
TPPmark2012
問題説明

ハフマン木の構成

ハフマン木の構成
A
0.1

B
0.2

C
0.1

D
0.4

E
0.2

ハフマン木の構成
B

0.2
D
0.4

E
0.2

A
0.1

C
0.1

0.2

ハフマン木の構成
D
0.4

E
0.2

A
0.1

C
0.1

0.2 B
0.2

0.4

ハフマン木の構成

A
0.1

C
0.1

0.2 B
0.2

0.4

D
0.4

E
0.2

0.6

ハフマン木の構成

A
0.1

C
0.1

0.2 B
0.2

0.4

D
0.4

E
0.2

0.6

1.0

ハフマン木の構成

A
0.1

C
0.1

0.2 B
0.2

0.4

D
0.4

E
0.2

0.6

1.0

0

0

0

0

1

1

1

1

A ↦ 000	

 B ↦ 01
C ↦ 001	

 D ↦ 10	

E ↦ 11

Sibling Property

A
0.1

C
0.1

0.2 B
0.2

0.4

D
0.4

E
0.2

0.6

1.0

Sibling Property

A
0.1

C
0.1

0.2 B
0.2

0.4

D
0.4

E
0.2

0.6

1.01.0

t

0.4

t0

0.6

t1

0.2

t00

B
0.2

t01

D
0.4

t10

E
0.2

t11

A
0.1

t000

C
0.1

t001

Sibling Property

1.0

t

0.4

t0

0.6

t1

0.2

t00

B
0.2

t01

D
0.4

t10

E
0.2

t11

A
0.1

t000

C
0.1

t001

Sibling Property

1.0

t

0.4

t0

0.6

t1

0.2

t00

B
0.2

t01

D
0.4

t10

E
0.2

t11

A
0.1

t000

C
0.1

t001

非減少

Sibling Property

1.0

t

0.4

t0

0.6

t1

0.2

t00

B
0.2

t01

D
0.4

t10

E
0.2

t11

A
0.1

t000

C
0.1

t001

きょうだい きょうだい きょうだい きょうだい 根

非減少

Sibling Property

1.0

t

0.4

t0

0.6

t1

0.2

t00

B
0.2

t01

D
0.4

t10

E
0.2

t11

A
0.1

t000

C
0.1

t001

きょうだい きょうだい きょうだい きょうだい 根

非減少
• Sibling Property ... 符号の木のノードを、
このように一列に並べることができる
という性質

ハフマン木とSibling Property

[Gallager 78]
• 符号の木について、以下の２つは同値

1. ハフマン木である
• アルゴリズムによる特徴付け
• 静的ハフマン符号向け

2. Sibling Propertyを持つ
• 構造的特徴付け
• 動的ハフマン符号向け

• TPPmark2012

• 1⇒2 と 2⇒1 をそれぞれ示せ

Informal Proof
[Gallager 78]

670 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-24, NO. 6, NOVEMRER 1978

Proof First assume that a code tree has the sibling
property. Then the last two elements on the ordered list
are siblings and, in addition, must be leaves, for if one
were an intermediate node, at least one of the children of
that intermediate node would have a smaller probability
than the intermediate node,’ which is impossible because
of the ordering property. Thus these nodes correspond to
two smallest probability source letters and can be made
siblings in the first execution of step 2) in the Huffman
algorithm. Now remove these siblings from the code tree,
removing also the last two elements from the ordered list.
The resulting reduced code tree still has the sibling prop-
erty, and the leaves of the reduced code tree correspond
to the list L in the Huffman algorithm after the first
execution of step 3). Thus the above argument can be
repeated: at each step the Huffman algorithm chooses, as
siblings, elements which are siblings in the original code
tree. By matching the link labels in the Huffman code to
those in the original code tree, the two codes are seen to
be identical. Next assume that a binary code tree is
generated by the Huffman algorithm, and assume that
each time the algorithm executes step 2), we add the two
nodes defined as siblings to the top of an initially empty
list, putting the less probable below the more probable.
The list so generated clearly has each node adjacent to its
sibling, so to establish the sibling property, we simply
have to show that the list is nonincreasing in order of
probability. This is trivial, however, since at each iteration
the two elements added to the list have probabilities less
than or equal to that of each element in the new L of the
Huffman algorithm, and the next two elements added to
the list are chosen from this new L. Q.E.D.

Next define the level of a node as the number of links
on the path from the root to the node. It is clear from the
optimality of Huffman codes that for each 1) 1 the prob-
ability of each node at level I is less than or equal to the
probability of each node at level I- 1. For the purist, this
property can be directly derived from the sibling property
using induction on 1. Define an ordered Huffman code as
a Huffman code in which when two nodes are defined as
siblings, the label zero is assigned to the link going to the
more probable of the siblings. Also define a lexicogruphi-
calJy ordered code tree as a tree in which, for each I > 1,
the probability of each node at level I is less than or equal
to the probability of each node at level I- 1 and in which
the probabilities of nodes at level 1 are monotonically
nonincreasing in the binary number corresponding to
their path names from the root.

Corollary: A binary prefix condition code is an ordered
Huffman code iff the code tree is lexicographically
ordered.

Proof Lexicographic ordering implies the sibling
property, which implies that the code is a Huffman code.
Lexicographic ordering also implies that the link from a

‘This is where we use the assumption that at most one source letter
have zero probability. The theorem is true without this restriction, but
the proof is harder and the restriction is of no importance.

parent to the more probable of the siblings is labelled
zero, implying an ordered Huffman code. Now assume an
ordered Huffman code, and use induction on the level 1.
The nodes at level 1 are lexicographically ordered by
construction. Assume for any I> 1 that the nodes at level
I- 1 are lexicographically ordered. By the sibling prop-
erty, if the probability of one parent is greater than or
equal to that of another, the children are correspondingly
ordered. This shows that nonsibling nodes at level 1 have
the correct ordering. Siblings, however, are correctly
ordered by the construction. Q.E.D.

III. THE REDUNDANCY OF HUFFMAN CODES

The redundancy r of a source code is defined to be the
expected length of the codewords minus the binary en-
tropy H(P,, * * . , PK) of the source probabilities

r= 5 P,n,-H(P,;* * &A (3)
k=l

where H(P, , . . . , PK) = - EkPk logP,. It is well-known [2]
that for optimal codes the redundancy always lies between
zero and one. The upper limit, one, is reached by a source
with two letters of probabilities zero and one, or more
strictly, is approached as e+O by a source with probabili-
ties 1 - e and e. Our purpose here is to show that when the
most probable letter in a source has a probability much
less than one, then the upper limit on r can be greatly
improved upon.

Suppose we have a Huffman code, and using the sibling
property, we number all of the nodes (except the root
node) in order of decreasing probability and increasing
level so that for each k, 1 < k < K- 1, nodes 2k and 2k - 1
are siblings. Let qk be the probability of the kth node on
the list, 1 <k < 2K- 2. The expected length of the code
can be written as

2K-2

E(n)= x qk*
k=l

(4

In order to see this, perform the conceptual experiment of
writing each & in (4) as the sum of the leaf probabilities
of leaves whose path from the root passes through k. Then
a codeword i of length n, has its probability Pi written in
n, of these sums, showing the equivalence of (4) and (2).
We can also rewrite the entropy as

K-l
H(P,; . . &)= x &k-l + q2kjX

k=l

where X is the binary entropy function

X(x) = - x log,x - (1 - x) log,(1 - x). (6)

Each term in (5) is the probability that a given parent in
the code tree will occur times the entropy of the choice of
its child. Formally (5) can be established by induction on
reduced trees. Combining (5) and (4), we have

K-l

r= x h2k- 1+ %k) 1 -x
k=l [(41*-%2/r ,i’ (7)

670 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-24, NO. 6, NOVEMRER 1978

Proof First assume that a code tree has the sibling
property. Then the last two elements on the ordered list
are siblings and, in addition, must be leaves, for if one
were an intermediate node, at least one of the children of
that intermediate node would have a smaller probability
than the intermediate node,’ which is impossible because
of the ordering property. Thus these nodes correspond to
two smallest probability source letters and can be made
siblings in the first execution of step 2) in the Huffman
algorithm. Now remove these siblings from the code tree,
removing also the last two elements from the ordered list.
The resulting reduced code tree still has the sibling prop-
erty, and the leaves of the reduced code tree correspond
to the list L in the Huffman algorithm after the first
execution of step 3). Thus the above argument can be
repeated: at each step the Huffman algorithm chooses, as
siblings, elements which are siblings in the original code
tree. By matching the link labels in the Huffman code to
those in the original code tree, the two codes are seen to
be identical. Next assume that a binary code tree is
generated by the Huffman algorithm, and assume that
each time the algorithm executes step 2), we add the two
nodes defined as siblings to the top of an initially empty
list, putting the less probable below the more probable.
The list so generated clearly has each node adjacent to its
sibling, so to establish the sibling property, we simply
have to show that the list is nonincreasing in order of
probability. This is trivial, however, since at each iteration
the two elements added to the list have probabilities less
than or equal to that of each element in the new L of the
Huffman algorithm, and the next two elements added to
the list are chosen from this new L. Q.E.D.

Next define the level of a node as the number of links
on the path from the root to the node. It is clear from the
optimality of Huffman codes that for each 1) 1 the prob-
ability of each node at level I is less than or equal to the
probability of each node at level I- 1. For the purist, this
property can be directly derived from the sibling property
using induction on 1. Define an ordered Huffman code as
a Huffman code in which when two nodes are defined as
siblings, the label zero is assigned to the link going to the
more probable of the siblings. Also define a lexicogruphi-
calJy ordered code tree as a tree in which, for each I > 1,
the probability of each node at level I is less than or equal
to the probability of each node at level I- 1 and in which
the probabilities of nodes at level 1 are monotonically
nonincreasing in the binary number corresponding to
their path names from the root.

Corollary: A binary prefix condition code is an ordered
Huffman code iff the code tree is lexicographically
ordered.

Proof Lexicographic ordering implies the sibling
property, which implies that the code is a Huffman code.
Lexicographic ordering also implies that the link from a

‘This is where we use the assumption that at most one source letter
have zero probability. The theorem is true without this restriction, but
the proof is harder and the restriction is of no importance.

parent to the more probable of the siblings is labelled
zero, implying an ordered Huffman code. Now assume an
ordered Huffman code, and use induction on the level 1.
The nodes at level 1 are lexicographically ordered by
construction. Assume for any I> 1 that the nodes at level
I- 1 are lexicographically ordered. By the sibling prop-
erty, if the probability of one parent is greater than or
equal to that of another, the children are correspondingly
ordered. This shows that nonsibling nodes at level 1 have
the correct ordering. Siblings, however, are correctly
ordered by the construction. Q.E.D.

III. THE REDUNDANCY OF HUFFMAN CODES

The redundancy r of a source code is defined to be the
expected length of the codewords minus the binary en-
tropy H(P,, * * . , PK) of the source probabilities

r= 5 P,n,-H(P,;* * &A (3)
k=l

where H(P, , . . . , PK) = - EkPk logP,. It is well-known [2]
that for optimal codes the redundancy always lies between
zero and one. The upper limit, one, is reached by a source
with two letters of probabilities zero and one, or more
strictly, is approached as e+O by a source with probabili-
ties 1 - e and e. Our purpose here is to show that when the
most probable letter in a source has a probability much
less than one, then the upper limit on r can be greatly
improved upon.

Suppose we have a Huffman code, and using the sibling
property, we number all of the nodes (except the root
node) in order of decreasing probability and increasing
level so that for each k, 1 < k < K- 1, nodes 2k and 2k - 1
are siblings. Let qk be the probability of the kth node on
the list, 1 <k < 2K- 2. The expected length of the code
can be written as

2K-2

E(n)= x qk*
k=l

(4

In order to see this, perform the conceptual experiment of
writing each & in (4) as the sum of the leaf probabilities
of leaves whose path from the root passes through k. Then
a codeword i of length n, has its probability Pi written in
n, of these sums, showing the equivalence of (4) and (2).
We can also rewrite the entropy as

K-l
H(P,; . . &)= x &k-l + q2kjX

k=l

where X is the binary entropy function

X(x) = - x log,x - (1 - x) log,(1 - x). (6)

Each term in (5) is the probability that a given parent in
the code tree will occur times the entropy of the choice of
its child. Formally (5) can be established by induction on
reduced trees. Combining (5) and (4), we have

K-l

r= x h2k- 1+ %k) 1 -x
k=l [(41*-%2/r ,i’ (7)

2⇒1 (19行)

1⇒2 (13行)

670 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-24, NO. 6, NOVEMRER 1978

Proof First assume that a code tree has the sibling
property. Then the last two elements on the ordered list
are siblings and, in addition, must be leaves, for if one
were an intermediate node, at least one of the children of
that intermediate node would have a smaller probability
than the intermediate node,’ which is impossible because
of the ordering property. Thus these nodes correspond to
two smallest probability source letters and can be made
siblings in the first execution of step 2) in the Huffman
algorithm. Now remove these siblings from the code tree,
removing also the last two elements from the ordered list.
The resulting reduced code tree still has the sibling prop-
erty, and the leaves of the reduced code tree correspond
to the list L in the Huffman algorithm after the first
execution of step 3). Thus the above argument can be
repeated: at each step the Huffman algorithm chooses, as
siblings, elements which are siblings in the original code
tree. By matching the link labels in the Huffman code to
those in the original code tree, the two codes are seen to
be identical. Next assume that a binary code tree is
generated by the Huffman algorithm, and assume that
each time the algorithm executes step 2), we add the two
nodes defined as siblings to the top of an initially empty
list, putting the less probable below the more probable.
The list so generated clearly has each node adjacent to its
sibling, so to establish the sibling property, we simply
have to show that the list is nonincreasing in order of
probability. This is trivial, however, since at each iteration
the two elements added to the list have probabilities less
than or equal to that of each element in the new L of the
Huffman algorithm, and the next two elements added to
the list are chosen from this new L. Q.E.D.

Next define the level of a node as the number of links
on the path from the root to the node. It is clear from the
optimality of Huffman codes that for each 1) 1 the prob-
ability of each node at level I is less than or equal to the
probability of each node at level I- 1. For the purist, this
property can be directly derived from the sibling property
using induction on 1. Define an ordered Huffman code as
a Huffman code in which when two nodes are defined as
siblings, the label zero is assigned to the link going to the
more probable of the siblings. Also define a lexicogruphi-
calJy ordered code tree as a tree in which, for each I > 1,
the probability of each node at level I is less than or equal
to the probability of each node at level I- 1 and in which
the probabilities of nodes at level 1 are monotonically
nonincreasing in the binary number corresponding to
their path names from the root.

Corollary: A binary prefix condition code is an ordered
Huffman code iff the code tree is lexicographically
ordered.

Proof Lexicographic ordering implies the sibling
property, which implies that the code is a Huffman code.
Lexicographic ordering also implies that the link from a

‘This is where we use the assumption that at most one source letter
have zero probability. The theorem is true without this restriction, but
the proof is harder and the restriction is of no importance.

parent to the more probable of the siblings is labelled
zero, implying an ordered Huffman code. Now assume an
ordered Huffman code, and use induction on the level 1.
The nodes at level 1 are lexicographically ordered by
construction. Assume for any I> 1 that the nodes at level
I- 1 are lexicographically ordered. By the sibling prop-
erty, if the probability of one parent is greater than or
equal to that of another, the children are correspondingly
ordered. This shows that nonsibling nodes at level 1 have
the correct ordering. Siblings, however, are correctly
ordered by the construction. Q.E.D.

III. THE REDUNDANCY OF HUFFMAN CODES

The redundancy r of a source code is defined to be the
expected length of the codewords minus the binary en-
tropy H(P,, * * . , PK) of the source probabilities

r= 5 P,n,-H(P,;* * &A (3)
k=l

where H(P, , . . . , PK) = - EkPk logP,. It is well-known [2]
that for optimal codes the redundancy always lies between
zero and one. The upper limit, one, is reached by a source
with two letters of probabilities zero and one, or more
strictly, is approached as e+O by a source with probabili-
ties 1 - e and e. Our purpose here is to show that when the
most probable letter in a source has a probability much
less than one, then the upper limit on r can be greatly
improved upon.

Suppose we have a Huffman code, and using the sibling
property, we number all of the nodes (except the root
node) in order of decreasing probability and increasing
level so that for each k, 1 < k < K- 1, nodes 2k and 2k - 1
are siblings. Let qk be the probability of the kth node on
the list, 1 <k < 2K- 2. The expected length of the code
can be written as

2K-2

E(n)= x qk*
k=l

(4

In order to see this, perform the conceptual experiment of
writing each & in (4) as the sum of the leaf probabilities
of leaves whose path from the root passes through k. Then
a codeword i of length n, has its probability Pi written in
n, of these sums, showing the equivalence of (4) and (2).
We can also rewrite the entropy as

K-l
H(P,; . . &)= x &k-l + q2kjX

k=l

where X is the binary entropy function

X(x) = - x log,x - (1 - x) log,(1 - x). (6)

Each term in (5) is the probability that a given parent in
the code tree will occur times the entropy of the choice of
its child. Formally (5) can be established by induction on
reduced trees. Combining (5) and (4), we have

K-l

r= x h2k- 1+ %k) 1 -x
k=l [(41*-%2/r ,i’ (7)

容易に見える点
• informal proofが短い

• 使っているデータ構造は標準的

• 二分木や(ソートされた)リスト

• 出現確率は頻度にすれば正整数

• 「符号の木である」の記述は簡単

困難が予想される点
• 符号の木が「ハフマン木である」こと
をどう記述するか

• 構成アルゴリズム: 葉の集合が与えら
れたとき、ボトムアップにハフマン
木(のひとつ)を作る方法

• 欲しいもの: 符号の木が与えられたと
き、それがハフマン木であることを
表す述語

先行研究: Formalising Huffman's

algorithm [Théry 2004] (on Coq)

• ハフマン符号が optimal であることの形
式的証明

• Sibling Propertyとの関連は述べていない

• パスを陽に出さない形式化

• Coverという概念

主要な概念: Cover

cover c t :
c は二分木 t のカバー
c の要素は t の“葉”

t

カバー
c

カバー : 葉全体の一般化

c ≈ cʹ′ ∧ cover c t ⇒ cover cʹ′ t
カバーは並べ替えを許す:

cover (leaves t) t
葉全体はカバー:

Cover

• 重なりのない部分木からなるリスト
で、本来の葉が部分木のどれかに含ま
れるもの

• ハフマン木構成の
各段階で現れるも
のは、最終的なハ
フマン木のカバー
として表現できる

A
0.1

C
0.1

0.2 B
0.2

0.4

D
0.4

E
0.2

0.6

ハフマン木であること

build c t ⇒ cover c t

build c t :
t は c を“葉全体”とするハフマン木

t

c

H
uffm

an Tree

c = leaves t のとき、通常のハフマン木

Coverの帰納的定義

t t
cover c t

c ≈ [t1; t2]⧺c1 cover ([t1
⋀t2]⧺c1) t

t2

t

t1

cover [t] t

⇒

Buildの帰納的定義
occ t1 ≤ occ t2 ∀tʹ′∈c1. occ t2 ≤ occ tʹ′

t t
build c t

c ≈ [t1; t2]⧺c1 build ([t1
⋀t2]⧺c1) t

t2

t

t1

build [t] t

⇒

定理証明系Coqを用いたSibling Propertyとハフ
マン木との同値性の形式的証明[須田, 山本]

• PPL 2012 ポスターセッション

• Théryの形式化に続く形

• パスを陽に扱わない
• Cover, Buildをそれぞれ拡張した

Wrapper, Wbuildを定義

• 詳しくは須田氏から...

