Some operator monotone functions related to
Petz-Hasegawa’s functions

Masato Kawasaki and Masaru Nagisa

Abstract
Let \(f \) be an operator monotone function on \([0, \infty)\) with \(f(t) \geq 0 \) and \(f(1) = 1 \). If \(f(t) \) is neither the constant function 1 nor the identity function \(t \), then
\[
h(t) = \frac{(t - a)(t - b)}{(f(t) - f(a))(f^2(t) - f^2(b))} \quad t \geq 0
\]
is also operator monotone on \([0, \infty)\), where \(a, b \geq 0 \) and \(f^\#(t) = t f(t) \geq 0 \).

1 Introduction

We call a real continuous function \(f(t) \) on an interval \(I \) operator monotone on \(I \) (in short, \(f \in \mathcal{P}(I) \)), if \(A \preceq B \) implies \(f(A) \preceq f(B) \) for any self-adjoint matrices \(A, B \) with their spectrum contained in \(I \). In this paper, we consider only the case \(I = [0, \infty) \) or \(I = (0, \infty) \). We denote \(f \in \mathcal{P}^+(I) \) if \(f \in \mathcal{P}(I) \) satisfies \(f(t) \geq 0 \) for any \(t \in I \).

Let \(\mathbb{H}_+ \) be the upper half-plane of \(\mathbb{C} \), that is,
\[
\mathbb{H}_+ = \{ z \in \mathbb{C} \mid \text{Im} z > 0 \} = \{ z \in \mathbb{C} \mid |z| > 0, \ 0 < \arg z < \pi \},
\]
where \(\text{Im} z \) (resp. \(\arg z \)) means the imaginary part (resp. the argument) of \(z \). As Loewner’s theorem, it is known that \(f \) is operator monotone on \(I \) if and only if \(f \) has an analytic continuation to that maps \(\mathbb{H}_+ \) into itself and also has an analytic continuation to the lower half-plane \(\mathbb{H}_-(= -\mathbb{H}_+) \), obtained by the reflection across \(I \) (see [1],[2]).

D. Petz [5] proved that an operator monotone function \(f : [0, \infty) \rightarrow [0, \infty) \) satisfying the functional equation
\[
f(t) = tf(t^{-1}) \quad t \geq 0
\]
is related to a Morozova-Chentsov function which gives a monotone metric on the manifold of \(n \times n \) density matrices. In the work [6], the concrete functions (Petz-Hasegawa’s functions)
\[
f_a(t) = a(1-a)\frac{(t-1)^2}{(t^a-1)(t^{1-a}-1)} \quad (-1 < a < 2)
\]
appeared and their operator monotonicity was proved. V.E.S. Szabo introduced an interesting idea for checking their operator monotonicity in [7]. We use a
similar idea as Szabo’s in our argument. M. Uchiyama [8] proved the operator monotonicity of the following extended functions:

\[
\frac{(t - a)(t - b)}{(t^p - a^p)(t^{1-p} - b^{1-p})}
\]

for \(0 < p < 1\) and \(a, b > 0\). It is well known that the function \(t^p (0 \leq p \leq 1)\) is operator monotone as Loewner-Heinz’s inequality. The main result of this paper is as follows:

Theorem 1. Let \(a\) and \(b\) be non-negative real. If \(f \in \mathbb{P}_+[0, \infty)\) and both \(f\) and \(f^\sharp\) are not constant, then

\[
h(t) = \frac{(t - a)(t - b)}{(f(t) - f(a))(f^\sharp(t) - f^\sharp(b))}
\]

is operator monotone on \([0, \infty)\), where

\[
f^\sharp(t) = \frac{t}{f(t)} \quad t \geq 0.
\]

2 Proof of Main result

The following statement was proved by M. Uchiyama [8]. Here we prove it based on the fact that any operator monotone function is a Pick function, but this is essentially same as his proof.

Proposition 2. Let \(f \in \mathbb{P}(0, \infty)\) be not constant and \(a\) be positive real. Then we have that

\[
g(t) = \frac{t - a}{f(t) - f(a)}
\]

is operator monotone on \([0, \infty)\).

Proof. Since \(f(\mathbb{H}_+) \subset \mathbb{H}_+\), \(\text{Im}(f(z) - f(a)) = \text{Im}(f(z)) > 0\) for all \(z \in \mathbb{H}_+\). Therefore \(g(z) = \frac{z - a}{f(z) - f(a)}\) is holomorphic on \(\mathbb{H}_+\).

Since \(f\) is not constant, \(f'(a) \neq 0\). We also have

\[
\lim_{t \to 0^+} g(t) = \begin{cases} \frac{a}{f(a) - f(0)} & (> 0) \quad \text{if } f(0) \text{ exists} \\ 0 & \text{otherwise} \end{cases}.
\]

This means \(g(z)\) is continuous on \(\mathbb{H}_+ \cup [0, \infty)\) and we have \(g([0, \infty)) \subset [0, \infty)\).

By Loewner’s theorem, we have the following integral representation of \(f\): for \(z \in \mathbb{H}_+ \cup (0, \infty)\)

\[
f(z) = \alpha + \beta z + \int_0^\alpha \left(-\frac{1}{x + z} + \frac{x}{x^2 + 1}\right) d\nu(x) \quad (\alpha \in \mathbb{R}, \beta \geq 0),
\]

where \(\nu\) is a positive measure on \((0, \infty)\) such that

\[
\int_0^\infty \frac{1}{x^2 + 1} d\nu(x) < \infty.
\]
Using this relation, we have

\[
g(z) = \frac{1}{\beta + \int_0^\infty \frac{1}{(x + z)(x + a)} d\nu(x)}.
\]

If we show that \(\text{Im}(g(z)) \geq 0\) for any \(z \in \mathbb{H}_+\), then \(g \in P_{+}[0,\infty)\). We remark that \(z \in \mathbb{H}_+ \Rightarrow 0 < \arg z < \pi \Rightarrow 0 < \arg(x + z) < \pi \quad (x \in [0,\infty))\)

\[
\Rightarrow \pi < \arg \frac{1}{(x + z)(x + a)} < 2\pi \quad (x \in [0,\infty))
\]

\[
\Rightarrow \text{Im} \frac{1}{(x + z)(x + a)} < 0 \quad (x \in [0,\infty)).
\]

So we have

\[
\text{Im}(\beta + \int_0^\infty \frac{1}{(x + z)(x + a)} d\nu(x)) = \int_0^\infty \text{Im} \frac{1}{(x + z)(x + a)} d\nu(x) < 0.
\]

This shows that \(\text{Im}(g(z)) \geq 0\).

For \(f \in \mathbb{P}_{+}[0,\infty)\), we have the following integral representation:

\[
f(z) = f(0) + \beta z + \int_0^\infty \frac{\lambda}{z + \lambda} d\nu(\lambda) \quad (z \in \mathbb{H}_+ \cup [0,\infty)),
\]

where \(\beta \geq 0\) and

\[
\int_0^\infty \frac{\lambda}{1 + \lambda} d\nu(\lambda) < \infty.
\]

When \(f(0) \geq 0\) (i.e., \(f \in \mathbb{P}_{+}[0,\infty)\)), \(f(z)\) can be approximated by

\[
\sum_{i=1}^n f_i(z),
\]

where each \(f_i(z)\) satisfies that

\[
0 < \arg f_i(z) \leq \arg z \text{ whenever } 0 < \arg z < \pi.
\]

So we have \(0 < \arg f(z) \leq \arg z \text{ whenever } 0 < \arg z < \pi\).

By using elementary geometry, it easily holds that

\[
\arg(z - |z|) = \frac{\pi + \arg z}{2}
\]

for any \(z \in \mathbb{H}_+\). So we can get the following statement:

Lemma 3. For any \(z \in \mathbb{H}_+\) and \(l > 0\), we have

\[
\arg z < \arg(z - l) < \frac{\pi + \arg z}{2} \quad \text{if } |z| > l.
\]
Now we can prove the following theorem and remark that Theorem 1 easily follows from this:

Theorem 4. Let \(f, g \in \mathbb{P}_+[0, \infty) \) and both \(f \) and \(g \) be non-constant. If \(\frac{f(t)g(t)}{t} \) is operator monotone on \([0, \infty)\), then

\[
h(t) = \frac{(t-a)(t-b)}{(f(t)-f(a))(g(t)-g(b))}
\]

is also operator monotone on \([0, \infty)\) for any \(a, b \geq 0 \).

Proof. By the assumption we can consider the function

\[
h(z) = \frac{(z-a)(z-b)}{(f(z)-f(a))(g(z)-g(b))}, \quad z \in \mathbb{H}_+.
\]

It is clear that \(h(z) \) is holomorphic on \(\mathbb{H}_+ \). We may consider values, by taking the limit,

\[
h(a) = \frac{a-b}{f'(a)(g(a)-g(b))} \quad \text{and} \quad h(b) = \frac{b-a}{g'(b)(f(b)-f(a))}.
\]

So we have \(h([0, \infty)) \subset [0, \infty) \).

We assume that \(f(z) \) and \(g(z) \) are continuous on the closure \(\overline{\mathbb{H}_+} \) of \(\mathbb{H}_+ \) and

\[
f(t) - f(a) \neq 0 \quad \text{and} \quad g(t) - g(b) \neq 0 \quad \text{for any} \quad t \in (-\infty, 0).
\]

Then \(h(z) \) is continuous on \(\overline{\mathbb{H}_+} \).

Since \(\frac{z-a}{f(z)-f(a)} \) and \(\frac{z-b}{g(z)-g(b)} \) belong to \(\mathbb{P}_+[0, \infty) \) by Proposition 2, it is clear that \(\arg h(z) \geq 0 \) if \(0 \leq \arg z \leq \pi \).

In the case \(z \in (-\infty, 0) \), i.e., \(|z| > 0 \) and \(\arg z = \pi \), we have

\[
\arg h(z) = \arg(z-a) - \arg(f(z) - f(a)) + \arg(z-b) - \arg(g(z) - g(b))
\]

\[
\leq \pi - \arg f(z) + \pi - \arg g(z)
\]

\[
\leq 2\pi - \arg z = \pi \quad (\text{since } \arg f(z) + \arg g(z) - \arg z \geq 0).
\]

So \(0 \leq \arg h(z) \leq \pi \).

In the case \(z \in \mathbb{H}_+ \) satisfying \(|z| > \max\{a, b\} \), it holds that

\[
\arg z < \arg(z-a), \arg(z-b) < \frac{\pi + \arg z}{2}
\]

by above lemma. Since

\[
\arg h(z) = \arg(z-a) - \arg(f(z) - f(a)) + \arg(z-b) - \arg(g(z) - g(b))
\]

\[
\leq \frac{\pi + \arg z}{2} - \arg f(z) + \frac{\pi + \arg z}{2} - \arg g(z)
\]

\[
= \pi + \arg z - \arg f(z) - \arg g(z) \leq \pi,
\]

we have \(0 < \arg h(z) < \pi \).
For $r > 0$, we define $H(r) = \{ z \in \mathbb{C} \mid |z| \leq r, \text{Im} z \geq 0 \}$. Whenever $r > l = \max\{a, b\}$, we can get

$$0 \leq \arg h(z) \leq \pi$$
on the boundary of $H(r)$. Since $h(z)$ is holomorphic on $H(r)$, Im$h(z)$ is harmonic on $H(r)$. Because $\text{Im} h(z) \geq 0$ on the boundary of $H(r)$, we have $h(H(r)) \subset \mathbb{H}_+$ by the minimum principle of the harmonic function. This implies

$$h(\mathbb{H}_+) = h(\bigcup_{r > l} H(r)) \subset \bigcup_{r > l} h(H(r)) \subset \mathbb{H}_+,$$

and $h \in \mathbb{P}_+[0, \infty)$.

In general case, we set

$$\frac{f(t)g(t)}{t} = F(t)$$

and $\tilde{f} \in \mathbb{P}_+[0, \infty)$. We define the function f_p, \tilde{f}_p and g_p $(0 < p < 1)$ as follows:

$$f_p(z) = f(z^p), \quad \tilde{f}_p(z) = \tilde{f}(z^p), \quad \text{and} \quad g_p(z) = (\tilde{f}_p)^2(z) = \frac{z}{\tilde{f}_p(z)} = \frac{zF(z^p)}{f(z^p)} = z^{1-p}g(z^p)$$

for $z \in \mathbb{H}_+$. Then we have f_p, $g_p \in \mathbb{P}_+[0, \infty)$ and

$$h_p(z) = \frac{(z - a)(z - b)}{(f_p(z) - f_p(a))(g_p(z) - g_p(b))}$$

is holomorphic on \mathbb{H}_+ and continuous on \mathbb{H}_+. By the fact $\frac{f_p(t)g_p(t)}{t} = F(t^p)$ is operator monotone on $[0, \infty)$, $h_p(t)$ becomes operator monotone on $[0, \infty)$. Since

$$h_p(t) = \frac{(t - a)(t - b)}{(f_p(t) - f_p(a))(g_p(t) - g_p(b))} \quad \text{for} \quad t \geq 0,$$

we have

$$\lim_{p \to 1^-} h_p(t) = h(t).$$

So we can get the operator monotonicity of $h(t)$.

We can generalize this result for many operator monotone functions under some assumption([4]).

We remark that, for $f \in \mathbb{P}[0, \infty)$, f_0 belongs to $\mathbb{P}_+[0, \infty)$, where we put $f_0(t) = f(t) - f(0)$. Let $g \in \mathbb{P}_+[0, \infty)$ and $\frac{f_0(t)g(t)}{t}$ be operator monotone on
\[0, \infty). \] Under the assumption that \(f \) and \(g \) are not constant, we have
\[
\frac{(t-a)(t-b)}{(f_0(t) - f_0(a))(g(t) - g(b))} = \frac{(t-a)(t-b)}{(f(t) - f(a))(g(t) - g(b))} \in \mathbb{P}_+ [0, \infty)
\]
for any \(a, b \geq 0 \).

Corollary 5. Let \(f \in \mathbb{P}_+ (0, \infty) \) and both \(f \) and \(f^2 \) be not constant. For any \(a > 0 \), we define
\[
h_a(t) = \frac{(t-a)(t-a^{-1})}{(f(t) - f(a))(f^2(t) - f^2(a^{-1}))} \quad t \in (0, \infty).
\]
Then we have

1. \(h_a \) is operator monotone on \((0, \infty)\).
2. \(f(t) = t \cdot f(t^{-1}) \) implies \(h_a(t) = t \cdot h_a(t^{-1}) \).
3. \(a = 1 \) and \(f(t^{-1}) = f(t)^{-1} \) implies \(h_1(t) = t \cdot h_1(t^{-1}) \).

Proof. We can directly prove (1) from theorem 3. Because
\[
t \cdot h_a(t^{-1}) = \frac{t(t^{-1} - a)(t^{-1} - a^{-1})}{(f(t^{-1}) - f(a))(f^2(t^{-1}) - f^2(a^{-1}))} = \frac{(t-a)(t-a^{-1})}{t(f(t^{-1}) - f(a))(f^2(t^{-1}) - f^2(a^{-1}))},
\]
we can compute
\[
t(f(t^{-1}) - f(a))(f^2(t^{-1}) - f^2(a^{-1})) - (f(t) - f(a))(f^2(t) - f^2(a^{-1})) = (f(t^{-1}) - f(a))(1/f(t^{-1}) - t/a f(a^{-1})) - (f(t) - f(a))(t/f(t) - 1/a f(a^{-1})) = 0
\]
if it holds \(f(t) = t \cdot f(t^{-1}) \) or \(a = 1, f(t^{-1}) = f(t)^{-1} \). So we have (2) and (3).

Example 6. Using this corollary, we can repeatedly construct an operator monotone function \(h(t) \) on \([0, \infty)\) satisfying the relation
\[
h(t) = t \cdot h(t^{-1}) \quad t > 0.
\] (*)

If we choose \(p \) \((0 < p < 1)\) as \(f(t) \) in Corollary 5(3),
\[
h(t) = \frac{(t-1)^2}{(p-1)(t^{1-p} - 1)}.
\]
If we choose \(\frac{(t-1)^2}{(t^p-1)(t^{1-p}-1)}\) as \(f(t)\) in Corollary 5(2),

\[
h(t) = \frac{t - a}{(t - 1)^2} - \frac{(a - 1)^2}{(t^p - 1)(t^{1-p} - 1)}
\times \frac{t - a^{-1}}{t(t^p - 1)(t^{1-p} - 1)} - \frac{a(a - p - 1)(a^p - 1)}{(a - 1)^2}
\]

for \(a > 0\). If we choose \(t^p + t^{1-p}\) \((0 < p < 1)\) as \(f(t)\) in Corollary 5(2),

\[
h(t) = \frac{t - a}{t^p + t^{1-p} - a^p - a^{1-p}} \times \frac{1}{t^{p-1} + t^{-p} - a^p + a^{1-p}}
\]

\[
= \sqrt{t} (\cosh(\log t) - \cosh(\log a)) / \left(\cosh(\log \sqrt{t}) - \cosh(\log t + \log(t^p + t^{1-p}) - \log(a^p + a^{1-p}))\right).
\]

These functions, \(h \in \mathbb{P} \times [0, \infty)\), satisfy the relation (*)

References

Graduate School of Science, Chiba University, Chiba 263-8522, Japan

E-mail address: kawasaki_0604abc@yahoo.co.jp

E-mail address: nagisa@math.s.chiba-u.ac.jp