
Errata and Comments
of Discriminants of Cyclic Homogeneous

Inequalities of Three Variables

Tetsuya Ando

Version: 2020.12.13.

qp.385. Line 8 from the bottom.
Error: and discc+

3 ≥ 0 determine the PSD cone.
Correction: and discc0

4 ≥ 0 determine the PSD cone.

qp.385. Theorm 0.2 (2).
Comment: Let D3(c1, c2, c3) be the discriminant of the cubic equation x3 +c1x

2 +c2x+
c3 = 0. Then 4p3 + 4q3 + 27− p2q2 − 18pq = −D3(p, q, 1).

qp.386. Theorem 0.3.
Comment: Let D4(c1, c2, c3, c4) be the discriminant of the quartic equation g(x) :=

x4 + c1x
3 + c2x

2 + c3x + c4 = 0. Then ϕ(p, q, r) = D4(p, r, q, 1).
Using this fact, we can give an equivalent condition for that g(x) ≥ 0 for all x ∈ R

(resp. for all x ≥ 0).

qp.387. Theorem 0.4.
Comment: d5(p, q, r) is the longest irreducible factor of the discriminant of the cubic

equation f(x, 1, 1)/(x− 1)2 = 0. In other word,

d5(p, q, r) =
27
4

D3(2 + 2p, 3 + 4p + 2q + r, 2 + 2p + 2q).

qp.390. Definition 1.7.
I want to cahnge the definition of signed linear system as the following.

Definition 1.7.(Signed linear system) Let A be a semialgebraic quasi-variety, Ran
A be

the sheaf the germs of real analytic functions on A. Assume that there exists an invertible
RA-sheaf I and an invertible Ran

A -sheaf J such that I⊗RA
Ran

A = J⊗Ran
A

J. For any point
a ∈ A, we assume that we can take an affine open subset a ∈ U ⊂ A such that I|U = RA|U ·e2

U

by a certain eU ∈ H0(U , J). Then, for f ∈ H0(A, H), there exists gU ∈ H0(U , RA) such
that f |U = gUe2

U . We define sign(f(a)) ∈ {0, ±1} by sign(f(a)) = sign(gU (a)). A finite
dimensional subspace H ⊂ H0(A, I) is called a signed linear system on A.

For example, when A = Pn
+, H = Hn+1,d and U =

{
(x0: · · · :xn) ∈ Pn

+

∣∣ x0 6= 0
}
, we

can take I so that I|U = RA|U ·
√

xd
0

2
. So, H is a signed linear system.

qp.393. Proposition 1.16.
The statement and the proof of this proposition are too rough. Please replace by:

Proposition 1.16. (Boundary Theorem) Let A be a compact semialgebraic quasi-
variety, and H be a signed linear system on A. Assume that P := P(A, H) ⊂ H is
non-degenerate, and dimP ≥ 2. Let f ∈ P.
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(1) If f(a) = 0 for a certain a ∈ A− Bs H, then f ∈ ∂P.
(2) If f ∈ ∂P, then there exists a ∈ A such that f(a) = 0.

Proof. (1) We can reduce to the case A is irreducible, and H ⊂ Rat(A), since P(A1∪A2,
H) = P(A1, H) ∩ P(A2, H). Since a /∈ Bs H, there exists g ∈ P such that g(a) > 0. Then
for all ε > 0, f(a)− εg(a) < 0. This means f − εg /∈ P. Thus f ∈ ∂P.

(2) Let {s0,. . ., sN} be a base of H such that s0,. . ., sN ∈ P, and define ΦH:A · · · →
X ⊂ PN

R by s0,. . ., sN . We may assume that A = X. Put

Wi :=
{
(X0: · · · :XN ) ∈ PN

R
∣∣ X2

0 + · · ·+ X2
N ≤ 3X2

i

}
.

Then W0 ∪ · · · ∪WN = PN
R .

Assume that f ∈ P satisfies f(a) > 0 for all a ∈ A = X. Take g ∈ Int(P). We can
regard fi := f/Xi and gi := g/Xi as holomorphic functions on Wi. Since Wi is compact,
there exists εi > 0 such that fi(a) ± εigi(a) > 0 for all a ∈ X ∩Wi. Put ε := min{ε0,. . .,
εN}. Then f ± εg ∈ P. Thus f /∈ ∂P.

qp.397. Proposition 1.27.
Error: (1) If Px 6= 0, then dimPx = N − r.
Correction: (1) dim Px ≤ N − r.
In the proof, let L :=

{
f ∈ H

∣∣ TD,x ⊂ Hf

}
. As the origibal proof, dimL = dim H−

(r + 1) = N − r. Since Px = P ∩L, we have dim Px ≤ N − r.

This proposition is used in some places. But only the fact dimPx ≤ N − r is used in
this article.

qp.399. Proposition 1.36.
Error: Let A = Pn

R or A = P+,
Correction: Let A = Pn

R or A = Pn
+,

qp.403. Proposition 2.10.
Comments: discc+

d agrees with the discriminant of the equation xd + p0x
d−1 + · · · +

pd−1x + 1 under a suitable base of Hc0
d . Please see Theorem 6.11 in this paper.

qp.406. line 23.
Error: Note that if they are not 0, then dimLc+

0,s = 2, and dimLc0+
0,s = 1 by Proposition

2.7(1).
Correction: Note that if they are not 0, then dimLc+

0,s ≤ 2, and dimLc0+
0,s = 1 by

Proposition 2.7(1).

qp.411. line 8. (Line 2 after the proof of Proposition 4.1.)
Error: Then dimLc

s,t = 2 and dimLc0
s,t = 1 for any (s, t) ∈ P2

R by Proposition 2.7(1).
Correction: Then dimLc

s,t ≤ 2 and dimLc0
s,t = 1 for any (s, t) ∈ P2

R by Proposition
2.7(1).

qp.410. The first line of 4.1.
Error: Hilbert proved that every element in P4 := P(PR, H4) can
Correction: Hilbert proved that every element in P4 := P(P2

R, H4) can

qp.411. line 14.
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Comment: gX
p,q(a, b, c) is not irreducible in C[a, b, c] since the curve defined by gX

p,q = 0
in P2

C has 4 nodes. There must be a conic h ∈ C[a, b, c] such that gX
p,q = hh. For example,

gA
1,2(x, y, z) = S4 − 3T3,1 + 8S2,2 − 3US1

= (x2 + ωy2 + ω2z2 + 3ω2xy + 3yz + 3ωzx)
× (x2 + ω2y2 + ωz2 + 3ωxy + 3yz + 3ω2zx)

where ω := (−1 +
√−3)/2.

gX
p,q(a, b, c) is not extremal in P4.

qp.413. Proof of Theorem 4.4. line 4-5.
Improvement:

hs(a, b, c) = ab(a− sb− c + sc)2 + bc(b− sc− a + sa)2

+ ca(c− sa− b + sb)2 ≥ 0

qp.417. Proof of Theorem 4.7. line 1.
Error: dimLc

s,t = N − 2 = 2 if (s, t) 6= (1, 1).
Correction: dimLc

s,t = N − 2 ≤ 2 if (s, t) 6= (1, 1).

qp.421. Proof of Theorem 4.11.
Comment: Let d4(p, r, v) be the discriminant of the quartic equation f(x, 1, 1) = 0.

Then

discc
4(1, p, p, r, v) :=

d4(p, r, v)
16(1 + 2p + r + v)

.

discc
4(1, p, p, r, v) consists of 44 terms. When we choose t0 := S4

1 , t1 := S2
1S1,1, t2 := S2

1,1,

t3 := US1 as a base of Hs
3,4, and present f =

3∑

i=0

qiti, discc
4(1, p, p, r, v) become shorter. It

consists of only 14 terms:

ds
4(q0, q1, q2, q3) =27q4

1q2 − 216q0q
2
1q2

2 + 432q2
0q3

2 + 36q3
1q2q3 − 144q0q1q

2
2q3 + 16q2

1q2
2q3

− 64q0q
3
2q3 + q3

1q2
3 − 36q0q1q2q

2
3 + 8q2

1q2q
2
3 − 48q0q

2
2q2

3 + q2
1q3

3

− 12q0q2q
3
3 − q0q

4
3 .

Note that discc
4(1, p, p, r, v) = ds

4(−4 + p, 2− 2p + r, 3− 3p− 3r + v).

qp.422. Proof of Proposition 4.12. (2)
Comment: It is better to choose gA

t,1 (t ≥ 0) in stead of gX
p,p (p ∈ R), since

gA
t,1(a, b, c) = s0 − (t + 1)s1 + (t2 + 2t)s2.

qp.425. Proposition 5.1.
Comment: In this article, the author refered [13]. This proposition is also a corollary

of Theorem 1.1 of [23].

qp.428. Theorem 5.6. line 2 from the bottom.
Error: d5(p, q, r) = disc(C2), 4q − (p + 1)2 − 4 = disc(C1).
Correction: d5(p, q, r) = disc(C1), 4q − (p + 1)2 − 4 = disc(C2).

qp.429. Corollary 5.7.
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Original Corollary 5.7 is incorrect. It must be replaced by the following:

Lemma 5.6b. (1) Let I ⊂ A. If 0 6= f ∈ PI and dimPI = 1, then f is an extremal
element of P.

(2) Let a1,. . ., ar ∈ A. If dim(Pa1 ∩ · · · ∩ Par ) = 1 and f ∈ P satisfies f(a1) = · · · =
f(ar) = 0, then f is an extremal element of P.

Proof. (1) Assume that f = αg + βh (g, h ∈ P, α, β ∈ R+). Take a ∈ I. Since
0 = f(a) = αg(a) + βh(a), g(a) ≥ 0 and h(a) ≥ 0, we have g(a) = h(a) = 0. Thus g,
h ∈ PI = R · f . Thus f is an extremal element of P.

(2) Let I = {a1,. . ., ar}, and apply (1).

Corollary 5.7. Let

fA
p (a, b, c) := s0 + ps1 − (p + 1)s2 + p2s3,

`(t) := 2− t2 + t
√

(t− 1)(t + 2),

sm(t) := (1/2)(`(t)−
√

`(t)2 − 4,

fB
t (a, b, c) := s0 + (1− 2`(t))s1 + (t3 + 2t2 − 2− 2(t2 − 1)`(t))s2

− ((t + 1)2(2t + 3)− 4(t + 1)2`(t))s3,

gt(a, b, c) := s1 + (t2 − 1)s2 − 2(t + 1)2s3.

(1) For all t ≥ 0, gt is an extrelal element of Ps0+
5 , and gt ∈ Ls0+

t,1 ∩Ls0+
0,0 .

(2) Let t ≥ 2, and put s := sm(t). Then 0 < s ≤ 1, and fB
t ∈ Ls0+

t,1 ∩ Ls0+
0,s . fB

t is an

extrelal element of Ps0+
5 .

(3) Let 0 ≤ t ≤ 2, and put p := −t − 1. Then fA
p ∈ Ls0+

t,1 ∩Ls0+
0,1 , and fA

p is an extremal

element of Ps0+
5 .

(4) All the extremal elements of Ps0+
5 are positive multiples of fA

p (−3 ≤ p ≤ −1), fB
t

(t ≥ 2), gt (t ≥ 0), s2 − 2s3 and s3.

Proof. (1) f ∈ Ls0+
0,0 implies the cofficient of s0 in f is equal to zero. Since,

gt(s, 1, 1) = 2(s− 1)2(s− t)2,
gt(0, s, 1) = s(s + 1)((s− 1)2 + t2s),

we have gt ∈ Ls0+
t,1 by Proposition 5.1.

(2) It is easy exercise to veryfy that sm(t) varies (0, 1] when t ≥ 2. Since

fB
t (s, 1, 1) = (s− t)2(s− 1)2(s + 2(t−

√
(t− 1)(t + 2))2),

fB
t (0, s, 1) = (s + 1)(s2 − (2− t2 + t

√
(t− 1)(t + 2))s + 1)2,

we have fB
t ∈ Ls0+

t,1 ∩Ls0+
0,s .

(3) follow from

fA
p (t, 1, 1) = t(t− 1)2(t + p + 1)2,

fp(0, t, 1) = (t + 1)(t− 1)2(t2 + (p + 1)t + 1).

(4) All the extremal elements of Ls0+
0,0 are positive multiples of gt (0 ≥ 0) and g∞ := s2.

Ls0+
0,s ∩Ls0+

0,0 = R+ · s3. Thus we obtain (4).

qp.430. Lemme 5.8. line 2.
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Error: Note that dimLc0+
s = 6− 2 = 4 by Proposition 2.7(1).

Correction: Note that dimLc0+
s = 6− 2 ≤ 4 by Proposition 2.7(1).

qp.431. Theorem 5.9.

Comment: Let Dn(c1, . . . , cn) be the discriminant of f(x) = xn +
n∑

i=1

cix
n−i. Then,

discc+
5 (x, y, z, w) = D5(x, z, w, y).

qp.434 line 14.
Error: Assume that g0(S + 2, 2S) ≤ 0.
Correction: Assume that g0(S + 2, 2S + 1) ≤ 0.

qp.437 line 8. Lemma 6.7.
Error: Note that dimLc0+

s = 9− 2 = 7 by Proposition 2.7(1).
Correction: Note that dimLc0+

s = 9− 2 ≤ 7 by Proposition 2.7(1).

qp.437-439. Theorem 6.8.

Comment: Let Dn(c1, . . . , cn) be the discriminant of f(x) = xn +
n∑

i=1

cix
n−i. Then,

discc+
6 (x, y, z, w, u) = D6(x, z, u, w, y). In general,

Theorem 6.11. Take the base of Hc
n so that s0 = Sn, s1 = Sn−1,1, s2 = Sn−2,2,. . .,

sn−1 = S1,n−1,. . .. Here, if i ≥ n, then si is a multiple of U . We represent f ∈ Hc
n as

f =
∑

pisi. Then, the edge discriminant of Pc+
n agrees with Dn(p1, . . . , pn−1, 1).

Proof. Take f ∈ Lc+
0,t ⊂ Ec+

n , where t > 0. Then f(0, t, 1) = 0. Since f(0, x, 1) ≥ 0 for
all x > 0, the equation f(0, x, 1) = 0 has a multiple root at x = t. Thus, the discriminant
of f is equal to 0. Since Si,n−1(0, x, 1) = xi (1 ≤ i ≤ n − 1), Sn(0, x, 1) = xn + 1 and
U(0, x, 1) = 0, we have f(0, x, 1) = xn + p1x

n−1 + · · ·+ pn−1x + 1.
Since Dn and discc+

n are irreducible, we have the conclusion.
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Additional Results.

qp.425.
After the end of §4, the followin new result may be added. This will be published

somewhere else.

4.6. The PSD cones Ps+
4 .

We choose s0 := S4 − US1, s1 := T3,1 − 2US1, s2 := S2,2 − US1, s3 := US1 as a base
of Hs

4.

Theorem 4.15. Take f(a0, a1, a2) := s0+
3∑

i=1

pisi = S4+p1T3,1+p2S2,2+(p3−1−2p1−

p2)US1 ∈ Hs
4. Let d4(p1, p2, p3) be the discriminant of the quartic equation f(x, 1, 1) = 0,

and take it’s irreducible factor discs
4(p1, p2, p3) := d4(p1, p2, p3)/(16(1+2p1+p2+p3)). Then,

f(a0, a1, a2) ≥ 0 for all a0, a1, a2 ∈ R+ if and only if one of the (1)—(7) holds.
(1) p3 = 0, p1 ≤ −1 and p2 ≥ p2

1 − 1.
(2) 0 ≤ p3 ≤ 3, −1− p3 ≤ p1 and p2 ≥ −2− 2p1.
(3) 0 < p3 ≤ 3, p1 ≤ −1− p3, discs

4(p1, p2, p3) ≥ 0 and p2 ≥ p2
1 − (p3 + 2

√
3p3 + 1).

(4) 3 ≤ p3, −4 ≤ p1 and p2 ≥ −2− 2p1.
(5) 3 ≤ p3, −2

√
p3/3− 2 ≤ p1 ≤ −4 and p2 ≥ (8 + p2

1)/4.

(6) 3 ≤ p3 ≤ 27, p1 ≤ −2
√

p3/3− 2, discs
4(p1, p2, p3) ≥ 0 and p2 ≥ p2

1 − (p3 + 2
√

3p3 + 1).
(7) 27 < p3, p1 ≤ −2

√
p3/3− 2, discs

4(p1, p2, p3) ≥ 0 and p2 ≥ (8 + p2
1)/4.

This theorem will be proved at the end of this subsection. Φ := ΦHs
4

: P2
+ → X := X(A,

Hs
4) is decomposed as Φ:P2

+
π−→ P2

+/S3
Ψ−→ X. By Propisition 2.13, 2.14 and §4.5, we

conclude that Ψ:P2
+/S3 −→ X is an isomorphism. Let

Lb
F+ :=

{
(s : 1 : 1) ∈ P2

R
∣∣ 0 < s < 1 or 1 < s < ∞}

,

L0
F+ :=

{
(0 : s : 1) ∈ P2

R
∣∣ 0 < s < 1

}
.

By Propisition 2.14, we have the following:

Proposition 4.16. ∆2(X) =
{
X◦}, ∆1(X) =

{
Φ(Lb

F+)), Φ(L0
F+)

}
, ∆0(X) =

{
Φ(0 :

0 : 1), Φ(0 : 1 : 1), Φ(1 : 1 : 1)
}
.

Put Cb := Φ(Lb
F+), C0 := Φ(L0

F+), P1 := Φ(0 : 0 : 1) = (1 : 0 : 0 : 0), P2 := Φ(0 : 1 :
1) = (2 : 2 : 1 : 0) and P3 := Φ(1 : 1 : 1) = (0 : 0 : 0 : 1). By Remark 1.21 (3), disc(P1) = x0,
disc(P2) = 2x0 + 2x1 + x2 and disc(P3) = x3. Thus F(P1) is at infinity, and F(P3) = Ps0+

4 .
Thus, F(Cb) and F(C0) are essential for ∂Ps0+

4 .
On Hs

4, g becone very simple:

gt(a, b, c) := gA
t,1(a, b, c) = s0 − (t + 1)s1 + (t2 + 2t)s2,

eX
k (a, b, c) :=

(
S2 − 1kS1,1

)2 = s0 − 2

k
s1 +

2k2 + 1

k2 s2 + 3
( 1

k
− 1

)2

s3,

k(s, t) =
S1,1(s, t, 1)
S2(s, t, 1)

∈ [0, 1], eA
s,t(a, b, c) := eX

k(s,t)(a, b, c),
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where s ∈ [0, ∞] and k ∈ [0, 1]. By the next Proposition 4.17 (1), F(X◦) is not a face
component. Since gs(s, 1, 1) = 0 and eA

s,1(s, 1, 1) = 0, we have gs, eA
s,1 ∈ F(Cb). Since

eA
0,s(0, s, 1) = 0 and US1(0, s, 1) = 0, we have eA

0,s, US1 ∈ F(C0).

Proposition 4.17. Let Ls+
s,t be the local cone of Ps+

4 at (s : t : 1) ∈ A = P2
+.

(1) If 0 < s 6= 1, 0 < t 6= 1 and s 6= t, then Ls+
s,t = R · eA

s,t.

(2) If 0 < t 6= 1 then Ls+
t,1 = R · gt + R · eA

t,1.

(3) If 0 < t 6= 1 then Ls+
0,t = R · eA

0,t + R · US1.

(4) Ls+
0,1 = R · (S4 + US1 − 2S2,2) + R · eA

0,1 + R · (T3,1 − 2S2,2) + R · US1.

Proof. (1) When 0 < s 6= 1, t 6= 1, and s 6= t, dim Ls+
s,t ≤ 3− 2 = 1. On the other hand,

eA
s,t ∈ Ls+

s,t . Thus, (1) holds.

(2) Assume that 0 < t 6= 1. dimLs+
t,1 ≤ 3 − 1 = 2. Since gt, eA

t,1 ∈ Ls+
t,1 , any f ∈ Ls+

t,1

can be expressed as f = αgt + βeA
t,1 by certain α, β ∈ R. Note that gt(1, 1, 1) = 0. Since

t 6= 1, eA
t,1(1, 1, 1) > 0. Since 0 ≤ f(1, 1, 1) = βeA

t,1(1, 1, 1), we have β ≥ 0. On the other
hand, there exists a′ = (s′, t′, 1) ∈ P2

+ suth that eA
s′,t′ = eA

s,1 and π(a′) ∈ Int(P2
+/S3). Then

gs(s′, t′, 1) > 0. Since 0 ≤ f(s′, t′, 1) = αfAt (s′, t′, 1), we have α ≥ 0.

(3) Assume that 0 < t 6= 1. dimLs+
0,t ≤ 3− 1 = 2. Since eA

0,t, US1 ∈ Ls+
0,t , any f ∈ Ls+

0,t

can be expressed as f = αeA
0,t + βUS1 by certain α, β ∈ R. Since 0 ≥ f(0, 0, 1) = αeA

0,t

and eA
0,t > 0, we have α > 0. There exists a′ = (s′, t′, 1) ∈ P2

+ suth that eA
s′,t′ = eA

0,t and
π(a′) ∈ Int(P2

+/S3). Since 0 ≤ f(s′, t′, 1) = βs′t′(s′ + t′ + 1), we have β ≥ 0.

(4) Note that Ls+
0,1 = F(P2) ⊂ V (2x0 + 2x1 + x2). By Proposition 1.33, ∂Ls+

0,1 ⊂
F(P2) ∩

(
V (x0) ∪ V (x4) ∪ F(Cb) ∪ F(C0)

)
. F(P2) ∩ F(Cb) = lim

t→0
Ls+

t,1 = R · g0 + R · eA
0,1 =

R · (S4 + US1 − 2S2,2) + R · eA
0,1. F(P2) ∩ F(C0) = lim

t→1
Ls+

0,t = R · eA
0,1 + R · US1. By

Theorem 0.3, we have F(P2)∩ V (x3) = R · g0 +R · (T3,1− 2S2,2). Now, it is east to see that
F(P2) ∩ V (x0) = R · US1 + R · (T3,1 − 2S2,2). Thus, we have (4).

Corollary 4.18. All the extremal elements of Ps+
4 are positive multiple of following

polynomials: eX
k (0 < k ≤ 1), gs (s ≥ 0), s0−2s2 = S4 +US1−2S2,2, s1−2s2 = T3,1−2S2,2

and s3 = US1.

Corollary 4.19. For f := s0 +
3∑

i=1

pisi, disc(Cb) = discs
4(p1, p2, p3) and disc(C0) =

4p2 − 8− p2
1.

Proof. Since discs
4 is irredusible, and gt, eA

t,1 ∈ discs
4 for all t ∈ R, we have disc(Cb) =

discs
4. Since US1, eA

0,t ∈ V (4p2 − 8− p2
1) for all t ∈ R, we have disc(C0) = 4p2 − 8− p2

1.

Note that eX
k ∈ F(C0) ∩ F(Cb) if and only if 0 ≤ k ≤ 1/2. When 1/2 < k ≤ 1,

eX
k ∈ F(Cb)−F(C0).

Proof of Theorem 4.15. Put P := Ps+
4 .

7



(I) We use the same symbols with the proof of Theorem 4.11. There we denote x := p1,
y := p2 and z := p3. Fix a constant v > 0, and let Hv be the plane z = v in H̆s

4. Let
Tv := Ps

4 ∩Hv, Fv := Fs
4 ∩Hv, and let Cv be the curve defined by discs

4(x, y, v) = 0 on Hv.
Note that Fv ⊂ Cv. Moreover, let C be the curv e defined by 4y− 8−x2 = 0 on Hv, and let
L be the line defined by 2 + 2x + y = 0 on Hv. Cb

v, C, L represent the zero loci of disc(Cb),
disc(C0), disc(P2) respectively. When v = 0, (1) follows from Theorem 0.3.

(II) Put L(x ≥ c) :=
{
(x, y) ∈ L

∣∣ x ≥ c
}
. If x ≥ 0, The point (x,−2x − 2) ∈ L

corresponds to (S4 + US1 − 2S2,2) + x(T3,1 − 2S2,2) + vUS1 ∈ ∂P. Thus L(x ≥ 0) ⊂ ∂P.
Note that L tangents to Cv at (x, y) = (−v − 1, 2v) with the multiplicity 2, and

L tangent to C at (−4, 6). When 0 ≤ v ≤ 3, the point (−v − 1, 2v) corresponds to
v + 1

4
eX
1/2 +

3− v

4
(S4 + US1 − 2S2,2) +

v + 1
4

US1 ∈ ∂P. Thus L(x ≥ −v − 1) ⊂ ∂P.

When v ≥ 3, the point (−4, 6) corresponds to eX
1/2+(v−3)US1 ∈ ∂P. Thus L(x ≥ −4) ⊂ ∂P.

This implies (2) and (4).
(III) When v > 0, the curve Cv has a node at

Pv : (x, y) =

(
−2

√
v

3
− 2,

v + 2
√

3v + 9
3

)
.

Pv corresponds to extremal polynomials eX
k , where k =

1√
v/3 + 1

, v = 3(k − 1)2/k2

(0 ≤ k ≤ 1). Moreover Pv, Qv ∈ C ∩ Cv.
When v ≥ 3, we put C[Pv,−4] :=

{
(x, y) ∈ C

∣∣ −2
√

v/3 − 2 ≤ x ≤ −4
}
. Consider

f := eX
k +

(
v−3(1/k−1)2

)
US1 ∈ C. f corresponds to (x, y) = (−2/k, 1/k2 +2) ∈ C. Since

0 ≤ k ≤ 1/2, we have x ≤ −4. v−3(1/k−1)2 ≥ 0 is equivalent to x = −2/k ≥ −2(
√

v/3+1).
Thus C[Pv,−4] ⊂ ∂P, if v ≥ 3. This implies (6).

(IV) We consider the cases (3), (6) and (7). Put

C ′v :=





{
(x, y) ∈ Cv

∣∣ x ≤ −1− v, y ≥ x2 − (v + 2
√

3v + 1)
}

(0 < v ≤ 3){
(x, y) ∈ Cv

∣∣ x ≤ −2
√

v/3− 2, y ≥ x2 − (v + 2
√

3v + 1)
}

(2 ≤ v ≤ 27){
(x, y) ∈ Cv

∣∣ x ≤ −2
√

v/3− 2, y ≥ (8 + x2)/4
}

(v ≥ 27)

Theorem 0.3 implies there exists a f ∈ Hs
4 of the form f = αeA

t,1 + (1 − α)gA
t (∃α ∈ [0, 1],

∃t ∈ R). The x-coordinate of f is equal to α
−2(t2 + 2)

2t + 1
+ (1 − α)(−t − 1). Since this is

negative on C ′v, we have t ≥ 0. Thus C ′v ∈ ∂P.
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