂ PR(1, 2, 3)

by π(a) =
(
σ1(a) : σ2(a) : σ3(a)

)
, where PR(1, 2, 3) is the real weighted projective

space which is the real part of the complex weighted projective space PC(1, 2, 3).
There exists a natural rational map Ψ: P2

+/S3 · · · → X such that Φ = Ψ ◦ π. By
[2, Proposition 2.14] and [1, Proposition 2.12—2.14], Ψ: P2

+/S3 −→ X is a regular
map and is an isomorphism.

4.2.1. Structure of ∂PPs+3,5.

For a semialgebraic variety Y , we denote its boundary by ∂Y . At [1, Definition

1.5], we defined a critical decomposition ∆(Y ) =

dimY⊔
i=0

∆i(Y ) of Y . If ∆(Y ) ={
D1,. . ., Dr

}
, then all Dj are non-singular irreducible semialgebraic varieties with

∂Dj = ∅ and Y =

r⊔
j=1

Dj (disjoint union). If Dj ∈ ∆i(Y ), then dimDj = i.

Since Ψ: P2
+/S3 −→ X is an isomorphism, we have ∆i(P2

+/S3) ∼= ∆i(X). The
critical decomposition of P2

+/S3 is given in [1, Proposition 2.13]. Using this, we
shall describe the critical decomposition of X. Let

Cb :=
{

Φ(t : 1 : 1) ∈ X
∣∣ 0 < t < 1 or 1 < t

}
,

C0 :=
{

Φ(0: t : 1) ∈ X
∣∣ 0 < t < 1

}
,

P1 := Φ(0: 0 : 1) = (1: 0 : 0 : 0 : 0),

P2 := Φ(0: 1 : 1) = (1: 1 : 2 : 0 : 0),

P3 := Φ(1: 1 : 1) = (0: 0 : 0 : 0 : 1).

Proposition 4.12. The critical decomposition of X is given by

∆2(X) =
{

Int(X)
}
, ∆1(X) =

{
Cb, C0

}
, ∆0(X) =

{
P1, P2, P3

}
.

Proof. This follows from [1, Proposition 2.13, 2.14] or [2, Proposition 2.14]. �

For D ∈ ∆(X), a semialgebraic variety F(D) ⊂ ∂Ps+3,5 is defined as [1, Definition

1.19] (see also [1, Theorem 1.18] or [2, Theorem 2.6]). Roughly speaking, F(D) is
obtained from the dual semialgebraic variety of D ([1, Theorem 1.18]). Note that
F(P3) = Ps0+

3,5 .

Proposition 4.13.

∂Ps+3,5 = F(Cb) ∪ F(C0) ∪ F(P1) ∪ F(P2) ∪ F(P3).
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Proof. By [1, Theorem 1.18] or [2, Theorem 2.6], we have

∂Ps+3,5 =
⋃

D∈∆(X)

F(D).

But F(Int(X)) is not a face component of Ps+3,5 by [2, Theorem 2.21]. �

For D ∈ ∆(X), we denote

FD :=
(
F(D)− {0}

)
/R×+ ⊂ ∂PPs+3,5 ⊂ PHs3,5.

Since Ps+3,5 is a convex set, FD is also a convex set.

For a subset A of Rm or PmR , we denote its Zariski closure by Zar(A). For i = 1, 2
and 3, Zar(FPi) is a hypersurface of PHs3,5 (see [1, Remark 1.21(3)]). This sentence

means that Zar
(
F(Pi)

)
is a hypersurface of Hs3,5. So, we may regard FPi

as a

compact convex domain in R3. Since

PE(Ps+3,5) = E(PPs+3,5) ⊂ E(FCb) ∪ E(FC0) ∪ E(FP1
) ∪ E(FP2

) ∪ E(FP3
),

we need to study FCb , FC0 , FP1 , FP2 and FP3 to prove Theorem 1.4.
For f 6= g ∈ Hs4,5, the line segment connecting [f ] and [g] ∈ PHs4,5 is denoted by

L[f, g] :=
{

[(1− t)f + tg] ∈ PHs4,5
∣∣ 0 ≤ t ≤ 1

}
⊂ PHs4,5.

Since dimFD ≤ 3, a line segment L[f, g] often appears in the irreducible components
of FD1 ∩ FD2 ∩ FD3 .

4.2.2. Structure of FCb .

For t > 0, we put

Lbt :=
{

[f ] ∈ FCb

∣∣ f(t, 1, 1) = 0
}
, Lb∞ := lim

t→+∞
Lbt , Lb0 := lim

t→+0
Lbt .

Note that dimFCb = 3 and dimLbt ≤ 2. If [f ], [g] ∈ Lbt , then L[f, g] ⊂ Lbt . Thus
Zar(Lbt) is included in a two dimensional plane in PHs3,5.

If P ∈ Cb, then there exists t > 0 such that P = Φ(t : 1 : 1). Thus, if f ∈ F(Cb)
and f(1, 0, 0) 6= 0, then there exists t ≥ 0 such that f(t, 1, 1) = 0. Therefore,

FCb =
⋃

t∈[0,∞]

Lbt .

This implies

E(FCb) ⊂
⋃

t∈[0,∞]

E(Lbt).

Thus, we shall study E(Lbt).
For a ∈ R3,

{
f ∈ F(D)

∣∣ f(a) = 0
}

is a linear subset of Hs3,5. So, we may regard

Lbt as a compact convex domain in R2. We study the shape of Lbt .

Theorem 4.14. (1) If 0 ≤ t ≤ 2, then

E(Lbt) =
{

[eAt,u]
∣∣ 0 ≤ u ≤ µL(t)

}
∪
{

[eCt ], [eDt ]
}
.

(2) If 2 < t ≤ 5/2, then

E(Lbt) =
{

[eAt,u]
∣∣ 0 ≤ u ≤ µL(t)

}
∪
{

[eBt,u]
∣∣ µB(t) ≤ u ≤ 1

}
∪
{

[eDt ]
}
.

(3) If 5/2 < t < 7, then

E(Lbt) =
{

[eAt,u]
∣∣ 0 ≤ u ≤ µH(t)

}
∪
{

[eBt,u]
∣∣ µB(t) ≤ u ≤ 1

}
∪
{

[eDt ]
}
.

(4) If t ≥ 7, then

E(Lbt) =
{

[eBt,u]
∣∣ µB(t) ≤ u ≤ 1

}
∪
{

[eDt ], [eEt ]
}
.
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(5) E(Lb∞) =
{

[eD∞], [eE∞]
}

.
(6)

E(FCb) =
{

[eAt,u]
∣∣ 0 ≤ t ≤ 7, 0 ≤ u ≤ µA(t)

}
∪
{

[eBt,u]
∣∣ t ∈ [2,∞], µB(t) ≤ u ≤ 1

}
∪
{

[eCt ]
∣∣ 0 ≤ t ≤ 2} ∪

{
[eDt ]

∣∣ t ∈ [0,∞]} ∪
{

[eCt ]
∣∣ t ∈ [7,∞]}.

Proof. Put

S :=
{

[eAt,u] ∈ FCb

∣∣ 0 ≤ t ≤ 7, t 6= 1 and 0 ≤ u ≤ µA(t)
}
.

Since [eAt,u] ∈ Lbt ∩ LbµZ(t,u) by Theorem 4.7, and since Lbt 6= LbµZ(t,u), we have

S ⊂ Sing
(
FCb

)
. Note that

E(Lbt) ⊂ ∂Lbt ⊂ S ∪ FC0 ∪ FP1
∪ FP2

∪ FP3
.

So, we study S ∩ Lbt , FC0 ∩ Lbt , FP1
∩ Lbt , FP2

∩ Lbt and FP3
∩ Lbt .

(1) We consider the case 0 ≤ t ≤ 2 and t 6= 1. (Fig.4.2)
By Theorem 4.7, we have S ∩ Lbt =

{
[eAt,u]

∣∣ 0 ≤ u ≤ µL(t)
}

.

By Theorem 4.10, we have FC0 ∩ Lbt = ∅.
Since Zar(FPi

) and Zar(Lbt) are linear subspaces of PHs3,5 of dimensions 3 and 2,

we have dim(FPi ∩Lbt) ≤ 1. Note that FP1 ∩FP2 ∩Lbt = ∅, FP2 ∩FP3 ∩Lbt =
{

[eCt ]
}

,

and FP1
∩ FP3

∩ Lbt =
{

[eDt ]
}

, by Theorem 4.3, 4.4 and 4.7. Since Zar(FPi
) is a

hyperplane of PHs3,5, and Zar(Lbt) is a two dimensional plane in PHs3,5, we have

FP1
∩ Lbt = L[eAt,0, e

D
t ], FP2

∩ Lbt = L[eAt,µL(t), e
C
t ], FP3

∩ Lbt = L[eCt , e
D
t ].

When we draw these boundary components of Lbt , we obtain Fig.4.2. Since Lbt is a
convex set, (1) is proved.

When t = 1, (1) can be obtained if we take a limit t→ 1.

r
r

r
rLb
t

FCb

[eAt,u]

[eAt,µL(t)] FP2

[eCt ]

FP3

[eDt ]

FP1
[eAt,0]

Fig.4.2. Lb
t (0 ≤ t ≤ 2)

r

r

rrr Lb
tFP2

[eBt,1]
FC0

[eBt,u]

[eBt,µB(t)] FP3

[eDt ]

FP1

[eAt,0]
FCb [eAt,u]

[eAt,µL(t)]

Fig.4.3. Lb
t (2 < t ≤ 5/2)

(2) We consider the case 2 < t ≤ 5/2. (Fig.4.3)
By similar arguments as in (1), we conclude that
(i) S ∩ Lbt =

{
[eAt,u]

∣∣ 0 ≤ u ≤ µL(t)
}

. (Theorem 4.7)

(ii) FC0 ∩ Lbt =
{

[eBt,u]
∣∣ µB(t) ≤ u ≤ 1

}
. (Theorem 4.10)

(iii) FP1
∩ Lbt = L[eAt,0, e

D
t ]. (Theorem 4.7, 4.4)

(iv) FP2 ∩ Lbt = L[eAt,µL(t), e
B
t,1]. (Theorem 4.7, 4.10)

(v) FP3 ∩ Lbt = L[eBt,µB(t), e
D
t ]. (Theorem 4.10, 4.4)

Thus, we have Fig.4.3, and (2) is proved.

(3) We consider the case 5/2 < t < 7. (Fig.4.4)
By similar arguments as in (1), we conclude that
(i) S ∩ Lbt =

{
[eAt,u]

∣∣ 0 ≤ u ≤ µH(t)
}

. (Theorem 4.7)

(ii) FC0 ∩ Lbt =
{

[eBt,u]
∣∣ µB(t) ≤ u ≤ 1

}
. (Theorem 4.10)

(iii) FP1 ∩ Lbt = L[eAt,0, e
D
t ]. (Theorem 4.4, 4.7)

(iv) FP2
∩ Lbt = L[eAt,µH(t), e

B
t,1]. (Theorem 4.7, 4.10)

(v) FP3
∩ Lbt = L[eBt,µB(t), e

D
t ]. (Theorem 4.4, 4.10)



SOME EXTREMAL SYMMETRIC INEQUALITIES 33

Thus, we have Fig.4.4, and (3) is proved.

r

r

rrr Lb
tFP2

[eBt,1]
FC0

[eBt,u]

[eBt,µB(t)] FP3

[eDt ]

FP1

[eAt,0]
FCb [eAt,u]

[eAt,µH(t)]

Fig.4.4. Lb
t (5/2 < t < 7)

r
r

r
rLb
t

FC0

[eBt,u]

[eBt,µB(t)] FP3

[eDt ]

FP1

[eEt ]

FP2
[eBt,1]

Fig.4.5. Lb
t (t ≥ 7)

(4) We consider the case t ≥ 7. (Fig.4.5)
By similar arguments as in (1), we conclude that
(i) S ∩ Lbt = ∅. (Theorem 4.7)

(ii) FC0 ∩ Lbt =
{

[eBt,u]
∣∣ µB(t) ≤ u ≤ 1

}
. (Theorem 4.10)

(iii) FP1
∩ Lbt = L[eDt , e

E
t ]. (Theorem 4.4, 4.5)

(iv) FP2
∩ Lbt = L[eBt,1, e

E
t ]. (Theorem 4.5, 4.10)

(v) FP3 ∩ Lbt = L[eBt,µB(t), e
D
t ]. (Theorem 4.4, 4.10)

Thus, we have Fig.4.5, and (4) is proved.

(5) follows from lim
t→∞

[eBt,u] = [eE∞], if µB(t) ≤ u ≤ 1.

(6) By (1)—(4), we have E(FCb) ⊃
⋃

t∈[0,∞]

E(Lbt). The inclusion ⊂ is clear. �

4.2.3. Structures of FP1 and FP2 .

We start from FP1
.

Theorem 4.15.

E(FP1) =
{

[eAt,0]
∣∣ 0 ≤ t ≤ 7

}
∪
{

[eDt ]
∣∣ t ∈ [0,∞]

}
∪
{

[eEt ]
∣∣ t ∈ [7,∞]

}
∪
{

[s3]
}
.

Proof. Since Zar(FP1
) ∼= P3

R, FP1
is non-singular. Thus,

E(FP1
) ⊂ FCb ∪ FC0 ∪ FP2

∪ FP3
.

By Theorem 4.14, we have

E(FCb ∩ FP1) =
{

[eAt,0]
∣∣ 0 ≤ t ≤ 7

}
∪
{

[eDt ]
∣∣ t ∈ [0,∞]} ∪

{
[eEt ]

∣∣ t ∈ [7,∞]}.
We need to observe FC0 ∩ FP1

, FP2
∩ FP1

and FP3
∩ FP1

.

(1) It is easy to see that FC0∩FP1
is a triangle whose vertices are [eD∞] = [s2−s3],

[s3] and [s4] = [eE∞] = [eB∞,1] (Fig.4.6).

(2) We observe FP2 ∩ FP1 . (Fig.4.7)
As the proof of (1) in Theorem 4.14, we obtain:
(i) FCb ∩ FP2

∩ FP1
= L[eD0 , e

E
7 ] ∪

{
[eEt ]

∣∣ t ∈ [7,∞]
}

. (Theorem 4.4, 4.5)

(ii) FC0 ∩ FP2
∩ FP1

= L[s3, e
E
∞]. (Theorem 4.5, 4.6)

(iii) FP3
∩ FP2

∩ FP1
= L[eD0 , s3]. (Theorem 4.4, 4.6)

Thus, we can draw Fig.4.7. This implies

E(FP2 ∩ FP1) =
{

[eEt ]
∣∣ t ∈ [7,∞]

}
∪
{

[eD0 ], [s3]
}
.
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r
r rFC0 ∩ FP1

[s3]

[eE∞]

FP2FP3

FCb
[eD∞]

Fig.4.6. FC0 ∩ FP1

r
r

r
rFP2
∩ FP1

FCb

[eEt ]

[eE∞] FC0

[s3]

FP3

[eD0 ]

FCb[eE7 ]

Fig.4.7. FP2
∩ FP1

rr
rFP3

∩ FP1

FCb

[eD0 ]
FP2

[s3]

FC0

[eD∞][eDt ]

Fig.4.8. FP3
∩ FP1

(3) We observe FP3 ∩ FP1 . (Fig.4.8)
As the proof of (1) in Theorem 4.14, we obtain:
(i) FCb ∩ FP3

∩ FP1
=
{

[eDt ]
∣∣ t ∈ [0,∞]

}
. (Theorem 4.4)

(ii) FC0 ∩ FP3
∩ FP1

= L[eD∞, s3]. (Theorem 4.4, 4.6)
(iii) FP2

∩ FP3
∩ FP1

= L[eD0 , s3]. (Theorem 4.4, 4.6)
Thus, we can draw Fig.4.8, and we have

E(FP3 ∩ FP1) =
{

[eDt ]
∣∣ t ∈ [0,∞]

}
∪
{

[s3]
}
.

Thus, we complete the proof of the theorem. �

Next, we observe FP2 .

Theorem 4.16.

E(FP2
) =

{
[eAt,0]

∣∣ 0 ≤ t ≤ 7
}
∪
{

[eBt,1]
∣∣ t ∈ [2,∞]

}
∪
{

[eCt ]
∣∣ t ∈ [0, 2]

}
∪
{

[eD0 ]
}
∪
{

[eEt ]
∣∣ t ∈ [7,∞]

}
∪
{

[s3]
}
.

Proof. Since Zar(FP2) is 3 dimensional affine space, we have

E(FP2
) ⊂ FCb ∪ FC0 ∪ FP1

∪ FP3
.

By Theorem 4.14, we have

E(FCb ∩ FP2
) =

{
[eAt,µA(t)]

∣∣ 0 ≤ t ≤ 7
}
∪
{

[eBt,1]
∣∣ t > 2

}
∪
{

[eCt ]
∣∣ 0 ≤ t ≤ 2} ∪

{
[eEt ]

∣∣ t ∈ [7,∞]}.

By Theorem 4.15, E(FP1
∩FP2

) is as Fig.4.7. Thus, we need to observe E(FC0∩FP2
)

and E(FP3
∩ FP2

).

(1) We observe FC0 ∩ FP2
. (Fig.4.9)

As the proof of (1) in Theorem 4.14, we obtain:
(i) FCb ∩ FC0 ∩ FP2 =

{
[eBt,1]

∣∣ t ∈ [2,∞]
}

. (Theorem 4.10)

(ii) FP1 ∩ FC0 ∩ FP2 = L[s3, e
E
∞], where [eE∞] = [eB∞,1]. (Theorem 4.5, 4.6)

(iii) FP3 ∩ FC0 ∩ FP2 = L[eB2,1, s3]. (Theorem 4.6, 4.10)
Thus, we obtain Fig.4.9.

rr
rFC0 ∩ FP2

FCb

[eB2,1]
FP3

[s3]

FP1

[eE∞][eBt,1]

Fig.4.9. FC0 ∩ FP2

r
r

r
rFP3
∩ FP2

FCb

[eCt ]

[eC2 ] FC0

[s3]

FP1

[eD0 ]

FCb
[eC0 ]

Fig.4.10. FP3
∩ FP2
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(2) We observe FP3
∩ FP2

. (Fig.4.10)
As the proof of (1) in Theorem 4.14, we obtain:
(i) FCb ∩ FP3 ∩ FP2 = L[eC0 , e

D
0 ] ∪

{
[eCt ]

∣∣ 0 ≤ t ≤ 2
}

. (Theorem 4.3, 4.4)

(ii) FC0 ∩ FP3 ∩ FP2 = L[eC2 , s3]. (Theorem 4.3, 4.6)
(iii) FP1

∩ FP3
∩ FP2

= L[eD0 , s3]. (Theorem 4.4, 4.6)
Thus, we obtain Fig.4.10.
By these observations, we obtain the theorem. �

4.2.4. Discriminants of Ps+3,5.

To determine E(FC0), we need to prove that FC0 is non-singular.

An element f ∈ Hs3,5 is represented by f =

4∑
i=0

pisi. We use (p0,. . ., p4) as a

coordinate system of Hs3,5, and write f = (p0,. . ., p4). We represent discriminants
using this coordinate system.

If D ∈ ∆(X) satisfies dimF(D) = dimPs+3,5 − 1, the defining equation of

Zar(F(D)) in Hs3,5 is called a discriminant of Ps+3,5 , and is written by disc(D),

discD or discD(p). To describe discCb(p), we put

c5(p) := p0, c4(p) := 2p1, c3(p) := 2p2 + p3,

c2(p) := −2(p0 + 2p1 + p2 + p3 − p4),

c1(p) := −p0 − 2p2 + p3 + p4, c0(p) := 2(p0 + p1 + p2).

Note that if f = (p0,. . ., p4), then f(x, 1, 1) =

5∑
i=0

ci(p)xi.

Theorem 4.17. All the discriminants of Ps+3,5 are

discP1(p) = p0,

discP2
(p) = p0 + p1 + p2,

discP3
(p) = p4,

discC0(p) = 5p2
0 + 2p0p1 + p2

1 − 4p0p2,

discCb(p) =
Disc5

(
c5(p), c4(p), c3(p), c2(p), c1(p), c0(p)

)
16p4

.

Proof. We obtain discPi (i = 1, 2, 3) by [1, Remark 1.21(3)]. Discriminants discC0

and discCb can be obtained by the calculation explained in [1, Remark 1.21(1)]. We
can obtain discC0 without a computer, but the calculation of discCb took very long
time even if we used a computer. So, we present an alternative method to justify
the above discCb is really discriminant.

Let F (p0,. . ., p4) be the right hand side of discCb(p) presented in the theorem.
VC(discCb) must contains eAt,u (0 ≤ t ≤ 7, 0 ≤ u ≤ µA(t)), eBt,u (t ≥ 2, µB(t) ≤ u ≤
1), eCt (0 ≤ t ≤ 2), eDt (t ≥ 0), and eEt (t ≥ 7), by Theorem 4.14(6).

Using computer, it is easy to see all of these are on VC(F ). An irreducible
polynomial G(p0,. . ., p4) such that VC(G) contains all the above e is unique up to
constant multiplication. It is easy to check that F is irreducible. Thus, F is a
discriminant. �

Corollary 4.18. The real algebraic variety Zar(FC0) = VR(discC0) is non-singular.
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4.2.5. Proof of Theorem 1.4.

We shall determine E(FC0) and E(FP3).

Corollary 4.19.

E(FC0) =
{

[eBt,u]
∣∣ t ∈ [2,∞], µB(t) ≤ u ≤ 1

}
∪
{

[eD∞], [s3]
}
.

Proof. Since Zar(FC0) is non-singular, we have

E(FC0) ⊂ FCb ∪ FP1
∪ FP2

∪ FP3
.

By Theorem 4.14, we have

E(FCb ∩ FC0) =
{

[eBt,u]
∣∣ t ∈ [2,∞], µB(t) ≤ u ≤ 1

}
.

FP1 ∩ FC0 is given in Fig.4.6, and FP2 ∩ FC0 is given in Fig.4.9.
Thus, it is enough to observe FP3

∩ FC0 . By the proofs of Theorem 4.14, 4.15
and 4.16, we have

E(FP3) ∩ FC0 =
{

[eBt,µB(t)]
∣∣ t ∈ [2,∞]

}
∪
{

[eD∞], [s3]
}
.

Here, note that µB(2) = 1, eB∞,1 = eE∞ and eB2,1 = eC2 . Thus, we have the conclusion.
�

Corollary 4.20.

E(FP3
) =

{
[eBt,µB(t)]

∣∣ t ∈ [2,∞]
}
∪
{

[eCt ]
∣∣ 0 ≤ t ≤ 2

}
∪
{

[eDt ]
∣∣ t ∈ [0,∞]

}
∪ {[s3]}.

Proof. This is already proved in the proofs till here. �

Corollary 4.21. All the elements of E(PPs+3,5) are [eAt,u] (0 ≤ t ≤ 7, 0 ≤ u ≤ µA(t)),

[eBt,u] (t ∈ [2,∞], µB(t) ≤ u ≤ 1), [eCt ] (0 ≤ t ≤ 2), [eDt ] (t ∈ [0,∞]), [eEt ] (t ∈ [7,∞]),
and [s3].

Thus, we complete the proof of Theorem 1.4.

4.3. Application.

4.3.1. Reducible extremal elements.

In this subsection, we study when f ∈ E(Ps+3,5) is irreducible. We need some
lemmata for it.

Lemma 4.22. Assume that f ∈ E(Ps+3,5) is reducible in C[a, b, c]. Then, there exists

an integer d ∈ {1, 2}, g ∈ E(Ps+3,d) and h ∈ E(Ps+3,5−d) such that f = gh.
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Proof. (1) We shall show that if f ∈ E(Ps+3,5) is reducible in C[a, b, c], then there

exists g, h ∈ R[a, b, c]− R such that f = gh.
Assume that f/g ∈ C[a, b, c] by non-constant g ∈ C[a, b, c]. We may assume g is

irreducible in C[a, b, c] and deg g is odd. If αg /∈ R[a, b, c] for any α ∈ C×, then the
complex conjugate g divides f . Then gg ∈ R[a, b, c] and f/(gg) ∈ R[a, b, c].

(2) We shall show that if f is reducible, we can find a symmetric divisor of f .
Assume that f = gh by g, h ∈ R[a, b, c]. We may assume that g is irreducible in
R[a, b, c]. If g is not symmetric, σ(g) is also a divisor of f by any σ ∈ S3. So, there
exists a symmetric divisor of f .

Assume that f = gh by g ∈ Ps+3,d and h ∈ Ps+3,5−d. If g /∈ E(Ps+3,d), then f /∈
E(Ps+3,5). �

Lemma 4.23. (1) PE(Ps+3,1) =
{

[S1]
}

.

(2) PE(Ps+3,2) =
{

[S2 − S1,1]
}

.

(3) PE(Ps+3,3) =
{

[S3 + 3U − T2,1], [T2,1 − 6U ], [U ]
}

.

Proof. (1) and (2) are trivial. (3) is proved in [1, Corollary 3.4]. �

Lemma 4.24. Let

gt(a, b, c) := S4 − (t+ 1)T3,1 + (t2 + 2t)S2,2 − (t2 − 1)T2,1,1.

Then

PE(Ps+3,4) =
{

[gt]
∣∣ t ≥ 0

}
∪
{

[(S2 − tS1,1)2]
∣∣ t ≥ 1

}
∪
{

[T3,1 − 2S2,2]
}
.

Proof. This is a corollary of [1, Theorem 4.10]. This gt is equal to gA−t−1,−t−1 in [1,

Theorem 4.10]. Note that gt(x, 1, 1) = (x− 1)2(x− t)2. �

Theorem 4.25. Let bB1 (t, w) := (2t + 1)w − t(t − 4) as in the proof of Theorem
4.10. If f ∈ E(Ps+3,5) is reducible in C[a, b, c], then f is a positive multiple of one of
the following polynomials.

(1) S1

(
S2 −

t2 + 2

2t+ 1
S1,1

)2

= eAt,µ0(t) = eBt,α, where µ0(t) :=
3(t− 1)2(t+ 2)

2t+ 1
and α

is a root of bB1
(
t, ω(α)

)
= 0.

(2) (S2 − S1,1)(S3 + 3U − T2,1) = eC1 .
(3) (S2 − S1,1)(T2,1 − 6U) = eD1 .
(4) (S2 − S1,1)U = s3.

Proof. If f ∈ E(Ps+3,5) is reducible, then there exists an integer d ∈ {1, 2}, g ∈
E(Ps+3,d) and h ∈ E(Ps+3,5−d) such that f = gh.

(I) Consider the case deg g = 1. Then, we may assume g = S1 = a+ b+ c.
By the previous lemma, h = (S2 − tS1,1)2 (t ≥ 1), or h = gt (t ≥ 0), or

h = T3,1 − 2S2,2. If h = (S2 − tS1,1)2, this is the case (1).
If h = gt, then f = S1gt = eCt + eDt /∈ E(Ps+3,5).

If h = (S2 − tS1,1)2, then f = S1(T3,1 − 2S2,2) = eD0 + 4s3 /∈ E(Ps+3,5).

(II) Consider the case deg g = 2. Then, we may assume g = S2 − S1,1.
Since h ∈ E(Ps+3,3), we have h = S3 + 3U −T2,1 or f = T2,1−6U or f = U . Thus,

we have (2), (3) or (4). �

4.3.2. eBt,u(a2, b2, c2) ∈ E(P3,10)− Σ3,10 and eAt,u(a2, b2, c2) /∈ Σ3,10.
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Theorem 4.26. (1) If 0 < t < 7, t 6= 1, 0 < u < µA(t), and u 6= 3(t− 1)2(t+ 2)

2t+ 1
,

then eAt,u(a2, b2, c2) /∈ Σ3,10.

(2) If t > 2 and µB(t) < u < 1 and bB1 (t, ω(u)) 6= 0, then eBt,u(a2, b2, c2) /∈ Σ3,10.

Proof. (1) Let 0 < t < 7, t 6= 1, 0 < u < µA(t), p :=
√
µZ(t, u), q :=

√
t, and

F (a, b, c) := eAt,u(a2, b2, c2). Note that p > 0, p2 6= 1, q > 0, q2 6= 1 and p2 6= q2.

Consider the zero point set Z := VR(F ) ⊂ P2
R. Remember that eAt,u(p2, 1, 1) =

eAt,u(q2, 1, 1) = 0. Thus, F (±p, ±1, 1) = F (±q, ±1, 1) = F (±1, ±p, 1) = F (±1,
±q, 1) = F (1, ±1, ±p) = F (1, ±1, ±q) = 0. Therefore #Z ≥ 24.

Assume that F ∈ Σ3,10. Then, there exists r ∈ N and g1,. . ., gr ∈ H3,5 such that
F = g2

1 + · · ·+g2
r . If a ∈ Z, then g1(a) = · · · = gr(a) = 0. Note that dimH3,5 = 21.

So, let’s find 21 points ai ∈ Z (1 ≤ i ≤ 21) such that there exists no g ∈ H3,5−{0}
which satisfy g(ai) = 0 for all 1 ≤ i ≤ 21.

Let a1 := (−p : 1 : 1), a2 := (p : − 1: 1), a3 := (p : 1 : − 1), a4 := (1: p : 1),
a5 := (−1: p : 1), a6 := (1: − p : 1), a7 := (1: p : − 1), a8 := (1: 1 : p), a9 :=
(−1: 1 : p), a10 := (1: − 1: p), a11 := (q : 1 : 1), a12 := (−q : 1 : 1), a13 := (q : −
1: 1), a14 := (q : 1 : − 1), a15 := (1: q : 1), a16 := (−1: q : 1), a17 := (1: − q : 1),
a18 := (1: q : − 1), a19 := (1: 1 : q), a20 := (−1: 1 : q), a21 := (1: − 1: q). Take 21
monic monomials e1,. . ., e21 as a basis of H3,5, and denote g = c1e1 + · · ·+ c21e21 ∈
H3,5. Let A = (ai,j) be the 21× 21-matrix such that ai,j = ej(ai). Then

detA = ±262144p4(p2 − 1)6q5(q2 − 1)7(p2 − q2)10(2p2q2 + p2 + q2 − 4)3.

Note that 2p2q2 + p2 + q2 − 4 = 0, if and only if u =
3(t− 1)2(t+ 2)

2t+ 1
. Thus,

detA 6= 0, and we obtain (1).

(2) Let t > 2, µB(t) < u < 1, p :=
√
t, q :=

√
u, and F (a, b, c) := eBt,u(a2, b2, c2).

Note that 0 < q < 1 and p >
√

2. By the same argument with (1), it is enough to
find 21 points bi ∈ Z (1 ≤ i ≤ 21) such that there exists no g ∈ H3,5 − {0} which
satisfy g(bi) = 0 for all 1 ≤ i ≤ 21.

Let b1 := (p : 1 : 1), b2 := (−p : 1 : 1), b3 := (p : −1: 1), b4 := (p : 1 : −1), b5 :=
(1: p : 1), b6 := (−1: p : 1), b7 := (1: − p : 1), b8 := (1: p : − 1), b9 := (1: 1 : p),
b10 := (−1: 1 : p), b11 := (1: − 1: p), b12 := (q : 1 : 0), b13 := (q : 0 : 1), b14 :=
(−q : 1 : 0), b15 := (−q : 0 : 1), b16 := (1: q : 0), b17 := (1: 0 : q), b18 := (1: 0 : −q),
b19 := (0: − q : 1), b20 := (0: 1 : q), b21 := (0: 1 : − q).

Let B = (bi,j) be the 21× 21-matrix such that bi,j = ej(bi). Then

detB = ±16384p6(p2 − 1)7(p2 + 2)q8(q − 1)5(q + 1)4(q2 + 1)4((q + 1)2 + p2q)

× (q2(p2 + 1)− 1)(p4q2 − 2p2q4 − 2p2 − (q2 − 1)2)3.

Thus, if detB = 0, then q2(p2 + 1)− 1 = 0 or p4q2 − 2p2q4 − 2p2 − (q2 − 1)2 = 0.
If q2(p2 + 1)− 1 = 0, then µB(t) < u = 1/(t+ 1) < µB(t). A contradiction.

On the other hand, p4q2 − 2p2q4 − 2p2 − (q2 − 1)2 = 0 is equivalent to bB1 (t,
ω(u)) = 0. Thus, we have detB 6= 0. �

It seems that eAt,u /∈ E(P+
3,5) and eAt,u(a2, b2, c2) /∈ E(P3,10). But the author does

not have a proof. We can prove the following:

Corollary 4.27. Assume that 0 < t < 7, t 6= 1, 0 < u < µA(t), and u 6=
3(t− 1)2(t+ 2)

2t+ 1
, If eAt,u(a2, b2, c2) = f1 + · · ·+ fr by certain f1,. . ., fr ∈ P3,10, then

f1,. . ., fr /∈ Σ3,10.
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Theorem 4.28. Assume t ≥ 2, µB(t) ≤ u < 1 and bB1
(
t, ω(u)

)
6= 0. Then

eBt,u ∈ E(P+
3,5) and eBt,u(a2, b2, c2) ∈ E(P3,10).

Proof. Put p :=
√
t, q :=

√
u. When we discuss H3,10, we denote the coordinate

system of P2
R by (x : y : z). When we discuss H3,5, we denote the coordinate system

of P2
R by (a : b : c), with x = a2, y = b2, z = c2.

Let e1,. . ., e66 are all the monic monomials of H3,10. We choose these so that
e66 = z10. Then e1,. . ., e66 is a basis of the vector space H3,10. We define τ ∈
Aut(P2

R) by τ(x : y : z) = (−x : y : z). Let G ⊂ Aut(P2
R) be the subgroup generated

by τ and the symmetric group S3. Put

Z :=
{
σ(p : 1 : 1), σ(q : 1 : 0)

∣∣ σ ∈ G}.
Note that Z consists of 24 points. Align these points as Z = {c1,. . ., c24}. Let

a3i−2,j := ej(ci), a3i−1,j :=
∂ej
∂x

(ci), a3i,j :=
∂ej
∂y

(ci),

and construct the 72 × 66 matrix A = (ai,j). By Theorem 4.10(2), we have
eBp2,q2(a2, b2, c2) ∈ KerA. Thus, if rankA = 65, then KerA = R · eBp2,q2(a2, b2, c2),

and eBt,u(a2, b2, c2) ∈ E(P3,10). Note that if eBt,u(a2, b2, c2) ∈ E(P3,10), then eBt,u ∈
E(P+

3,5).
We choose a 65 × 65 minor of A as the following way. We delete the column

corresponding to e66 = z10. Next, we delete the seven lines corresponding to
∂f

∂y
(p : 1 : 1),

∂f

∂y
(−p : 1 : 1),

∂f

∂y
(p : 1 : −1),

∂f

∂y
(q : 1 : 0),

∂f

∂x
(−q : 1 : 0),

∂f

∂y
(1 : q : 0)

and
∂f

∂y
(1 : − q : 0), where f = (e1,. . ., e65). We denote this 65× 65 square matrix

by B. Let

fC1 (p, q) := p2 − q2 + 1,

fC2 (p, q) := p2q2 + p2 − 1,

fC3 (p, q) := q2 − (p2 + 2)q + 1,

fC4 (p, q) := (2p2 + 1)(q2 − 1)2 − p2q2(p2 − 4).

Using Mathematica, we obtain

detB = ±2417851639229258349412352

× p45(p2 − 1)38(p2 + 2)5q61(1− q2)28
(
p2q + (q + 1)2

)5
× fC1 (p, q)3fC2 (p, q)3fC3 (p, q)5fC4 (p, q)9.

Since p =
√
t ≥
√

2, 0 <
√
u = q < 1, we have

p45(p2 − 1)38(p2 + 2)5q61(1− q2)28
(
p2q + (q + 1)2

)5
> 0.

Since p2 > 1 > q2, we have fC1 (p, q) = p2− q2 + 1 > 0, and fC2 (p, q) = p2q2 + p2− 1
> 0. Note that

fC4 (p, q) = q2bB1
(
p2, ω(q2)

)
6= 0,

by the assumption. Thus, it is enough to show fC3 (p, q) 6= 0. Put

gC3 (t) :=

√
t+ 2± p

√
t+ 2

2
.

When p ≥ 2 and 0 < q < 1, fC3 (p, q) = 0 is equivalent to u = gc3(t). It is easy to
see gC3 (t) < µB(t) if t ≥ 2. Thus, we have fC3 (p, q) 6= 0. �
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Note that if (2t + 1)(u − 1)2 − t(t − 4)u = 0, then eBt,u /∈ E(P+
3,5), by Theorem

4.26(1).

4.3.3. Extremal elements of Ps0+
3,5 .

The author should apologize for that [1, Corollary 5.7] is not correct. It must be
replaced by the following:

Theorem 4.29. All the extremal rays of Ps0+
3,5 are generated by eBt,µB(t) (t ∈ [2,∞]),

eCt (0 ≤ t ≤ 2), eDt (t ∈ [0,∞]) or s3.

Proof. Since Ps0+
3,5 = F(P3), this follows from Theorem 4.20. �
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