
TPPmark2012
問題説明



ハフマン木の構成



ハフマン木の構成
A
0.1

B
0.2

C
0.1

D
0.4

E
0.2



ハフマン木の構成
B

0.2
D
0.4

E
0.2

A
0.1

C
0.1

0.2



ハフマン木の構成
D
0.4

E
0.2

A
0.1

C
0.1

0.2 B
0.2

0.4



ハフマン木の構成

A
0.1

C
0.1

0.2 B
0.2

0.4

D
0.4

E
0.2

0.6



ハフマン木の構成

A
0.1

C
0.1

0.2 B
0.2

0.4

D
0.4

E
0.2

0.6

1.0



ハフマン木の構成
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A ↦ 000	

 B ↦ 01
C ↦ 001	

 D ↦ 10	

E ↦ 11
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• Sibling Property ... 符号の木のノードを、
このように一列に並べることができる
という性質



ハフマン木とSibling Property

[Gallager 78]
• 符号の木について、以下の２つは同値

1. ハフマン木である
• アルゴリズムによる特徴付け
• 静的ハフマン符号向け

2. Sibling Propertyを持つ
• 構造的特徴付け
• 動的ハフマン符号向け

• TPPmark2012

• 1⇒2 と 2⇒1 をそれぞれ示せ



Informal Proof
[Gallager 78]
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Proof First assume that a code tree has the sibling 
property. Then the last two elements on the ordered list 
are siblings and, in addition, must be leaves, for if one 
were an intermediate node, at least one of the children of 
that intermediate node would have a smaller probability 
than the intermediate node,’ which is impossible because 
of the ordering property. Thus these nodes correspond to 
two smallest probability source letters and can be made 
siblings in the first execution of step 2) in the Huffman 
algorithm. Now remove these siblings from the code tree, 
removing also the last two elements from the ordered list. 
The resulting reduced code tree still has the sibling prop- 
erty, and the leaves of the reduced code tree correspond 
to the list L in the Huffman algorithm after the first 
execution of step 3). Thus the above argument can be 
repeated: at each step the Huffman algorithm chooses, as 
siblings, elements which are siblings in the original code 
tree. By matching the link labels in the Huffman code to 
those in the original code tree, the two codes are seen to 
be identical. Next assume that a binary code tree is 
generated by the Huffman algorithm, and assume that 
each time the algorithm executes step 2), we add the two 
nodes defined as siblings to the top of an initially empty 
list, putting the less probable below the more probable. 
The list so generated clearly has each node adjacent to its 
sibling, so to establish the sibling property, we simply 
have to show that the list is nonincreasing in order of 
probability. This is trivial, however, since at each iteration 
the two elements added to the list have probabilities less 
than or equal to that of each element in the new L of the 
Huffman algorithm, and the next two elements added to 
the list are chosen from this new L. Q.E.D. 

Next define the level of a node as the number of links 
on the path from the root to the node. It is clear from the 
optimality of Huffman codes that for each 1) 1 the prob- 
ability of each node at level I is less than or equal to the 
probability of each node at level I- 1. For the purist, this 
property can be directly derived from the sibling property 
using induction on 1. Define an ordered Huffman code as 
a Huffman code in which when two nodes are defined as 
siblings, the label zero is assigned to the link going to the 
more probable of the siblings. Also define a lexicogruphi- 
calJy ordered code tree as a tree in which, for each I > 1, 
the probability of each node at level I is less than or equal 
to the probability of each node at level I- 1 and in which 
the probabilities of nodes at level 1 are monotonically 
nonincreasing in the binary number corresponding to 
their path names from the root. 

Corollary: A binary prefix condition code is an ordered 
Huffman code iff the code tree is lexicographically 
ordered. 

Proof Lexicographic ordering implies the sibling 
property, which implies that the code is a Huffman code. 
Lexicographic ordering also implies that the link from a 

‘This is where we use the assumption that at most one source letter 
have zero probability. The theorem is true without this restriction, but 
the proof is harder and the restriction is of no importance. 

parent to the more probable of the siblings is labelled 
zero, implying an ordered Huffman code. Now assume an 
ordered Huffman code, and use induction on the level 1. 
The nodes at level 1 are lexicographically ordered by 
construction. Assume for any I> 1 that the nodes at level 
I- 1 are lexicographically ordered. By the sibling prop- 
erty, if the probability of one parent is greater than or 
equal to that of another, the children are correspondingly 
ordered. This shows that nonsibling nodes at level 1 have 
the correct ordering. Siblings, however, are correctly 
ordered by the construction. Q.E.D. 

III. THE REDUNDANCY OF HUFFMAN CODES 

The redundancy r of a source code is defined to be the 
expected length of the codewords minus the binary en- 
tropy H(P,, * * . , PK) of the source probabilities 

r= 5 P,n,-H(P,;* * &A (3) 
k=l 

where H( P, , . . . , PK) = - EkPk logP,. It is well-known [2] 
that for optimal codes the redundancy always lies between 
zero and one. The upper limit, one, is reached by a source 
with two letters of probabilities zero and one, or more 
strictly, is approached as e+O by a source with probabili- 
ties 1 - e and e. Our purpose here is to show that when the 
most probable letter in a source has a probability much 
less than one, then the upper limit on r can be greatly 
improved upon. 

Suppose we have a Huffman code, and using the sibling 
property, we number all of the nodes (except the root 
node) in order of decreasing probability and increasing 
level so that for each k, 1 < k < K- 1, nodes 2k and 2k - 1 
are siblings. Let qk be the probability of the kth node on 
the list, 1 <k < 2K- 2. The expected length of the code 
can be written as 

2K-2 

E(n)= x qk* 
k=l 

(4 

In order to see this, perform the conceptual experiment of 
writing each & in (4) as the sum of the leaf probabilities 
of leaves whose path from the root passes through k. Then 
a codeword i of length n, has its probability Pi written in 
n, of these sums, showing the equivalence of (4) and (2). 
We can also rewrite the entropy as 

K-l 
H(P,; . . &)= x &k-l + q2kjX 

k=l 

where X is the binary entropy function 

X(x) = - x log,x - (1 - x) log,( 1 - x). (6) 

Each term in (5) is the probability that a given parent in 
the code tree will occur times the entropy of the choice of 
its child. Formally (5) can be established by induction on 
reduced trees. Combining (5) and (4), we have 

K-l 

r= x h2k- 1+ %k) 1 -x 
k=l [ ( 41*-%2/r ,i’ (7) 
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Proof First assume that a code tree has the sibling 
property. Then the last two elements on the ordered list 
are siblings and, in addition, must be leaves, for if one 
were an intermediate node, at least one of the children of 
that intermediate node would have a smaller probability 
than the intermediate node,’ which is impossible because 
of the ordering property. Thus these nodes correspond to 
two smallest probability source letters and can be made 
siblings in the first execution of step 2) in the Huffman 
algorithm. Now remove these siblings from the code tree, 
removing also the last two elements from the ordered list. 
The resulting reduced code tree still has the sibling prop- 
erty, and the leaves of the reduced code tree correspond 
to the list L in the Huffman algorithm after the first 
execution of step 3). Thus the above argument can be 
repeated: at each step the Huffman algorithm chooses, as 
siblings, elements which are siblings in the original code 
tree. By matching the link labels in the Huffman code to 
those in the original code tree, the two codes are seen to 
be identical. Next assume that a binary code tree is 
generated by the Huffman algorithm, and assume that 
each time the algorithm executes step 2), we add the two 
nodes defined as siblings to the top of an initially empty 
list, putting the less probable below the more probable. 
The list so generated clearly has each node adjacent to its 
sibling, so to establish the sibling property, we simply 
have to show that the list is nonincreasing in order of 
probability. This is trivial, however, since at each iteration 
the two elements added to the list have probabilities less 
than or equal to that of each element in the new L of the 
Huffman algorithm, and the next two elements added to 
the list are chosen from this new L. Q.E.D. 

Next define the level of a node as the number of links 
on the path from the root to the node. It is clear from the 
optimality of Huffman codes that for each 1) 1 the prob- 
ability of each node at level I is less than or equal to the 
probability of each node at level I- 1. For the purist, this 
property can be directly derived from the sibling property 
using induction on 1. Define an ordered Huffman code as 
a Huffman code in which when two nodes are defined as 
siblings, the label zero is assigned to the link going to the 
more probable of the siblings. Also define a lexicogruphi- 
calJy ordered code tree as a tree in which, for each I > 1, 
the probability of each node at level I is less than or equal 
to the probability of each node at level I- 1 and in which 
the probabilities of nodes at level 1 are monotonically 
nonincreasing in the binary number corresponding to 
their path names from the root. 

Corollary: A binary prefix condition code is an ordered 
Huffman code iff the code tree is lexicographically 
ordered. 

Proof Lexicographic ordering implies the sibling 
property, which implies that the code is a Huffman code. 
Lexicographic ordering also implies that the link from a 

‘This is where we use the assumption that at most one source letter 
have zero probability. The theorem is true without this restriction, but 
the proof is harder and the restriction is of no importance. 

parent to the more probable of the siblings is labelled 
zero, implying an ordered Huffman code. Now assume an 
ordered Huffman code, and use induction on the level 1. 
The nodes at level 1 are lexicographically ordered by 
construction. Assume for any I> 1 that the nodes at level 
I- 1 are lexicographically ordered. By the sibling prop- 
erty, if the probability of one parent is greater than or 
equal to that of another, the children are correspondingly 
ordered. This shows that nonsibling nodes at level 1 have 
the correct ordering. Siblings, however, are correctly 
ordered by the construction. Q.E.D. 

III. THE REDUNDANCY OF HUFFMAN CODES 

The redundancy r of a source code is defined to be the 
expected length of the codewords minus the binary en- 
tropy H(P,, * * . , PK) of the source probabilities 

r= 5 P,n,-H(P,;* * &A (3) 
k=l 

where H( P, , . . . , PK) = - EkPk logP,. It is well-known [2] 
that for optimal codes the redundancy always lies between 
zero and one. The upper limit, one, is reached by a source 
with two letters of probabilities zero and one, or more 
strictly, is approached as e+O by a source with probabili- 
ties 1 - e and e. Our purpose here is to show that when the 
most probable letter in a source has a probability much 
less than one, then the upper limit on r can be greatly 
improved upon. 

Suppose we have a Huffman code, and using the sibling 
property, we number all of the nodes (except the root 
node) in order of decreasing probability and increasing 
level so that for each k, 1 < k < K- 1, nodes 2k and 2k - 1 
are siblings. Let qk be the probability of the kth node on 
the list, 1 <k < 2K- 2. The expected length of the code 
can be written as 

2K-2 

E(n)= x qk* 
k=l 

(4 

In order to see this, perform the conceptual experiment of 
writing each & in (4) as the sum of the leaf probabilities 
of leaves whose path from the root passes through k. Then 
a codeword i of length n, has its probability Pi written in 
n, of these sums, showing the equivalence of (4) and (2). 
We can also rewrite the entropy as 

K-l 
H(P,; . . &)= x &k-l + q2kjX 

k=l 

where X is the binary entropy function 

X(x) = - x log,x - (1 - x) log,( 1 - x). (6) 

Each term in (5) is the probability that a given parent in 
the code tree will occur times the entropy of the choice of 
its child. Formally (5) can be established by induction on 
reduced trees. Combining (5) and (4), we have 

K-l 

r= x h2k- 1+ %k) 1 -x 
k=l [ ( 41*-%2/r ,i’ (7) 

2⇒1 (19行)

1⇒2 (13行)
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Proof First assume that a code tree has the sibling 
property. Then the last two elements on the ordered list 
are siblings and, in addition, must be leaves, for if one 
were an intermediate node, at least one of the children of 
that intermediate node would have a smaller probability 
than the intermediate node,’ which is impossible because 
of the ordering property. Thus these nodes correspond to 
two smallest probability source letters and can be made 
siblings in the first execution of step 2) in the Huffman 
algorithm. Now remove these siblings from the code tree, 
removing also the last two elements from the ordered list. 
The resulting reduced code tree still has the sibling prop- 
erty, and the leaves of the reduced code tree correspond 
to the list L in the Huffman algorithm after the first 
execution of step 3). Thus the above argument can be 
repeated: at each step the Huffman algorithm chooses, as 
siblings, elements which are siblings in the original code 
tree. By matching the link labels in the Huffman code to 
those in the original code tree, the two codes are seen to 
be identical. Next assume that a binary code tree is 
generated by the Huffman algorithm, and assume that 
each time the algorithm executes step 2), we add the two 
nodes defined as siblings to the top of an initially empty 
list, putting the less probable below the more probable. 
The list so generated clearly has each node adjacent to its 
sibling, so to establish the sibling property, we simply 
have to show that the list is nonincreasing in order of 
probability. This is trivial, however, since at each iteration 
the two elements added to the list have probabilities less 
than or equal to that of each element in the new L of the 
Huffman algorithm, and the next two elements added to 
the list are chosen from this new L. Q.E.D. 

Next define the level of a node as the number of links 
on the path from the root to the node. It is clear from the 
optimality of Huffman codes that for each 1) 1 the prob- 
ability of each node at level I is less than or equal to the 
probability of each node at level I- 1. For the purist, this 
property can be directly derived from the sibling property 
using induction on 1. Define an ordered Huffman code as 
a Huffman code in which when two nodes are defined as 
siblings, the label zero is assigned to the link going to the 
more probable of the siblings. Also define a lexicogruphi- 
calJy ordered code tree as a tree in which, for each I > 1, 
the probability of each node at level I is less than or equal 
to the probability of each node at level I- 1 and in which 
the probabilities of nodes at level 1 are monotonically 
nonincreasing in the binary number corresponding to 
their path names from the root. 

Corollary: A binary prefix condition code is an ordered 
Huffman code iff the code tree is lexicographically 
ordered. 

Proof Lexicographic ordering implies the sibling 
property, which implies that the code is a Huffman code. 
Lexicographic ordering also implies that the link from a 

‘This is where we use the assumption that at most one source letter 
have zero probability. The theorem is true without this restriction, but 
the proof is harder and the restriction is of no importance. 

parent to the more probable of the siblings is labelled 
zero, implying an ordered Huffman code. Now assume an 
ordered Huffman code, and use induction on the level 1. 
The nodes at level 1 are lexicographically ordered by 
construction. Assume for any I> 1 that the nodes at level 
I- 1 are lexicographically ordered. By the sibling prop- 
erty, if the probability of one parent is greater than or 
equal to that of another, the children are correspondingly 
ordered. This shows that nonsibling nodes at level 1 have 
the correct ordering. Siblings, however, are correctly 
ordered by the construction. Q.E.D. 

III. THE REDUNDANCY OF HUFFMAN CODES 

The redundancy r of a source code is defined to be the 
expected length of the codewords minus the binary en- 
tropy H(P,, * * . , PK) of the source probabilities 

r= 5 P,n,-H(P,;* * &A (3) 
k=l 

where H( P, , . . . , PK) = - EkPk logP,. It is well-known [2] 
that for optimal codes the redundancy always lies between 
zero and one. The upper limit, one, is reached by a source 
with two letters of probabilities zero and one, or more 
strictly, is approached as e+O by a source with probabili- 
ties 1 - e and e. Our purpose here is to show that when the 
most probable letter in a source has a probability much 
less than one, then the upper limit on r can be greatly 
improved upon. 

Suppose we have a Huffman code, and using the sibling 
property, we number all of the nodes (except the root 
node) in order of decreasing probability and increasing 
level so that for each k, 1 < k < K- 1, nodes 2k and 2k - 1 
are siblings. Let qk be the probability of the kth node on 
the list, 1 <k < 2K- 2. The expected length of the code 
can be written as 

2K-2 

E(n)= x qk* 
k=l 

(4 

In order to see this, perform the conceptual experiment of 
writing each & in (4) as the sum of the leaf probabilities 
of leaves whose path from the root passes through k. Then 
a codeword i of length n, has its probability Pi written in 
n, of these sums, showing the equivalence of (4) and (2). 
We can also rewrite the entropy as 

K-l 
H(P,; . . &)= x &k-l + q2kjX 

k=l 

where X is the binary entropy function 

X(x) = - x log,x - (1 - x) log,( 1 - x). (6) 

Each term in (5) is the probability that a given parent in 
the code tree will occur times the entropy of the choice of 
its child. Formally (5) can be established by induction on 
reduced trees. Combining (5) and (4), we have 

K-l 

r= x h2k- 1+ %k) 1 -x 
k=l [ ( 41*-%2/r ,i’ (7) 



容易に見える点
• informal proofが短い

• 使っているデータ構造は標準的

• 二分木や(ソートされた)リスト

• 出現確率は頻度にすれば正整数

• 「符号の木である」の記述は簡単



困難が予想される点
• 符号の木が「ハフマン木である」こと
をどう記述するか

• 構成アルゴリズム: 葉の集合が与えら
れたとき、ボトムアップにハフマン
木(のひとつ)を作る方法

• 欲しいもの: 符号の木が与えられたと
き、それがハフマン木であることを
表す述語



先行研究: Formalising Huffman's 

algorithm [Théry 2004] (on Coq)

• ハフマン符号が optimal であることの形
式的証明

• Sibling Propertyとの関連は述べていない

• パスを陽に出さない形式化

• Coverという概念



主要な概念: Cover

cover c t :
c は二分木 t のカバー
c の要素は t の“葉”

t

カバー
c

カバー : 葉全体の一般化

c ≈ cʹ′ ∧ cover c t ⇒ cover cʹ′ t
カバーは並べ替えを許す:

cover (leaves t) t
葉全体はカバー:



Cover

• 重なりのない部分木からなるリスト
で、本来の葉が部分木のどれかに含ま
れるもの

• ハフマン木構成の
各段階で現れるも
のは、最終的なハ
フマン木のカバー
として表現できる
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ハフマン木であること

build c t ⇒ cover c t

build c t :
t は c を“葉全体”とするハフマン木

t

c

H
uffm

an Tree

c = leaves t のとき、通常のハフマン木



Coverの帰納的定義

t t
cover c t

c ≈ [t1; t2]⧺c1 cover ([t1
⋀t2]⧺c1) t

t2

t

t1

cover [t] t

⇒



Buildの帰納的定義
occ t1 ≤ occ t2 ∀tʹ′∈c1. occ t2 ≤ occ tʹ′

t t
build c t

c ≈ [t1; t2]⧺c1 build ([t1
⋀t2]⧺c1) t

t2

t

t1

build [t] t

⇒



定理証明系Coqを用いたSibling Propertyとハフ
マン木との同値性の形式的証明[須田, 山本]

• PPL 2012 ポスターセッション

• Théryの形式化に続く形

• パスを陽に扱わない
• Cover, Buildをそれぞれ拡張した

Wrapper, Wbuildを定義

• 詳しくは須田氏から...


