
TPPmark2012

October 18, 2012

Recall the Huffman tree construction below (from [1]), an algorithm for
computing a binary code tree that is optimal among so-called “prefix condition”
trees for a given non-empty set of finite source letters with known probabilities:

1. Let L be a list of the probabilities of the source letters corresponding to
the leaves of the tree.

2. Take two smallest probabilities in L, make the corresponding nodes sib-
lings, generate an intermediate node as their parent, and label the link
from parent to one child with zero and the other with one.

3. Replace the above two probabilities in L with their sum, associated with
the new intermediate node. If the new L contains one element, stop, and
otherwise return to step 2.

Problem: Suppose we only consider the source letters having positive (i.e.,
non-zero) probabilities. And we define “sibling property” (also from [1]) as
follows:

Definition: A binary code tree has the sibling property if each node
(except the root) has a sibling and if the nodes can be listed in order
of nonincreasing probability with each node being adjacent in the list
to its sibling.

Then prove that:

1. Every Huffman tree has the sibling property.

2. Every binary code tree having the sibling property is a Huffman tree.

Hints:

• We can formulate a binary code tree using positive integer values instead
of real probability values as follows:

– Each leaf has a positive integer assigned to it. The integer value
represents the number of occurrences of a source letter. You may
also need to assign some label to each leaf, especially if you don’t use
paths to distinguish leaves having the same occurrence number.

1



– Each internal node has exactly two children and also has a positive
integer associated with it. The integer value should be equal to the
sum of the positive integers assigned to its descendant leaves.

• Informal proofs are given in [1] (as the proof of Theorem 1).

• There are some existing formalization works about the optimality of Huff-
man trees [2, 3]. The predicate build in [2] corresponds to “being a
Huffman tree” (Strictly speaking, there is a restriction that the integer
associated with the left child of a parent node cannot be greater than
the one associated with the right child of the parent. If you adopt this
definition, then you’ll need to add a similar restriction to the definition of
“sibling property” in order to show 2).

References

[1] Robert G. Gallager, Variations on a Theme by Huffman, IEEE Transactions
on Information Theory, IT-24(6), pp. 668–674, 1978.

[2] Laurent Théry, Formalising Huffman’s Algorithm, Tech. report TRCS 034,
Dept. of Informatics, Univ. of L’Aquila, 2004. Coq proof is available
from http://coq.inria.fr/pylons/pylons/contribs/view/Huffman/v8.4 (the
“Download” link at the right column.)

[3] Jasmin Christian Blanchette, Proof Pearl: Mechanizing the Text-
book Proof of Huffman’s Algorithm, Journal of Automated Reasoning,
Volume 43 Issue 1, pp. 1–18, 2009. Isabelle/HOL proof is available from
http://afp.sourceforge.net/browser info/current/HOL/Huffman/Huffman.html

2


