
Semialgebraic Variety

Tetsuya Ando

Version. 13 August 2019.

Abstract.
In this article, we give basic concepts of semialgebraic varieties which are improvement

of real algebraic varieties. A semialgebraic variety is a locally ringed space whose topological
space is a certain semialgebraic subset of a real algebraic variety and whose structure sheaf
is defined similarly as the case of real algebraic varieties. We show that the category of
semialgebraic varieties has more natural properties than the category of real algebraic vari-
eties in the sense of Bochnak, Coste and Roy, which is not R-scheme. For example, images
of semialgebraic varieties by regular maps are also semialgebraic varieties. We also study
relations with semialgebraic varieties and complex algebraic varieties. Some properties are
similar, but some are completely different. For example, all semialgebraic varieties are affine,
and higher cohomologies of their quasi-coherent sheaves vanish. The real projective surface
P2
R is not minimal as semialgebraic varieties, but semialgebraic surfaces with non-negative

Kodaira dimensions have minimal models.

Section 0. Introduction.
For example, as is well known, Pn

C/Sn+1
∼= PC(1, 2, 3, . . . , n + 1), here the right hand

side is a weighted projective space. But if n ≥ 2, the set Pn
R/Sn+1 is a proper closed

semialgebraic subset of real weighted projective space PR(1, 2, 3, . . . , n+1), and is not a real
algebraic variety. We want to extend a theory of real algebraic varieties so that Pn

R/Sn+1

and many other useful semialgebraic sets can be treated as certain kind of generalized
abstract algebraic variety with a coherent structure sheaf. Otherwise, we can’t study even
the singularities of Pn

R/Sn+1. One of such ideas is theory of semialgebraic varieties.
An algebraic variety X over R often means a R-scheme which can be identified with a

self-conjugate complex algebraic variety. On the set of R-valued points V := X(R), we can
define a sheaf of rings RV such that every maximal ideal of RV corresponds to a point of
V , and that RV,P = OX,P (R) for all P ∈ V . This locally ringed space (V , RV ) is called a
real algebraic variety (see §1 and [4]). Note that for a given real algebraic variety (V , RV ),
there exists infinitely many algebraic varieties X over R such that X(R) = V , if dimV ≥ 2.
So, the notion of a R-scheme X is not always useful to study the set V itself.
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In this article, algebraic curves or algebraic surfaces always mean real algebraic varieties
with RV , not R-schemes. Please do not confuse with many results in other articles in which
real algebraic varieties are R-schemes.

The word ‘semialgebraic variety’ was used in many articles without an exact defini-
tion. Most of them are semialgebraic sets of Rn with C∞-manifold structure which have
boundaries. In this article, we define a semialgebraic variety A as an irreducible reduced
semialgebraic subset of a real algebraic variety V with a structure sheaf RA such that every
maximal ideal of RA corresponds to a point of A. If dimA = dim V , then RA,P = RV,P for
all P ∈ A. Of course, a real algebraic variety is a semialgebraic variety. Note that for a given
semialgebraic variety A, there may exist infinitely many complete real algebraic varieties V
such that A ⊂ V and dimA = dim V , if dimA ≥ 2.

As the notions of ‘algebraic variety over R’ and ‘real algebraic varieties’ are completely
different, the notions of ‘semialgebraic sets’ and ‘semialgebraic varieties’ are different. In
the category of semialgebraic sets, a morphism is a semialgebraic map. On the other hand,
in the category of semialgebraic varieties, a morphism is a regular map.

There are some merits, to consider semialgebraic varieties. We shall explain an example.
It is well known that Pn

R is affine as a real algebraic variety. Similarly, we can prove that
any semialgebraic variety A is affine as a semialgebraic variety (Theorem 1.12). This implies
that Hn(A, F) = 0 for any n ≥ 1 and for any quasi-coherent RA-module F (Proposition
4.1). As a collorary, for any real algebraic variety (V . RV ), we conclude that the structure
sheaf RV is the sheafification of the coordinate ring RV (V ).

Originally, the notion of semialgebraic varieties are introduced in [1], to study PSD
(=Positive SemiDefinite) cones on Pn

R or Pn
+ (see also [2]). By virtue of notion of semi-

algebraic varieties, we could apply theorems and ideas of algebraic geometry to theory of
algebraic inequalities. In this sense, the notion of semialgebraic varieties already provided
useful results.

On the other hand, we also aware the notion of semialgebraic varieties is also useful for
studies of real algebraic varieties. As is well known, an image of a real algebraic variety by
a regular map is not always a real algebraic variety. But it is a semialgebraic variety. When
a finite group G acts on a real algebraic variety V , the quotient V/G is not always a real
algebraic variety, but V/G is a semialgebraic variety (see Proposition 2.11). As is mentioned
in the above, any real semialgebraic variety is an affine semialgebraic variety, though it is
not always an affine real algebraic variety.

In some special cases, complex algebraic geometry is useful to study semialgebraic vari-
eties. For example, consider non-singular semialgebraic surfaces A whose Kodaira dimension
κ(A) is non-negative. Then, there exists a unique non-singular complete self-conjugate com-
plex algebraic surface X ⊃ A which is ‘relatively minimal’. Using this X, we can define
a sheaf OA = OX |A, OA-modules, divisors, and the intersection number on A. Hi(A,
F)⊗R C ∼= Hi(X, F⊗OA

OX) holds for a coherent OA module F. We can also define Weil
divisors and their intersection numbers in this case.

We didn’t yet find so many applications of theory of semialgebraic varieties, but the
notion of semialgebraic varieties must be useful for study of real algebraic geometry. Note
that the category of semialgebraic varieties has more natural properties than the category
of real algebraic varieties.
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Section 1. Basic definitions.

A standard definition of real algebraic varieties is given in [4]. Real algebraic varieties
defined in [4]are reduced but may not be irreducible. Moreover, the separability condition is
omitted as is commented in [4]. We need nore exact definition. Here we give a generalized
definition of real algebraic varieties including non-reduced case. In this article, R is any real
closed field and C = R[T ]/(T 2 +1). R or its elements are called ‘real’, and C or its elements
are called ‘complex’. A complex algebraic variety is an integral separated scheme of finite
type over Spec(C), and a complex algebraic quasi-variety is a separated scheme of finite type
over Spec(C) which is possibly reducible or non-reduced.

Definition 1.1. (Real algebraic quasi-variety) (I) A locally ringed space (X, RX) is
called a real algebraic quasi-variety, if there exists a separated scheme (Y , OY ) of finite type
over SpecR which satisfies the following:
(1) There exists an injective morphism ι: (X, RX) −→ (Y , OY ) as locally ringed spaces,

and ι induces a homeomorphism X → Y (R) as toplogical spaces.
(2) Take any affine open subset V ⊂ Y . Let nP be the maximal ideal of OY (V ) corre-

sponding to a closed point P ∈ Y . For an arbitral non-empty subset U ⊂ V ∩ ι(X), we
put

SU :=
⋂

P∈U

(
OY (V )− nP

)
.

Then, ι∗ : S−1
U OY (V ) −→ RX(ι−1(U)) is an isomorphism of R-algebra. Thus, each

maximal ideal m ⊂ RX(ι−1(V )) corresponds to a pount P ∈ ι−1(V ) ⊂ X.
(3) Take an arbitral affine open subset V ⊂ Y . Then{

f ∈ OY (V )
∣∣ f(P ) = 0 for all P ∈ V (R)

}

is a nilpotent ideal of OY (V ).
In this case, Y is sayed to be a R-scheme represents X.
(II) Let X and Y be the same as the above. U ⊂ X is called an affine open subset of

X, if there exists a affine open subset UY ⊂ Y such that U = UY (R). Zariski open (resp.
closed) subsets are defied similarly. The Eucledean topology of X is the topology induded
from the analytic topology of YC. Y (R) is also denoted as YC(R). When V ⊂ Y is an affine
open subset and B ⊂ V (R) is any subset, we put

SB :=
⋂

P∈B

(
OY (V )− nP

)
,

and RX(ι−1(B)) := ι∗
(
S−1

B OY (V )
)
. By this definition, (X, RX) can be also regarded as a

locally ringed space with respect to the Euclidean topology.
A morphism between real algebraic quasi-varieties is defined as a morphism of locally

ringed spaces. A morphism is also called a holomorphic map or a regular map. A rational
map and so on between real algebraic quasi-varieties are defined similarly with complex
schemes.

If X is irreducible and reduced, X is called a real algebraic variety.
(III) We regard Rn and Pn

R to be real algebraic varieties as natural way. Let X be a
real algebraic quasi-variety. If there exists n ∈ N and a closed immersion ϕ:X → Rn, then
X is sayed to be an affine.

Note 1.2. (1) Y is not unique for a given X.
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(2) Let R = R[X1,. . ., Xn]/(f2
1 + · · · + f2

n) and Y := Spec R where f1,. . ., fn are
algebraically independent polynomials with n ≥ 2. Then X := Y (R) and Y does not satisfy
the above definition.

(3) In (3) of (I), S−1
U OY (V ) is a Noetherian ring. Thus, RX(ι−1(U)) is a Noetherian

ring.
(4) It is well known that there exists an immersion ι:Pn

R → R2n+1 as real algebraic
varieties. Thus every projective real algebraic quasi-variety is affine.

(5) Hironake gave a complete complex non-sigular algebraic variety Z which is not
projective. But Z(R) is affine. The auther knows no real complete algebraic variety which
is not affine.

Definition 1.3.(Semialgebraic quasi-variety) A locally ringed space (A, RA) is called
semialgebraic quasi-variety, if there exists a real algebraic quase-variety (X, RX) and a finite
affine open covering {Vi}r

i=1 of X which satisfies the following:
(1) There exists an injective morphism ι: (A, RA) −→ (X, RX) as locally ringed spaces,

and ι induces a homeomorphism A → ι(A) as toplogical spaces. Moreover, ι(A) is a
semialgebraic subset of X, i.e. ι(A)∩Vi is a semialgebraic suvset of Vi for each i = 1,. . .,
r.

(2) ZarX(A) = X. Here ZarX(A) is the minimal closed Zariski subset of X which contains
A, and is called the Zariski closure of A.

(3) Take an arbitral i ∈ {1, 2,. . ., r}, and take any Euclidian open subset U ⊂ ι−1(Vi). Put
Ri := RVi

(Vi). For a point P ∈ ι(U), let mP be the maximal ideal of Ri corresponding
to P , and let

SU :=
⋂

P∈U

(
Ri −mP

) ⊂ Ri.

Then ι∗ : S−1
U Ri −→ RA(U) is an isomorphism of R-algebra.

Moreover, if X is a real algebraic variety, then A is said to be an semialgebraic variety.
In this case, the field of fractions Q(RA(Ui)) is called the field of rational functions, and is
denoted by Rat(A) := Q

(
RA(Ui)

)
.

The Zariski topology and the Euclidean topology on A are defined naturally. A semi-
algebraic quasi-variety A is called irreducible if it is irreducible with respect to the Zariski
topology. A is said to be reduced if RA,P has no nilpotent elements except 0 for each
P ∈ A. dimA is defined by dimA = max

P∈A
Krull dimRA,P . A is called connected if it is

connected with respect to Eucledean topology. Note that A may not be connected even if
A is irreducible. A is called affine, if we can choose X to be affine.

A semialgebraic variety A is called normal, if RA,P is an integrally closed for each
P ∈ A. A semialgebraic variety A is called non-singular, if RA,P is a regular local ring for
each P ∈ A.

A regular map or holomorphic map (resp. isomorphism) between semialgebraic quasi-
varieties is defined as a morphism (resp. isomorphism) of locally ringed space.

For a subset B ⊂ A, the minimum Zariski closed subset of A which includes B is called
the Zariski closure of B in A and is denoted by ZarA(B) or Zar(B).

We can choose X to be complete. Then the interior of B with respect to the Euclidian
topology of X is denoted as Int(B). ∂B := B − Int(B) is called the absolute boundary of
B (see also Definition 2.7). Note that Int(B) and ∂B do not depend on the choice of a
complete X (see Proposition 2.3). A is called open if ∂A = ∅. A is called closed if A is
compact with respect to the Eucledean topology.
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Definition 1.4.(Image of a regular map) Let A, B be semialgebraic quasi-varieties,
and ϕ:A → B be a regular map. Let C := ϕ(B). By Tarski-Seidenberg theorem, C is a
semialgebraic subset of B. We define RC as the following:

We may assume A and B are affine, since definition of RC is local. Let RA := RA(A),
RB := RB(B), and ϕ∗:RB → RA be the homomorphism induced by ϕ. We put R :=
RB/ Kerϕ∗. (Note that R defines ZarB(C).) For a point P ∈ C, there exists the unique
maximal ideal mP ⊂ R corresponding to P . Put S :=

⋂

P∈C

(R − mP ), and RC := S−1R.

Note that RC is a RB-module. The structure sheaf of C is defined by RC := R̃C which is
the coherent RB-module defined by RC .

(C, RC) is called the image of ϕ, and simply denoted by C = ϕ(A).

Definition 1.5.(Semialgebraic quasi-subvariety) Let A, B be semialgebraic quasi-
varieties. A morphism ϕ : (B, RB) −→ (A, RA) is called an immersion, if ϕ induces an
isomorphism B −→ ϕ(B).

If B is a semialgebraic subset of A, and the inclusion map B → A is an immersion,
then B is called a semialgebraic quasi-subvariety of A.

Definition 1.6.(Fibre product) Let A, B, C be semialgebraic quasi-varieties, and
f :A → C, g:B → C be regular maps. The fiber product A×C B is a semialgebraic set

A×C B =
{
(a, b) ∈ A×B

∣∣ f(a) = g(b)
}

with a structure sheaf RA ⊗RC
RB .

Definition 1.7.(Inverse image) Let A, B be semialgebraic quasi-varieties, and ϕ:A →
B be a regular map. Let C ⊂ B be a semialgebraic quasi-subvariety. The inverse image
ϕ−1(C) is defined as the fiber product ϕ−1(C) := A×B C.

Definition 1.8.(Birational map) Let A, B be semialgebraic quasi-varieties. If there
exists dense Zariski open subsets U ⊂ A and W ⊂ B, and there exists a regular map
ϕ:U → W , then we say that there exists a rational map ϕ:A · · · → B. Moreover, if
ϕ:U → W is an isomorphism, we say that ϕ:A · · · → B is a birational map, and A and B
are birational equivalent.

Definition 1.9. Let A be a semialgebraic quasi-variety. A point P ∈ A is said to be a
non-singular point of A if RA,P is a regular local ring. We denote

Sing(A) :=
{
P ∈ A

∣∣ P is a singular point of A.
}
,

Reg(A) := Int(A)− Sing(A).

Remark 1.10. (1) Reg(A) 6= ∅ if A is reduced.
(2) Reg(A) is not always dense in A with respect to the Euclidean topology. For

example, consider the case that A has an isolated singularity as a connected component.
(3) If P ∈ Reg(A) ∩ Int(A) and dimA = n, then there exists an Euclidean open

neighborhood P ∈ U ⊂ A such that U is homeomorphic to an open subset of Rn.
(4) By our definition, an isolated singular locus of A is included in Int(A). If you want

to exclude such points from Int(A), you have better to discuss Int(A) ∩ Reg(A). Sing(A)
sometimes acts as if it is a boundary.
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Definition 1.11. Let A be a non-singular semialgebraic variety with dimA = n, and
P ∈ A. Then, there exists an Euclidean open set P ∈ U ⊂ A such that U has an algebraic
coordinate system (x1,. . ., xn). n-formes f1 dx1 + · · · + fn dxn (fk ∈ RA(U)) determine a
locally free RA-module Ω1

A. Wedge this n times, we obtain RA-module Ωn
A. This can be

identified with the real line bundle detT∨A .
Note that RA(U) can be defined for any (may bo non-open) subset U ⊂ A as a local-

ization.

Theorem 1.12. Every semialgebraic quasi-variety is affine.

Proof. Let A be a semialgebraic quasi-variety. There exists a real algebraic quasi-variety
X ⊃ A as Definition 1.3. Take an affine opne covering {V1,. . ., Vr} of X. Fix a 1 ≤ j ≤ r.
We may assume Vj is a closed subset of Rn. Let (x1,. . ., xn) be the coordinate system of Rn,
and si := 1/(x2

i + 1), ti := xi/(x2
i + 1). For P ∈ X − Vj , we put si(P ) = 0 and ti(P ) = 0.

Then si and ti are regular functions on X. The set of functions Fj :=
{
si, ti

∣∣ 1 ≤ i ≤ n
}

defines a map Φj :X −→ R2n. This Φj is a regular map as semialgebraic quasi-varieties,
and Φj |Vj

:Vj −→ R2n is an immersion. Note that Φj(X) is a semialgebraic quasi-variety
but is not always algebraic quasi-variety. Put F := F1 ∪ · · · ∪ Fr and N := #F . F defines
a regular map Φ:X → RN , and F is an immersion as semialgebraic quasi-varieties.

Remark 1.13. (1) The above proof does not prove that a real algebraic quasi-variety
is a real affine quasi-variety, because ZarRN (Φ(X)) 6= Φ(X).

(2) The structure sheaf RA can be obttained from the coordinate ring RA(A) as it’s
sheafification.

In a complete complex algebraic varieties, exceptional subsets are special subsets. This
is not true for complete semialgebraic varieties. (See also Proposition 6.2.)

Theorem 1.14. Let A be a semialgebraic quasi-variety, E ⊂ A be a closed semialge-
braic subset such that E = ZarA(E) $ A. Then there exists a semialgebraic quasi-variety
B and a regurar surjective morphism ϕ:A → B such that P := ϕ(E) is a point and that
ϕ|A−E : (A−E) −→ (B−P ) is an isomorphism, e.g. ϕ is a contraction of E to a point P .

Proof. We may assume A ⊂ Rn. Let f1,. . ., fr be defining polynomials of ZarRn(E) in
R[x1,. . ., xn]. Consider a map Φ:Rn → Rrn defined by linear system with the base

{
xifj

∣∣
1 ≤ i ≤ n, 1 ≤ j ≤ r

}
. Φ is a regular map. Put B := Φ(A) and ϕ := Φ|A:A → B. Then, B

and ϕ satisfy the conclusion of the Proposition.

Section 2. Complex envelope.

A semialgebraic quasi-variety is a subset of certain complex complete quasi-varieties.
In this section, we study such complex quasi-varieties.

Definition 2.1.(Conjugate) (1) Let X be a complex algebraic quasi-variety. If there
exists a R-scheme Y such that X ∼= Y ×SpecR SpecC as R-schemes, then X is called self-
conjugate. In this case, Y (R) is also denoted by X(R). The anti-holomorphic involution
map J :X → X with J |Y = idY is also called the conjugate map.
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(2) Let X and Z be self-conjugate complex algebraic quasi-varieties, and YX , YZ be
R-schemes such that X = YX ×SpecR SpecC and Z = YZ ×SpecR SpecC. If a C-morphism
ϕ:X → Z is induced from a R-morphism ϕR:YZ −→ YZ , then we say that ϕ:X → Z is real.
Similarly, we define a real rational map ϕ:X · · · → Z.

Definition 2.2.(Faithful embedding) Let A be a semialgebraic quasi-variety, and Z
be a self-conjugate complex algebraic quasi-variety. A map ϕ:A → Z is called a faithful
embedding if:
(1) There exists a real algebraic quasi-variety X, and an immesion i:A → X such that

ZarX(i(A)) = X.
(2) There exists a R-scheme Y which represents X.
(3) There exists a R-isomorphism ψ:Y ×SpecR SpecC −→ Z which induces a continious

map j:X = Y (R) −→ Z.
(4) ϕ = j ◦ i.

Note that Z(R) ⊂ Z(C) is not always faithful embedding. For example, when Z =
SpecC[X, Y ]/(X2 + Y 2), Z(R) = {(0, 0)} ⊂ Z is not faithful embedding.

Proposition 2.3. Let A be a semialgebraic quasi-variety, ιX :A → X and ιY :A → Y
be faithful embeddings to complex algebraic quasi-varieties. Then, X and Y are birational
equivalent.

Proof. We may assume that X and Y are complete. Define δ:A → X × Y by δ(P ) =(
ιX(P ), ιY (P )

)
(P ∈ A), and put ∆ := ZarX×Y (δ(A)) ⊂ X×Y . Clearly, δ is an immersion.

πX :∆ → X indeuces an isomorphism τ : δ(A) → A. Since τ∗ : RA,P −→ Rδ(A),δ(P ) is
an isomorphism, π∗X : OX,P −→ O∆,δ(P ) is also an isomorphism. Thus the projections
πX :∆ −→ X is a birational regular map. Similarly, πY :∆ −→ Y is also a birational regular
map. Thus, we have the conclusion.

Definition 2.4. Let A be a semialgebraic quasi-variety, and X be a self-conjugate
complete complex algebraic quasi-variety with a faithful embedding ι:A → X. Then, we
say X is a complex envelope of A. If A and X are normal (resp. non-singular), we say X is
a normal (resp. non-singular) complex envelope of A.

Proposition 2.5. Let A be a semialgebraic quasi-variety. Then, there exists a complex
envelope X of A. If A is norml (resp. non-singular), we can chooes X to be normal (non-
singular).

Proof. Clear

Definition 2.6. Let A be a normal semialgebraic variety, and X, Y be normal com-
plex envelopes of A. Since dimCHi(X, OX) = dimCHi(Y , OY ), we can define hi(A) :=
dimCHi(X, OX). When dimA = 1, g(A) := h1(A) is called the genus of A. When
dimA = 2, pg(A) := h2(A) is called the geometric genus of A, and q(A) := h1(A) is called
the irregularity of A.

Since dimCH0(X, OX(mKX)) = dimCHi(Y , OY (mKY )) for m ∈ N, we can define
Pm(A) := dimCH0(X, OX(mKX)). Pm(A) is called the m-genus of A,

Using Pm(A), we can define the Kodaira dimension κ(A). Note that κ(A) = κ(X).
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Definition 2.7. Let A be a closed semialgebraic quasi-variety, and let X be a real
algebraic quasi-variety with a faithful embedding A ⊂ X. Put B := ∂A. For an arbitral
affine open subset U ⊂ X such that U ∩B 6= ∅, let

IU :=
{
f ∈ RX(U)

∣∣ f(P ) = 0 for all P ∈ B
}
,

and put RB(U ∩B) := RX(U)/IU . This defines a coherent sheaf RB of commutative rings
on B. We call the semialgebraic quasi-variety (B, RB) to be the boundary of A.

Similarly, we can define RSing(A). Thus, Sing(A) can be regarded as a semialgebraic
quasi-variety.

Remark 2.8. (1) In the above definition, dimB ≤ dimA− 1, but it may happen that
dimB < dimA− 1 if B ⊂ Sing(X).

(2) Using the above dfenition, we can define the critical decomposition of A, similarly
as Definition 1.5 of [1].

Definition 2.9.(Blowing up) Let A be a semialgebraic variety, X be a complex envelope
of A, and I be an ideal sheaf of RA. There exists an ideal J of OX such that JOX |A⊗OX |A
RA = I. Let J be the set of all the ideals J of OX which satisfy the above condition. If J1,
J2 ∈ J, then J1 +J2 ∈ J. Thus, there exists the unique maximal element of J. Take such the
maximal J ∈ J. Let π:Y → X be the blowing up of X by the ideal J , and B = π−1(A) ⊂ Y .
B is a semialgebraic quasi-variety as Definition 1.6. We say that π|B :B → A is the blowing
up of A by I.

If I is a defining ideal of a closed semialgebraic subvariety C ⊂ A, then π|B :B → A is
also called to be the blowing up of A with/along/at the center C. By Proposition 2.3, B
does not depend on choice of X. Let E ⊂ Y be the exceptional set of π. Then,

B0 := ClsY

(
π−1(A− (π(E) ∩ ∂A))

) ⊂ B

is called the strict transform of A.

Proposition 2.10. Let A, B be semialgebraic varieties, and ϕ:A → B be a regular
map. Then there exists complex envelopes iX :A → X, iY :B → Y and a regular map
Φ: X → Y such that iY ◦ ϕ = Φ ◦ iX .

Proof. Take complete real algebraic varieties X, Y and complex envelopes XC, YC with
faithful embeddings A

iX−→ X ⊂ XC, B
iY−→ Y ⊂ YC. Take a point P ∈ Int(A) such that

Q := ϕ(P ) ∈ Int(B), and take an affine open subset W ⊂ YC such that Q ⊂ W ⊂ YC.
Since RX,P = RA,P and RY,Q = RB,Q, the homomorphism ϕ∗P :RB,Q −→ RA,P induces
ψW :OYC |Y (W ) −→ RA,P .

Since OYC |Y (W ) is a finitely generated R-algebra, we can choose f1,. . ., fr ∈ RY,Q ⊂
Rat(B) = Rat(Y ) ⊂ Rat(YC) such that OYC |Y (W ) = R[f1, . . . , fr]. Put gj := ψW (fj) ∈
RA,P ⊂ Rat(A) = Rat(X) ⊂ Rat(XC). We can find an affine open subset U ⊂ XC such that
g1,. . ., gr are holomorphic (regular) on U , and that U ∩X is dense in X and U ∩A is dense
in A. Then, ψW induces ΨW :OYC(W ) −→ OXC(U). ΨW induces regular maps ΦU :U → W ,
ΦU∩X : (U ∩X) → (W ∩ Y ), and rational maps ΦC:XC · · · → YC, Φ: X · · · → Y .

By the Hironaka’s theorem of a resolution of the indeterminacy, there exists a composit
of blowing ups π: X̃ → X and a regular map Φ̃: X̃ → Y such that Φ̃ = Φ ◦ π. Since there
exists no indeterminacy of Ψ on A, we can choose π so that the exceptional set E of π
satisfies π(E)∩A = ∅. Thus X̃ and Φ̃ satisfy the conditions of X and Φ in the theorem.
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Proposition 2.11. Let A be a semialgebraic variety, and assume that a finite group
G acts on A faithfully. Then, A/G is a semialgebraic variety.

Proof. Let X be a complex envelope of A. Since G acts on RA and OX is a subring
of RA ⊗R C, the action of G on A can be extended to X. It is well known that X/G is
complex algebraic variety, Let π:X → X/G be the natural surjection. Then A/G ∼= π(A).
Thus, A/G is a semialgebraic subset of X/G. The invariant sheaf RG

A is the structure sheaf
of X/A. Thus, X/G is a semialgebraic variety.

As mentioned in the Introduction, A quotient of real algebraic variety may not be real
algebraic variety. If X is an algebraic variety over R which is a R-scheme, X(R)/G may not
agree with (X/G)(R). We shall explain the example which we presented the first part of the
Introduction.

Example 2.12.(Discriminant of cubic equation) Let A = P2
+ :=

{
(x0 : x1 : x2) ∈ P2

R
∣∣

xixj ≥ 0 for all 0 ≤ i < j ≤ 2
}
. Consider functions σ1 := x0 + x1 + x2, σ2 := x0x1 + x1x2 +

x2x0 and σ3 = x0x1x2 on A. Define a regular map ϕ:A → PR(1, 2, 3) by ϕ(P ) = (σ1(P ),
σ2(P ), σ3(P )), where PR(1, 2, 3) is defined as the set of real points of the weighted projective
space PC(1, 2, 3). Then B := ϕ(A) is just P2

+/S3. We can choose a fundamental domains of
ϕ as A0 :=

{
(s : t : 1) ∈ P2

+

∣∣ 0 ≤ s ≤ t ≤ 1
}
. Since ϕ:A0 → B is birational, we know that

B is the semialgebraic subset of PR(1, 2, 3) defined by

27a2
3 − 18a1a2a3 + 4a3

1a3 + 4a3
2 − a2

1a
2
2 ≤ 0, a2 ≥ 0, a3 ≥ 0,

where (a1, a2, a3) is the homogeneous coordinate system of PR(1, 2, 3). Now, consider the
cubic polynomial f(t) = t3 − a1t

2 + a2t− a3, where a1, a2, a3 ∈ R. The condition that the
all roots of f(t) = 0 are non-negative real numbers, is equivalent to (a1, a2, a3) ∈ B.

Please try this for an algebraic equation of higher degree.

Section 3. Maximal extension and proper extension.

Definition 3.1. (1) Let A be a semialgebraic quasi-variety, X be a complex envelope
of A, and U ⊂ A be a Zariski open subset. Let W be the set of all the Zariski open subsets
W of X such that W ∩A = U . Put Um

X :=
⋃

W∈W

W . Then, Um
X is the maximal Zariski open

subset of X which satisfies Um
X ∩A = U . We call this Um

X to be the maximal extension of U
to X.

(2) Let A be a semialgebraic variety, and X be a complex envelope of A. For f ∈ Rat(A)
(or for a homogeneous function f), we denote

VA(f) := ZarA

({
P ∈ A

∣∣ f(P ) = 0
})

,

VX(f) := ZarX

({
P ∈ X

∣∣ f(P ) = 0
})

,

DA(f) := A− VA(f), and DX(f) := X − VX(f).
(3) Let A be a normal semialgebraic variety and X be a normal complex envelope of

A. Take an affine open subset U ⊂ A. Then U
p
A :=

{
DA(f)

∣∣ f ∈ R(A)
}

is a base of the
Zariski topology on A. For DA(f) ∈ U

p
A, we put

F (f) :=
{
g ∈ R(A)

∣∣ DA(g) = DA(f)
}
, (DA(f))p

X :=
⋃

g∈F (f)

DX(g).
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For an arbitral Zariski open subset U = DA(f1) ∪ · · · ∪ DA(fr) of A, we put Up
X :=

(DA(f1))
p
X ∪ · · · ∪ (DA(fr))

p
X . We say Up

X is the proper extension of U to X.

Remark 3.2. (1) Um
X and Up

X are self-conjugate.
(2) Um

X and Up
X may not be affine, even if U is an affine open subset of A.

(3) (X(R)−A) ⊂ Up
X ⊂ Um

X .
(4) Let B ⊂ A be normal semialgebraic varieties, B ⊂ Y , A ⊂ X be complex envelopes

with Y ⊂ X. Take a Zariski open subset U ⊂ X. It is easy to see that (U ∩B)p
Y ⊃ Up

X ∩ Y
and (U ∩B)m

Y ⊃ Um
X ∩ Y . But they will not agree.

For example, let X = P2
C with the coordinate system (x, y, z). Let Y = P1

C ⊂ X be the
line defined by y = 0. Take B = P1

R ⊂ Y and A = P2
R ⊂ X as the natural way. Consider an

affine open subset U = DA

(
y2z−x(x2 +z2)

) ⊂ A. Then Up
X = Um

X = DX

(
y2z−x(x2 +z2)

)
.

But, since U ∩B = DB(x), we have (U ∩B)p
Y = (U ∩B)m

Y = DY . Thus (U ∩B)p
Y 6= Up

X ∩Y
and (U ∩B)m

Y 6= Um
X ∩ Y .

Proposition 3.3. Let A be a normal semialgebraic variety, and X be a normal complex
envelope of A.
(1) Let f ∈ Rat(A) − C, and U = DA(f). If VX(f) is an irreducible subvariety of X and

dim(VX(f) ∩A) = dimA− 1, then Up
X = DX(f).

(2) Let f1,. . ., fr ∈ Rat(A)−C, and U = DA(f1 · · · fr). If VX(fi) are irreducible subvarieties
of X and dim(VX(fi) ∩A) = dimA− 1 for all i = 1,. . ., r, then Up

X = DX(f1 · · · fr).

Proof. (1) Take g ∈ F (f). Then VA(g) = VA(f) = VX(f) ∩ A. Since VX(f) is
irreducible, we have VX(g) ⊃ VX(f). This implies Up

X ⊂ DX(f). Since DX(f) ⊂ Up
X , we

have Up
X = DX(f).

(2) follows from (1).

Example 3.4. We present an example such that Up
X 6= Um

X . Let A = P2
R ⊂ X0 = P2

C,
P1 = (0 : 1 :

√−1), P2 = (0 : 1 : −√−1) ∈ X0, and ϕ:X → X0 be the blowing up at P1

and P2. Then, A ⊂ X is also a complex envelope. Let (x0 : x1 : x2) be the homogeneous
coordinate system of X0. Consider U := DA(x0). Put L0 := VX0(x0), Ei := ϕ−1(Pi), and
let L be the strict transform of L0 by ϕ. Note that ϕ−1(L0) = L ∪ E1 ∪ E2. By the above
proposition, we have Up

X = X − (L ∪ E1 ∪ E2). On the other hand, Um
X = X − L.

Remark 3.5. OX(Um
X ) and OX(Up

X) depend on the complex envelope X. We shall
give an example.

(1) Let X := P2
C ⊃ A := P2

R with the homogeneous coordinate system (x0 : x1 : x2),
and U = DA(x0) ⊂ A. For z ∈ C−R, put fz := x2

0/(x2
1 + zzx2

2). Note that fz ∈ RA(A) and
U = DA(fz). Put L := VX(x0) ⊂ X, P1 := (0 : 1 :

√−1) ∈ X, and P2 := (0 : 1 : −√−1) ∈
X. Let ϕ:Y → X be the blowing up at P1 and P2. Put Ei = ϕ−1(Pi) ⊂ Y , and L′ ⊂ Y be
the strict transform of L. Then Up

X = Um
X = X − L and Up

Y = Um
Y = Y − L′. For example,

x1/x0 ∈ OX(Um
X ) but x1/x0 /∈ OY (Um

Y ). Thus OX(Um
X ) = OX(Up

X) % OY (Um
Y ) = OY (Up

Y ).
(2) Let X := P2

C ⊃ A := P2
R, z ∈ C − R, P1 := (1 : 1 : z), P2 := (1 : 1 : z),

P3 := (1 : 2 : z), P4 := (1 : 2 : z). and U := DA(x0) ⊂ A. Let ϕ:Y → X be the blowing up
at P1, P2, P3, P4, and let Lij ⊂ Y be the strict transform of the line PiPj in X. Note that Lij

are (−1)-curves (1 ≤ i < j ≤ 4). Let ψz:Y → Vz be the contraction of L13 and L24. Then
X, Y , Vz are complex envelopes of A. Note that ψ−1

z (DVz
) = DY (Um

Y ) − (L13 ∪ L24), and
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⋃
z∈C−R ϕ(ψ−1

z (DVz )) = U ∪ {P1,. . ., P4}. This implies that we cannot find the ‘standard’
OVz (Um

Vz
)(R) or OVx(Up

Vz
)(R).

Definition 3.6. Let A be a semialgebraic quasi-variety, X be a complex envelope of
A, and Y be a R-scheme such that X = Y ×SpecR SpecC. When we discuss about Up

X , we
assume that A and X are normal. Let F be a quasi-coherent OX -module.
(1) We say F is a real, if there exists OY -mofule G such that F = G⊗R C.
(2) Assume that F is a real quasi-coherent OX -module. For an affine open subset U ⊂ A,

let Um
X and Up

X be the maximal and the proper extension of U to X. We define the
sheaf F|mA and F|pA on A by

(F|mA )(U) = F(Um
X )(R) :=

{
f ∈ F(Um

X )
∣∣ J(f) = f

}
,

(F|pA)(U) = F(Up
X)(R) :=

{
f ∈ F(Up

X)
∣∣ J(f) = f

}
,

here J(f) = f is the complex conjulate. Then, F|mA is a OX |mA -module. Similarly, F|pA
is a OX |pA-module.

(3) Let (UX , |A) = (Um
X , |mA ) or (Up

X , |pA). Assume that F is a real quasi-coherent OX -
module. If (F|A)⊗OX |A OX

∼= F, then we say F is an A-sheaf with respect to |A.
(4) F is called an A-pure locally free sheaf with respect to |A, if F is a locally free OX -

module of rank r, and if for any point P ∈ A, there exists an affine open neighborhood
P ∈ U ⊂ A and e1,. . ., er ∈ F(UX)(R) such that F|UX

= OX |UX
· e1⊕ · · · ⊕OX |UX

· er.

Assumption 3.7. The maximal extension and the proper extension have some similar
properties. Thus we shall discuss them together. We use one of the following assumptions:
(1) A is a semialgebraic quasi-variety, and X is a complex envelope of A. For a Zariski open

subset U ⊂ A, UX := Um
X is the maximal extension of U to X. For a real quasi-coherent

OX -module F, F|A := F|mA .
(2) A is a normal semialgebraic variety and X is a normal complex envelope of A, For a

Zariski open subset U ⊂ A, UX := Up
X is the proper extension of U to X. For a real

quasi-coherent OX -module F, F|A := F|pA.

Remark 3.8. We use the same notation with Definition 3.6 and Assumption 3.7. Then:
(1) RA is a OX |mA -algebra, and is a OX |pA-algebra.
(2) H0(U , F|A) ⊗R C = H0(UX , F) for (UX , |A) = (Um

X , |mA ) and (Up
X , |pA), if F is a real

quasi-coherent OX -module.
(3) F|A may not be a locally free OX |A-module, even if F is a real locally free OX -module.
(4) Even if F|A = OX |A, it may happen that F 6∼= OX .
(5) Let F and G be real quasi-coherent OX -modules. It may happen F(UX) ⊗OX(UX)

G(UX) $
(
F ⊗OX

G
)
(UX). Thus, F|A ⊗OX |A G|A may not agree with (F ⊗OX

G)|A.
Similarly, HomOX |A

(
F|A, G|A

)
may not agree with

(HomOX
(F, G)

)|A.
(6) The stalk (OX |A)P is not always a local ring for P ∈ A.

Proposition 3.9. Under each of assumption (1) and (2) in Assumption 3.7, let (UX ,
|A) = (Um

X , |mA ) or (Up
X , |pA). Assume that F is an A-pure locally free OX -modules of the

rank r, and G is a real quasi-coherent OX -module. Then,
(1) An A-pure locally free sheaf F is an A-sheaf.
(2) F|A ⊗OX |A G|A ∼= (F⊗OX

G)|A.
(3) HomOX |A

(
F|A, G|A

) ∼= HomOX
(F, G)|A.
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(4) If F ∼= OX and F|A = OX |A, then F = OX .
(5) If 0 → L → M → N is an exact sequence of real quasi-coherent OX -modules. Then

0 → L|A → M|A → N|A is an exact sequence of OX |A-modules, and 0 → L|A(U) →
M|A(U) → N|A(U) is an exact sequence of OX |A(U)-modules.

Proof. Let U be an affine open subset of A. Assume that F|UX
= ⊕r

i=1OX |UX
· ei.

(1) Take any affine open subset W ⊂ UX . Then

F|A(U)⊗OX |A(U) OX(W ) ∼=
(⊕r

i=1 OX(UX) · ei

)⊗OX(UX) OX(W )
∼= ⊕r

i=1OX(W ) · ei = F(W ).

Thus, (F|A)⊗OX |A OX
∼= F.

(2) Let H be the presheaf defined by

H(U) = F|A(U)⊗OX |A(U) G|A(U) =
(
F(UX)⊗OX(UX) G(UX)

)
(R)

for each Zariski open subset U ⊂ A. Then, F|A⊗OX |A G|A is the sheafication of H. For any
sufficiently small U ⊂ A,

F(UX)⊗OX(UX) G(UX) ∼=
(⊕r

i=1 OX(UX) · ei

)⊗OX(UX) G(UX)
∼= ⊕r

i=1G(UX) · ei
∼=

((⊕r
i=1 OX · ei

)⊗OX
G

)
(UX) ∼= (F⊗OX

G)(UX).

Thus, we have (2).
(3) Let H be the presheaf defined by

H(U) = HomOX |UX

(
F|UX

, G|UX

)
(R)

for each Zariski open subset U ⊂ A. Then HomOX |A
(
F|A, G|A

)
is the sheafication of H.

Since F is A-pure locally free, for any sufficiently small U ⊂ A, F|UX
= OX |UX

· e1 ⊕ · · · ⊕
OX |UX

· er. Then,

H(U) = ⊕r
i=1 HomOX |UX

(
OX |UX

· ei, G|UX

)
(R)

= ⊕r
i=1 HomOX |UX

(
OX |UX

, G|UX
· (1/ei)

)
(R)

= ⊕r
i=1G|UX

(R) · (1/ei)
= ⊕r

i=1HomOX(UX)

(
OX(UX) · ei, G(UX)

)
(R)

= HomOX(UX)

(
F(UX), G(UX)

)
(R)

= HomOX
(F, G)|A(U)

Thus we have (3).
(4) Let h:OX → F be an isomorphism. Put e = h(1) ∈ F(X), here 1 ∈ OX(X). Then

F = OX · e. F|A = OX |A implies e and 1/e are regular on X. This implies e is a non-zero
constant function. Thus F = OX .

(5) is clear.

Section 4. Cohomology.

To begin with, we confirm that RA-modules do not have higher cohomologies.

Proposition 4.1. Let A be a semialgebraic quasi-variety and F be a quasi-coherent
RA-module. Then, Hi(A, F) = 0 for all i > 0.

Proof. There exists a faithful embedding τ :A → X into an affine real algebraic quasi-
variety X. There also exists a closed immersion ι:X → Rm as real algebraic varieties for a
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certain m ∈ N. Let RX := RX(X) and RA := RA(A). We can present as RA = S−1
A RX .

Since RA is an RX -module, F is an quasi-coherent RX -module. Thus, F is an quasi-coherent
RRm -module. Thus we have

Hi(A, F) ∼= Hi
(
Rm, F

)
= 0

(see [6] Chap.III, Theorem 3.5).

If F is a sheaf of Abelian group on A, Hi(A, F) 6= 0 may happen.

Proposition 4.2.(Grothendieck) Let A be a semialgebraic quasi-variety, and F be
any sheaf of Abelian group on A. Then, Hi(A, F) = 0 for all i > dimA.

Proof. See [6] Chap.III, Theorem 2.7.

Next, we consider OX |mA -modules and OX |pA-modules. These have similar cohomological
properties. For example,

Hi(A, OX |mA )⊗R C ∼= Hi(A, OX |pA)⊗R C ∼= Hi(X, OX).

Thus, throughout the left part of this section, we use the any of assumptions (1) or (2) in
Assumption 3.7. Let (UX , |A) = (Um

X , |mA ) or (Up
X , |pA).

Theorem 4.3. Let F be a quasi-coherent OX |A-module and U ⊂ A be a Zariski open
subset. Then,

Hi
(
UX , F⊗OX |A OX

) ∼= Hi(U, F)⊗R C for all i ∈ Z.

Proof. (1) Temporary, put O := OX |A. Since OX(UX) = O(U) ⊗R C, OX(UX) is a
free O(U)-module of rank 2. Thus OX is a locally free O-module of rank 2. Its dual sheaf
H := HomO(OX , O) is also a locally free O-module of rank 2. This implies that H is an
invertible OX -module. Especially, H is a flat OX -module.

(2) Let R be a commutative ring, S be a R-commutative algebra, and E be an injective
R-module. If P is a R-module and a S-flat module, then HomR(P , E) is an injective
S-module by injective producing lemma. Moreover, if M is a R-module and S is finite
representative R-module, then L⊗R HomR(M, N) ∼= HomR(HomR(L,M), N). Thus, if I is
an injective O-module, then OX ⊗O I ∼= OX ⊗OHomO(O,I) ∼= HomO(H,I) is an injective
OX -module.

(3) Take an injective resolution 0 → F → I0 → I1 → · · · as O-modules. Let Ii
X :=

Ii ⊗O OX . Since OX is a flat O-module, 0 → F⊗O OX → I0
X → I1

X → · · · is exact. Since
Ii

X is an injective OX -module, this is an injective resolution of F ⊗O OX . Since H0(UX ,
FX) = H0(U , F)⊗R C, we have the conclusion.

Corollary 4.4. Let U ⊂ A be a Zariski open subset, and F be a quasi-coherent
OX -module which is an A-sheaf with respect to |A. Then,

Hi
(
UX , F) ∼= Hi(U, F|A)⊗R C for all i ∈ Z.
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Proposition 4.5. (Serre duality) Let A be a non-singular real algebraic variety with
dimA = n. Assume that there exists a complex envelope X of A such that X is projective.
Put OA = OX |A and ωA = OX(KX)|A. Let L be an invertible OA-module. Then

dimRHi(A, L) = dimRHn−i(A, ωA ⊗OA
L−1)

for all i ∈ Z. Here L−1 := HomOA
(L, OA),

Proof. This follows Hi(A, L)⊗R C ∼= Hi(X, LX) and Hn−i(A, ωA ⊗OA
L−1)⊗R C ∼=

Hn−i(X, ωX ⊗OX
L−1

X ).

Remark 4.6. Čech cohomology may not work well for semialgebraic varieties, because
Hi(U , F|pA) may not be 0 for i ≥ 1 and for an affine open subset U ⊂ A. Note that Up

X may
include an imaginal complete subvariety of a higher genus.

Section 5. Semialgebraic curves.

As is well known, a complete real algebraic curve can be identified with a self-conjugate
complete complex algebraic curve. This is similar for semialgebraic curves.

Definition 5.1. (1) A semialgebraic variety A with dimA = 1 is called a semialgebraic
curve.

(2) If A is a non-singular semialgebraic curve, then a non-singular complex envelope X
of A is unique up to isomorphisms. Thus, we denote the complex envelope X by EC(A).
The set of real points of EC(A) is denoted by ER(A). We regard ER(A) to be a real algebraic
variety.

(3) If A is a non-singular semialgebraic curve, and X := EC(A). We define a sheaf
OA by OA := OX |mA = OX |pA. The dualizing sheaf ωA is defined by ωA := OX(KX)|mA =
OX(KX)|pA.

Note that if A is a non-singular semialgebraic curve, then

g(A) = dimRH0(A, ωA) = dimRH1(A, OA).

Since EC(A) is unique, many konwn results for algebraic curves over R are valid in our
theory. For example, see [7], [11] and its references.

Proposition 5.2. Let A be a non-singular semialgebraic curve, and X = EC(A).
(1) Take points P1,. . ., Pr ∈ Int(A), and let U := A − {P1,. . ., Pr}. Then, Up

X = Um
X =

X − {P1,. . ., Pr}.
(2) Let L be an invertible OX -module which is real on A. Then, L|A is an invertible

OA-module.

Proof. (1) Since UX := Um
X = X − {P1,. . ., Pr} is the maximal open Zariski subset of

X such that UX ∩A = U , we have Um
X = UX . Since there exists a f ∈ Rat(A) whose zeros

are {P1,. . ., Pr} and whose poles are in X −A. Thus, we have Up
X = UX .

(2) For any point P ∈ A, there exists an affine open neighborhood P ∈ U ⊂ A and
e ∈ L(UX)(R) such that L|UX

= OX |UX
· e = OA · e, where UX := Up

X = Um
X . Thus L|A is

an invertible OA-module.
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Proposition 5.3. Let A be a non-singular semialgebraic curve, and X = EC(A). Take
points P1,. . ., Pr ∈ Int(A), and k1,. . ., kr ∈ Z. Put D :=

∑
kiP1 as a divisor on X. Then,

there exists the unique invertible OA-module L such that L⊗OA
OX = OX(D).

We say D is a Weil divisor on A, and denote L = OA(D). We denote deg D :=
∑

ki ∈
Z.

Proof. L := OX(D)|A satisfies the above conditions.

Proposition 5.4. Let A is a non-singular semialgebraic curve, and D, D′ be Weil
divisors on A. If OA(D) ∼= OA(D′), then deg D = deg D′.

When OA(D) ∼= OA(D′), we denote D ∼ D′ and say that D and D′ are linearly
equivalent.

Proof. We regards D and D′ to be divisors on X = EC(A). Note that all components
of D and D′ are points in Int(A), and D −D′ = div(f) by a certain f ∈ Rat×A(X). Thus,
the result is trivial.

Proposition 5.5. Let A be a non-singular semialgebraic curve. Then ωA is an invert-
ible OA-module.

Proof. Take X = EC(A) and KX . There exists a real divisor D on X such that
KX ∼ D. Then ωA

∼= OA(D).

Proposition 5.6. Let A be a non-singular semialgebraic curve.
(1) If g(A) = 0, then A is isomorphic to a certain semialgebraic subset of P1

R. Moreover, if
A is connected, then A is isomorphic to one of [0, 1], (0, 1), (0, 1], R or P1

R.
(2) If g(A) = 1, then EC(A) is isomorphic to a certain non-singular cubic curve in P2

C, and
A is isomorphic to a certain semialgebraic subset of a real cubic curve ER(A) ⊂ P2

R.

Proof. Trivial.

Definition 5.7.(Normalization) Let A be a semialgebraic curve and X be a complex
closure of A. Let Π: Y → X be the normalization of X. For any self-conjugate affine open
subset U ⊂ X, OY (Π−1(U)) is the integral closure of OX(U) in Rat(X). The complex
conjugate map J :OX(U) −→ OX(U) can be extended to J :OY (Π−1(U)) −→ OY (Π−1(U)).
Thus, Y is also self-conjugate. Let Π(R):Y (R) −→ X(R) be the restriction of Π. For
y ∈ Y (R), RY (R),y ⊗R C ∼= OY,y. Thus Y (R) is also normal. Let B := (Π(R))−1(A) as
semialgebraic variety, and π:B → A be the restriction of Π(R). For y ∈ B, RB,y = RY (R),y

is a normal ring. We say π:B → A is the normalization of A. Since Y is non-singular
complex algebraic curve, B is non-singular semialgebraic curve and Y = EC(B).

Section 6. Semialgebraic surfaces.

Definition 6.1. (1) Let A be a non-singular semialgebraic surface, and C be a closed
semialgebraic curve C ⊂ A. If there exists a non-singular semialgebraic surface B, and a
surjective regular map π:A → B such that π(C) is a point and that π: (A−C) −→ (B−π(C))
is an isomorphism, then π:A → B is called a smooth contraction of C.

15



(2) Let A be a non-singular semialgebraic surface. A is called minimal, if there does
not exist any closed semialgebraic curve C ⊂ A which has a smooth contraction π:A → B
of C.

(3) Let A be a non-singular semialgebraic surface, and X be a non-singular complex
envelope of A. X is called a minimal complex envelope of A, if for any non-singular complex
envelope Y of A there exists a regular birational map ϕ:Y → X such that ϕ|A = idA, then
ϕ is an isomorphism.

Proposition 6.2. Let A be a non-singular semialgebraic surface, and X be a non-
singular complex envelope of A. Take a closed semialgebraic curve C ⊂ A with ZarA(C) = C,
and let CX := ZarX(C). If CX

∼= P1
C and (C2

X)X is a positive odd integer, then C has a
smooth contraction π:A → B.

Proof. Put (C2
X)X = 2n− 1 (n ∈ N). Take imaginal points P1,. . ., Pn ∈ CX such that

P1,. . ., Pn, P1,. . ., Pn are distinct points, here Pk is the complex conjugate point of Pk. Let
π:Y → X be the blowing up at P1,. . ., Pn, P1,. . ., Pn. Y is also a non-singular complex
envelope of A. Put CY := ZarY (C). Then (C2

Y )Y = −1. Since CY is a (−1)-curve, CY has
a smooth contraction.

Corollary 6.3. If A is a non-singular semialgebraic surface with κ(A) = −∞, then A
is not minimal.

This result does not conflict with [8], [9], [10] and so on, because definitions of real
algebraic surface are completely different. Note that any rational semialgebraic surface
contains a curve which is isomorphic to P1

R. In fact, A contains a domain which is isomorphic
to a disc, and a disc contains circles.

Lemma 6.4. Let A be a non-singular semialgebraic surface, and X be a non-singular
complex envelope of A. Assume that E ⊂ X be a (−1)-curve. Let E be the complex
conjugate of E. Moreover, we assume that (E · E)X ≥ 1. Then, κ(X) = −∞.

Proof. Let π:X → Y be the contraction of E, m := (E · E)X , CX := E, and CY :=
π(CX) ⊂ Y .

(1) We consider the case m = 1. Then CY is a smooth rational curve with (C2
Y )Y = 0.

Then, Y is a ruled surface. Thus κ(X) = κ(Y ) = −∞. (See [3] Cap. V, Prop. 4.3.)

(2) We consider the case m ≥ 2. Then CY is a singular rational curve with (C2
Y )Y =

m− 1 ≥ 1. Note that (CY ·KY )Y = (CX · π∗KY )X = (CX · (KX − E))X = −1−m. Take
non-singular points P1,. . ., Pm−1 ∈ L. Let ϕ:Z → Y be the blowing up at P1,. . ., Pm−1,
and let CZ ⊂ Z be the proper transform of CY . Then (C2

Z)Z = 0. Put Ei = ϕ−1(Pi). Then

(CZ ·KZ)Z = (CZ · π∗KY )Z +
m−1∑

i=1

(CZ · Ei)Z

= (CY ·KY )Y + (m− 1) = (−1−m) + (m− 1) = −2.

(2-1) Consider the case H1(Z, OZ) = 0. Then, since 0 −→ H0(OZ) −→ H0(OZ(CZ))
−→ H0(OCZ

(CZ)) −→ 0 is exact, we have h0(OZ(CZ)) = 2. The divisor CZ define a regular
map Φ: Z → P1

C.
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Since Z is non-singular, general fibres of Φ are smooth curves. Let F := Φ−1(Q) be a
smooth fibre. If F ∼= P1, then Z is rational surface and κ(X) = κ(Z) = −∞. Assume that
g(F ) ≥ 1. Since F ∼ CZ , we have −2 = (CZ · KZ)Z = (F · KZ)Z = (F · (KZ + F ))Z =
deg KF ≥ 0. A contradiction.

(2-2) Consider the case q := h1(Z, OZ) ≥ 1. Let S be the Albanese variety of Z and

α:Z → S be the Albanese map. Take the Stein factorization α:Z
f−→ T

g−→ S. Note that
q(T ) = q(S) = q. Since any complex torus does not include a rational curve, and since
g:T → S is a finite map, we have f(CZ) is a point. If T is a surface, then (C2

Z)Z < 0. Thus,
dimT = 1. Since general fibres of f :Z → T are smooth curves, CZ is included in a singular
fibre f−1(P ). Put F := f∗P as a divisor. Since (CZ · F )Z = 0 and (C2

Z)Z = 0, F must be
irreducible. Thus F = rCZ for a certain r ∈ N. Take a general fibre F1 := f−1(Q). Then

−2r = r(CZ ·KZ)Z = (F ·KZ)Z = (F1 ·KZ)Z = deg KF1 ≥ −2.

Thus, r = 1 and F1
∼= P1

C. Since f :Z → T is a ruled surface, we have κ(X) = κ(Z) = −∞.

Proposition 6.5. Let A be a non-singular semialgebraic surface with κ(A) ≥ 0, and
X be a non-singular complex envelope of A. Then, there exists a non-singular self-conjugate
surface Y and a real birational morphism ϕ:X → Y such that Y is a minimal surface. In
this case, B := ϕ(A) is minimal semialgebraic surface.

Proof. Assume that C ⊂ X be a (−1)-curve, and C be the complex conjugate of C.
Then (1) C ∩ C = ∅, or (2) C = C, by Lemma 6.4.

(1) Assume that C ∩ C = ∅. Then, there exists the smooth contraction π:X → X1 of
C and C. X1 is also a non-singular envelope of A. Note that π is real morphism.

(2) Assume that C = C. Let π:X → X1 be the smooth contraction of C. Note that π
is real morphism, and B := π(A) is a non-singular semialgebraic surface such that X1 is a
complex envelope of B.

We can obtain a minimal model of X by a composite of contractions of types (1) and
(2).

Proposition 6.6. Let A be a non-singular semialgebraic surface with κ(A) ≥ 0. Then
there exists a minimal complex envelope X of A. Moreover X is unique up to isomorphism.

Proof. Let X0 be a non-singular complex envelope of A. Assume that X0 includes a
(−1)-curve C such that dim(C ∩ A) ≤ 0. If C = C, then let π0:X0 → X1 be the smooth
contraction of C. If C 6= C, then let π0:X0 → X1 be the smooth contraction of C and C.
Inductively, we repeat this process. After some contractions, we obtain a minimal complex
envelope X of A.

We shall show that X is unique. Let ϕ:X → Y be the minimal model of X. It is
well known that Y is unique. ϕ can be decomposed as a composite of contractions of a
(−1)-curve: X = X0

f1−→ X1
f2−→ X2

f3−→ · · · fn−→ Xn = Y . Consider f1:X0 → X1 which is
the contraction of C0. Note that dim(C0 ∩ A) = 1. Let C1 ⊂ X1 be a (−1)-curve, and let
C ′1 be the strict transform of C1 to X0. If C1 ∩ A = ∅, then C ′1 is a (−1)-curve such that
dim(C ′1 ∩ A) ≤ 0. This is impossible for X0 is a minimal complex envelope X of A. Thus
C1 ∩A 6= ∅. Then C ′1 = C ′1 by Lemma 6.4.
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So, every fi:Xi−1 → Xi is the contraction of a (−1)-curve Ci−1 ⊂ Xi−1 such that
Ci−1 = Ci−1 and dim(Ci−1 ∩A) = 1.

This implies that X is unique.

Definition 6.7. Let A be a non-singular semialgebraic surface with κ(A) ≥ 0, and let
X be the minimal complex envelope of A. We define OA := OX |pA and ωA := OX(KX)|pA.
ωA is called the dualizing sheaf of A.

Remark 6.8. Let A be a non-singular semialgebraic surface with κ(A) ≥ 0, and let X
be the minimal complex envelope of A.
(1) It is easy to see that ωA ⊗OA

RA
∼= Ω2

A, here Ω2
A is defined in Definition 1.11.

(2) Let F be a quasi-coherent OA-module, and let FC := F⊗OA
OX . Then

Hi(U, F)⊗R C ∼= Hi(Up
X , FC)

for i ∈ Z and any Zariski open subset U ⊂ A.
(3) X is real K3 surface in the sense of [8], if and only if V := X(R) is minimal with

κ(V ) = 0, ωV
∼= OV and q(V ) = 0. Thus, the traditional definition of real K3 surfaces

and real Enriques surfaces (see [5]) are valid for real algebraic surfaces (V , RV ) in our
sense, under the assumption dimX(R) = 2.

Remember that even if L is a real invertible OX -module, OA-module L|A may not be
invertible.

Proposition 6.9. Let A be a non-singular semialgebraic surface with κ(A) = 2. Then
ωA is an invertible OA-module.

Proof. Let X be the minimal complex envelope of A, and ϕ:X → Y be the minimal
model as the above proposition. Put B = ϕ(A).

We shall show that ωB = OB(KY )|B is an invertible OB-module. Put Pm := dimCH0(
Y , OY (mKY )). There exists m ∈ N such that Pm ≥ 2, Pm+1 ≥ 2, Bs |mKY | = ∅, and
Bs |(m + 1)KY | = ∅. Put Lm := OY (mKY )|B , We may assume mKY ≥ 0. Let N := h0(Y ,
Lm) − 1 ≥ 1, and Φ:Y → PN

C be a regular map defined by |mKY |. There exists a linear
function f1 on PN

C such that mKY = Φ∗VPN
C

(f1). For any Zariski open subset ∅ 6= U ⊂ B.
Lm|Up

Y

∼= OY |Up
Y
· Φ∗(f1). Thus, Lm is an invertible OB-module.

Similarly, Lm+1 is an invertible OB-module. Then ωB
∼= HomOB

(Lm, Lm+1) is also
an invertible OB-module.

Take an arbitral point P ∈ A. There exists an affine open set ϕ(P ) ∈ U ⊂ B such
that ωB |U = OB |U · e for a certain e ∈ Rat(B). Take P ∈ W ⊂ ϕ−1(U). Then ωA|W =
OA|U · ϕ∗(e). Thus ωA is an invertible OA-module.

Definition 6.10.(Intersection number) Let A be a non-singular semialgebraic surface
with κ(A) ≥ 0, X be the minimal complex envelope of A, and Y be any non-singular complex
envelope of A,

(1) Take closed semialgebraic curves C1, C2 ⊂ A. Put (C1 · C2)Y :=
(
ZarY (C1) ·

ZarY (C2)
)
Y

. Then (C1 ·C2)Y ≤ (C1 ·C2)X . Thus, we define the intersection number of C1

and C2 on A by (C1 · C2)A := (C1 · C2)X .
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(2) When all Ck are closed semialgebraic curves on A, D =
∑

k=1

mkCk (mk ∈ Z) is called

a Weil divisor on A. Using DX =
∑

k=1

mk ZarX(Ck), some theories can be constructed for

Weil divisors on A.

On the other hand, we cannot define the intersection number on rational semialgebraic
surfaces. As is mentioned in [8], on a non-singular complete rational real algebraic surface
A, (C1 ·C2)A has a sense only in Z/2Z. If A is non-complete, this parity is not an invariant.

Example 6.11.
(1) Let A = P2

R and L ⊂ A be a line. Then, for any n ∈ Z, there exists a non-singular
complex envelope X of A such that

(
ZarX(L)2

)
X

= 2n + 1.
(2) Let A ⊂ P2

R be a non-complete semialgebraic surface, and L ⊂ A be a non-complete
line. Then, for any n ∈ Z, there exists a non-singular complex envelope X of A such
that

(
ZarX(L)2

)
X

= n.

Proof. Consider blowing ups and smooth contractions.

If dim(C1 ∩ C2) ≤ 1, we can define the local intersection numver IP (C1, C2) at P ∈
C1 ∩ C2. But, as the above example, we cannot define the self intersection number (C2

1 )A.

Section 7. Aspects of theory of semialgebraic varieties.

We intoduced a basic concept of semialgebraic quasi-varieties, and studied their ba-
sic properties. In view of theory of algebraic inequalities, the following concepts are also
important:

(1) The critical decomposition of semialgebraic variety.
(2) Signed linear systems.

About these topics, please see [1] and [2]. The following proposition is also one of basic
theorems about semialgebraic varieties.

Proposition 7.1. Let V , W be complete real algebraic varieties and ϕ:V → W be a
regular map. Let A ⊂ V be a closed semialgebraic variety with ZarV (A) = V . Then,

∂
(
ϕ(A)

) ⊂ ϕ
(
Sing(ϕ) ∪ Sing(A) ∪ ∂A

)
.

This is proved in § 2 of [2].
Someone may say they “There are not enough applications of semialgebraic varieties.

So, I think it is uncertain, unreliable object.” But please consider the fact that since V/G
is not always real algebraic variety, moduli or many other important notions in theory of
complex algebraic varieties cannot be introduced to real algebraic varieties.
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