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.p.385. Line 8 from the bottom.
Error: and discT > 0 determine the PSD cone.
Correction: and disc{’ > 0 determine the PSD cone.

+p-385. Theorm 0.2 (2).
Comment: Let Ds(cq,c2,c3) be the discriminant of the cubic equation 341z +cox+
c3 = 0. Then 4p> + 4¢® + 27 — p*¢*> — 18pq = —Ds(p, ¢, 1).

+p.386. Theorem 0.3.

Comment: Let Dy(c1,ca,c3,c4) be the discriminant of the quartic equation g(z) :=
2t + 123 + cow? + 3w + ¢4 = 0. Then ¢(p,q,7) = Dy(p,7,q,1).

Using this fact, we can give an equivalent condition for that g(z) > 0 for all x € R
(resp. for all x > 0).

.p.387. Theorem 0.4.
Comment: ds(p,q,r) is the longest irreducible factor of the discriminant of the cubic
equation f(z,1,1)/(z —1)?> = 0. In other word,

27
ds(p,q,r) = TDg(Q +2p,3+4p+2q+ 1,2+ 2p+ 2q).

-p.390. Definition 1.7.
I want to cahnge the definition of signed linear system as the following.

Definition 1.7.(Signed linear system) Let A be a semialgebraic quasi-variety, R%* be
the sheaf the germs of real analytic functions on A. Assume that there exists an invertible
R 4-sheaf J and an invertible R%"-sheaf J such that J @x, RY = Qpan d. For any point
a € A, we assume that we can take an affine open subset a € U C A such that I|y = Ra|v-e?
by a certain ey € HO(U, J). Then, for f € H°(A, H), there exists gy € H°(U, Ra) such
that f|ly = gue?. We define sign(f(a)) € {0, £1} by sign(f(a)) = sign(gy(a)). A finite
dimensional subspace H C H°(A, J) is called a signed linear system on A.

For example, when A =P, H = H, ;14 and U = {(J:O: cerxy) € P ‘ Ty # 0}, we
2
can take J so that J|y = Ra|y - /2d . So, H is a signed linear system.
+p.393. Proposition 1.16.
The statement and the proof of this proposition are too rough. Please replace by:

Proposition 1.16. (Boundary Theorem) Let A be a compact semialgebraic quasi-
variety, and H be a signed linear system on A. Assume that P := P(A, H) C H is
non-degenerate, and dimP > 2. Let f € P.



(1) If f(a) = 0 for a certain a € A — BsH, then f € 0P.
(2) If f € OP, then there exists a € A such that f(a) =

Proof. (1) We can reduce to the case A is irreducible, and 3 C Rat(A), since P(A;UA,,
H) =P(A1, H)NP(Az, H). Since a ¢ BsH, there exists g € P such that g(a) > 0. Then
for all e > 0, f(a) —eg(a) < 0. This means f —eg ¢ P. Thus f € 9P.

(2) Let {so,..., sy} be a base of H such that sg,..., sy € P, and define Pg: A--- —
X c P¥ by sg,..., sy. We may assume that 4 = X. Put

Wi = {(X N)EPR | X2+ + X3 <3X7}
TheHWOU--'UWN:PI‘g.

Assume that f € P satisfies f(a) > 0 for all a € A = X. Take g € Int(P). We can
regard f; := f/X; and g; := ¢g/X; as holomorphic functions on W;. Since W; is compact,
there exists €; > 0 such that f;(a) £ €;g;(a) > 0 for all « € X N W;. Put € := min{ey,. ..,
en}. Then f+eg € P. Thus f ¢ 0P. O

+p.397. Proposition 1.27.

Error: (1) If P, # 0, then dimP, = N —r.

Correction: (1) dimP, < N —r.

In the proof, let L := {f eH } Tpa. C Hf}. As the origibal proof, dim £ = dim H —
(r+1)=N —r. Since P, =P N L, we have dimP, < N —r.

This proposition is used in some places. But only the fact dimP, < N — r is used in
this article.

+p.399. Proposition 1.36.
Error: Let A=Pg or A=P,,
Correction: Let A =Py or A=1P",

.p.403. Proposition 2.10.
Comments: discg+ agrees with the discriminant of the equation 2% + pozd=! + --- +
pa—1x + 1 under a suitable base of 9—(20. Please see Theorem 6.11 in this paper.

.p.406. line 23.

Error: Note that if they are not 0, then dim LS; = 2, and dim Lg?: =1 by Proposition
2.7(1).

Correction: Note that if they are not 0, then dimﬁ‘gig < 2, and ding?: = 1 by
Proposition 2.7(1).

.p.411. line 8. (Line 2 after the proof of Proposition 4.1.)
Error: Then dim £, = 2 and dim L', = 1 for any (s, t) € P§ by Proposition 2.7(1).
Correction: Then dim£¢, < 2 and dim L% = 1 for any (s, t) € P§ by Proposition
2.7(1).

«p.410. The first line of 4.1.
Error: Hilbert proved that every element in P4 := P(Pg, H4) can
Correction: Hilbert proved that every element in P, := P(P%, H,) can

.p.411. line 14.



Comment: g, ,(a,b, ¢) is not irreducible in Cla, b, ¢] since the curve defined by go, =0
in P has 4 nodes. There must be a conic h € Cla, b, ¢] such that ggf ¢ = hh. For example,

075(z,y,2) =S4 — 3131 + 8522 — 3U S,
= (2 + wy? + w?2? + 3way + 3yz + 3wzx)
x (2% 4+ w?y® + wz? + 3wy + 3yz + 3w’22)
where w := (=1 4+ /—3)/2.

g5.4(a, b, ¢) is not extremal in Py.

«p.413. Proof of Theorem 4.4. line 4-5.
Improvement:

hs(a,b,c) = ab(a — sb— c + sc)® + be(b — sc — a + sa)?
+ ca(c — sa — b+ sb)> > 0

.p.417. Proof of Theorem 4.7. line 1.
Error: dimL§, = N —2=2if (s,t) # (1, 1).
Correction: dimLg, = N —2 < 2if (s, t) # (1, 1).

«p.421. Proof of Theorem 4.11.
Comment: Let d4(p,r,v) be the discriminant of the quartic equation f(z,1,1) = 0.
Then
da(p,r,v)
16(1+2p+7r+wv)
discy(1,p, p,r,v) consists of 44 terms. When we choose to := Si, t1 := 57511, ta := Sil,
3
t3 := US; as a base of H3 ,, and present f = qu, discy (1, p, p, r,v) become shorter. It
i=0

disci(1, p,p,m,v) :=

consists of only 14 terms:
d5 (g0, a1, 42, 93) =27¢1q2 — 216404745 + 432q505 + 36¢7q2q3 — 14490014543 + 1647 g5
— 64404593 + 4103 — 3600019205 + 8474245 — 48004543 + 413
— 12q04205 — qods-
Note that discy(1,p,p,r,v) =dj(—4+p,2 —2p+r,3 —3p—3r +v).

.p.422. Proof of Proposition 4.12. (2)
Comment: Tt is better to choose gf}l (t > 0) in stead of g, (p € R), since
gél(a, b,c) = so— (t+ 1)1 + (1% + 2t)ss.
-p.425. Proposition 5.1.

Comment: In this article, the author refered [13]. This proposition is also a corollary
of Theorem 1.1 of [23].

.p.428. Theorem 5.6. line 2 from the bottom.
Error: ds(p,q,r) = disc(Cy), 4q¢ — (p + 1)? — 4 = disc(C}).
Correction: ds(p,q,r) = disc(C1), 4q — (p + 1)? — 4 = disc(Cs).

-p.429. Corollary 5.7.



Original Corollary 5.7 is incorrect. It must be replaced by the following:

Lemma 5.6b. (1) Let I C A. If 0 # f € P; and dimP; = 1, then f is an extremal
element of P.

(2) Let ay,..., ar € A. If dim(P,, N--- NP, ) =1 and f € P satisties f(a;) = -+ =
f(a,) =0, then f is an extremal element of P.

Proof. (1) Assume that f = ag+ 6h (g, h € P, a, B € R;). Take a € I. Since
0 = f(a) = ag(a) + Bh(a), g(a) > 0 and h(a) > 0, we have g(a) = h(a) = 0. Thus g,
heP;=R- f. Thus f is an extremal element of P.

(2) Let I ={ay,..., ar}, and apply (1). O

Corollary 5.7. Let
fiMa,b, C) =s0+ps1—(p+ 1)82 + p*ss,
0t) ;=22 +t\/(t — 1)(t +
sm(t) = (/)(() €(t)? -
fE(a,b,c) =50+ (1 —20(t ))51 + (t3 + 217 — 2 = 2(t2 — 1)L(t))s2
—((t+1)%(2t + 3) — 4(t + 1)%4(t))ss,
gi(a,b,c) =51 + (1 — 1)sy — 2(t + 1)?s3.
(1) For allt >0, g; is an extrelal element of P, and g; € LSO+ N LSOJr.
(2) Let t > 2, and put s := s,,(t). Then 0 < s < 1, and fP Lf()l+ DLSO+ fP is an
extrelal element of Pt .
(3) Let 0 <t <2, and put p:= —t — 1. Then f;' € Lf?f’ N Lg?fr, and fi' is an extremal
element of P0F.

(4) All the extremal elements of P°t are positive multiples of pr (-3 <p<-1), fB
(t>2),g: (t>0), s —2s3 and s3.

Proof. (1) f € L‘S?&r implies the cofficient of sq in f is equal to zero. Since,
9e(s,1,1) = 2(s — 1)2(8 - t)za
g0(0,5,1) = s(s + 1)((s — 1)° + £25),

we have g; € L * by Proposition 5.1.
(2) It is easy exercise to veryfy that s,,(t) varies (0, 1] when ¢ > 2. Since

FP(s, 1) = (s =1)*(s = 1)*(s + 2(t = V/(t = 1)(t +2))?),
f0,5,1) = (s +1)(s> = (2= 12 +t\/(t —1)(t +2))s + 1)

we have fF € LSO+ N LSO+.
(3) follow from

Fo(0,8,1) = (t+ 1)(t — 1> + (p+ Dt + 1).
the extremal elements o are positive multiples of g, > 0) and goo := $2.
4) All th 1el £ L5 iti Itiples of g; (0 > 0) and
Lg?j N LS?J =Ry - s3. Thus we obtain (4). 0

-p.430. Lemme 5.8. line 2.



Error: Note that dim £ = 6 — 2 = 4 by Proposition 2.7(1).
Correction: Note that dim £°F = 6 — 2 < 4 by Proposition 2.7(1).

.p.431. Theorem 5.9.
Comment: Let D,(c1,...,c,) be the discriminant of f(z) = ™ + Zcix”_i. Then,
=1
discE™ (z,y, 2, w) = Ds(x, z,w, ).

+p.434 line 14.
Error: Assume that go(S + 2,25) <0.
Correction: Assume that go(S + 2,25 +1) <O0.

+p.437 line 8. Lemma 6.7.
Error: Note that dim £ = 9 — 2 = 7 by Proposition 2.7(1).
Correction: Note that dim £ = 9 — 2 < 7 by Proposition 2.7(1).

+p.437-439. Theorem 6.8.
Comment: Let Dy(c1,...,c,) be the discriminant of f(z) = 2™ + Zciazn_i. Then,
i=1

disc§t (2, y, z,w, u) = Dg(x, z,u,w,y). In general,

Theorem 6.11. Take the base of H so that so = S, s1 = Sn—1,1, S2 = Sn—2.2,- - -,
Sp—1 = Sin-1, ... Here, if i > n, then s; is a multiple of U. We represent f € JH; as
f =>_pisi. Then, the edge discriminant of P¢t agrees with D, (p1,...,pn_1,1).

Proof. Take [ € LS’J’; C &¢T, where t > 0. Then f(0,¢,1) = 0. Since f(0,z,1) > 0 for
all z > 0, the equation f(0,z,1) = 0 has a multiple root at = t. Thus, the discriminant
of f is equal to 0. Since S;,_1(0,z,1) = 2' (1 <i < n—1), Sp(0,2,1) = 2" + 1 and
U(0,7,1) =0, we have f(0,2,1) = 2" + p1z" t + - + pp_17 + 1.

Since D,, and disc" are irreducible, we have the conclusion. O



Additional Results.

.p.425.
After the end of §4, the followin new result may be added. This will be published
somewhere else.

4.6. The PSD cones ﬂ’ff.

We choose sg := S4 — US1, s1:=T3,1 —2US, s2 := S22 — US4, s3:= US; as a base
of 3.

3
Theorem 4.15. Take f(ao, a1,az) := 80+ZP¢$¢ = S4+p1T3,1+p2Sa2+(p3—1—2p1 —
i=1
p2)US; € Hj. Let dy(p1,p2,ps) be the discriminant of the quartic equation f(z,1,1) =0,
and take it’s irreducible factor discj(p1, p2, p3) = da(p1,p2,p3)/(16(14+2p1+p2+p3)). Then,
f(ap,a1,a2) > 0 for all ag, a1, az € Ry if and only if one of the (1)—(7) holds.
(1) ps =0, p1 < —1 and p; > pi — 1.

(2) 0<p3 <3, —1—p3<p; andpy > -2 —2p;.

(3) 0<p3 <3, p1 < —1—p3,disci(p1,p2,p3) >0 and ps > p? — (p3 + 2/3ps + 1).

(4) 3<ps, —4 <pi and py > —2 — 2p;.

(5) 3<p3, —21/p3/3 —2<p; < —4 and py > (8 + p?)/4.

(6) 3 <ps <27, p1 < —24/ps/3 —2, disci(p1,p2,p3) > 0 and py > pi — (ps +21/3ps + 1).
(7) 27 < p3, p1 < —2+/p3/3 — 2, disci(p1, p2, p3) > 0 and pa > (8 + p?) /4.

This theorem will be proved at the end of this subsection. ® := ®g¢; : IP’2+ — X = X(A,
H) is decomposed as ®:P2 " P2 /Sy Y, X. By Propisition 2.13, 2.14 and §4.5, we
conclude that U: P2 /&5 — X is an isomorphism. Let

Ly ={(s:1:1)ePi|0<s<lorl<s<oo},
Ly, ={(0:5:1)eP; |0<s<1}.
By Propisition 2.14, we have the following;:

Proposition 4.16. A%(X) = {X°}, AYX) = {®(L} ), ®(LY,)}, A%X) = {®(0:
0:1), ®(0:1:1), ®(1:1:1)}.

Put C? := (LY, ), CO:=®(LY ), PL:=®(0:0:1)=(1:0:0:0), P,:=®(0:1:
1)=(2:2:1:0)and P3:=®(1:1:1)=(0:0:0:1). By Remark 1.21 (3), disc(P;) = =z,
disc(Py) = 2x0 + 21 + 9 and disc(P3) = 3. Thus F(P,) is at infinity, and F(Ps) = P5OT.
Thus, F(C?) and F(C?) are essential for OP50T.

On H3, g becone very simple:

g:(a,b,c) = gfl(a, b,c) =59 — (t+ 1)sy + (t* + 2t)so,
2 £ 2
ei (a,b,¢) i= (S — 188, ;)" =5, — Zs+ ;:rlsz +3 (% - 1) 55,

¢ t
5171(S,t, 1)
B(s, 1) = “So(s t.1) €0, 1), ei(a,b,c) == e, 4 (a,b,0),



where s € [0, oo] and k € [0, 1]. By the next Proposition 4.17 (1), F(X°) is not a face
component. Since gs(s,1,1) = 0 and eﬁl(s,l,l) = 0, we have g, eﬁl € F(C?). Since
¢¢',(0,5,1) = 0 and US1(0,s,1) = 0, we have ¢f,, US1 € F(C?).

Proposition 4.17. Let L3} be the local cone of P;" at (s:t:1) € A=P2.
(1) fF0<s#1,0<t#1ands#t, then LI =R-ef,.
(2) If0O<t#1then LT =R g, +R-ef}).
(3) If0 <t +#1 then Ly =R - ¢, + R - USh.
(4) Lg:’i =R- (54 + US| — 25272) +R- eél +R- (T371 — 252,2) +R-US;.

Proof. (1) When 0 < s # 1,t # 1, and s # t, dimLifg < 3—2=1. On the other hand,
e, € L3}, Thus, (1) holds.

(2) Assume that 0 < ¢t # 1. dimL;T <3 —1=2. Since g, ¢f'; € L], any f € L7
can be expressed as [ = ag; + ﬁef}l by certain «, 3 € R. Note that g;(1,1,1) = 0. Since
t#1, ¢f(1,1,1) > 0. Since 0 < f(1,1,1) = Bef}(1,1,1), we have 3 > 0. On the other
hand, there exists a’ = (s/, ¢/, 1) € P suth that 924',15/ =¢Z) and 7(a’) € Int(P? /&3). Then
gs(s’,t',1) > 0. Since 0 < f(s',t',1) = aff*(s',t', 1), we have a > 0.

(3) Assume that 0 < t # 1. dimﬂg’t <3—1=2. Since ¢f,, US; € ngg, any f € L(S)ft
can be expressed as f = aeét + pUS; by certain «, § € R. Since 0 > f(0,0,1) = aeét
and e(j"t > 0, we have o > 0. There exists a’ = (s', t/, 1) € P2 suth that egt, = e(’it and
m(a’) € Int(P3/S3). Since 0 < f(s',1',1) = Bs't'(s' + ¢’ + 1), we have § > 0.

(4) Note that Lgﬁ = F(P,) C V(2x¢ + 2x1 + x2). By Proposition 1.33, 8&8?{ C
F(P) N (V(zo) UV (z4) UF(CP) UF(CY)). F(P2) N F(Ch) = }1_1}1(1)&?? =R-go+R- e5{1 =
R (Sq+US1—255) +R-efy. F(P)NF(CO) = magft =R-e¢fy +R-US;. By
Theorem 0.3, we have F(Po) NV (z3) =R-go+R- (15,1 —252,2). Now, it is east to see that
F(P)NV(zg) =R-US1 +R-(T51 —2S522). Thus, we have (4). O

Corollary 4.18. All the extremal elements of P5T are positive multiple of following
polynomials: ef (O <k < 1), ds (S > 0), So —282 = S4+U51 —25(272, S1 —282 = Tg’l —25272
and s3 = US;.

3
Corollary 4.19. For f := so + Zpisi, disc(C?) = disc(p1, p2,p3) and disc(C?) =
i=1
4pa — 8 — pi.

Proof. Since discj is irredusible, and gy, ¢!} € discj for all ¢ € R, we have disc(C?) =
discj. Since USt, eft, € V(4pa — 8 — p?) for all t € R, we have disc(C?) = 4p, —8 —pi. [

Note that ¢f € F(C°) N F(C?) if and only if 0 < k < 1/2. When 1/2 < k < 1,
eX € F(C) — F(C).

Proof of Theorem 4.15. Put P := P57,



(I) We use the same symbols with the proof of Theorem 4.11. There we denote x := p1,
y := pg and z := p3. Fix a constant v > 0, and let H, be the plane z = v in 1}VCZ. Let
T, :=P5NH,, F, :=F;NH,, and let C,, be the curve defined by discj(x,y,v) =0 on H,.
Note that F,, C C,. Moreover, let C be the curv e defined by 4y —8 — 22 = 0 on H,, and let
L be the line defined by 2+ 2z +y =0 on H,. C?, C, L represent the zero loci of disc(C?),
disc(C?), disc(P2) respectively. When v = 0, (1) follows from Theorem 0.3.

(II) Put L(z > ¢) := {(z,y) € L | # > ¢}. If & > 0, The point (z,—2z —2) € L
corresponds to (Sy + US; — 2S522) + (15,1 — 252,2) + vUS; € OP. Thus L(z > 0) C IP.

Note that L tangents to C, at (z, y) = (—v — 1, 2v) with the multiplicity 2, and
L tangent to C' at (—4, 6). When 0 < v < 3, the point (—v — 1, 2v) corresponds to

1 — 1
%efm 3 S £ US — 28,) + ”Z US, € &P. Thus Lz > —v — 1) C OP.

4
When v > 3, the point (—4, 6) corresponds to ef(/2+(v—3)USl € 0P. Thus L(z > —4) C 0P.
This implies (2) and (4).

(IIT) When v > 0, the curve C, has a node at

2
Py (o.4) = <_2 U, vE2EuY V?ﬂf+9>

3 3

P, corresponds to extremal polynomials e, where k = v = 3(k—1)2/k?

v
Vu/3+1’
(0 <k <1). Moreover P,, Q, € CNC,.

When v > 3, we put C[P,,—4] := {(a:,y) cC | —2\/v/3-2<x < —4}. Consider
fi=ef+(v=3(1/k—1)*)US; € C. f corresponds to (z, y) = (—2/k, 1/k*+2) € C. Since
0<k<1/2,wehavex < —4. v—3(1/k—1)% > 0is equivalent to x = —2/k > —2(y/v/3+1).
Thus C[P,, —4] C 0P, if v > 3. This implies (6).

(IV) We consider the cases (3), (6) and (7). Put

{(zy)eCy|o<—1—v,y>a>— (v+2V3v+1)} (0<wv<3)
Cy =< {(z,y) € Cy | r<=2v/3-2,y>2*— (v+2V3v+1)} (2<v<27)
{(w,y)EC’v|x§—2\/v/3—2,y2(8+x2)/4} (v>27)
Theorem 0.3 implies there exists a f € H; of the form f = aef}l + (1 —a)gf Ba <o, 1],
—2(t* + 2
3t € R). The z-coordinate of f is equal to a2(t++1) + (1 — a)(—t — 1). Since this is
negative on C}, we have ¢t > 0. Thus C! € 9. O



