Some remarks on the Picard curves over a finite field

Yoh Takizawa

Abstract

Let C be a smooth projective curve of genus 3 defined over a finite field $k = \mathbb{F}_p$ with an affine model:

$$C : y^3 = x^4 + a_3x^3 + a_2x^2 + a_1x + a_0, \ a_i \in k.$$

It is called a Picard curve.

We show that for some concrete Picard curves the corresponding Jacobian variety is isomorphic to a product of supersingular elliptic curves.

And we get some curves of genus 3 such that the number of the rational points attain the Weil bound.

1991 Mathematics Subject Classification. Primary 11G20; Secondary 14G40, 14H45, 14G10, 14G15

1 Introduction

In this paper we study some special curves of genus 3 defined over finite field \mathbb{F}_p, where p is a rational prime with $p > 3$.

Let C be a smooth projective over \mathbb{F}_p. If the Jacobian variety of C is isogenous to a product of supersingular elliptic curves, C is called supersingular.

For hyperelliptic curves, there is a criterion for supersingularity in Yui[10]. In genus 2 case, Ibukiyama, Katsura and Oort[4] gave a detailed study on supersingular curves. Especially they listed up the supersingular curves of genus 2 for some finite fields.

In genus 3 case, Estrada-Sarlabous[1] gave a criterion for supersingularity of Picard curves using differential 1 forms and Cartier operators. In this paper, we use a basis of $H^1(C, \mathcal{O}_C)$ and the Frobenius endomorphisms. This method is simply a dual version of [1].

We obtain some special curves, such that the Jacobian is isomorphic to a product of supersingular elliptic curves. Moreover we show that some of these curves attain the Weil bound.

2 The geometry of Picard curves over finite field

Let $k = \mathbb{F}_p$ be a finite field with a rational prime $p > 3$, and \bar{k} be its algebraic closure. Let C be a smooth projective curve over k with an affine model:

$$y^3 = x^4 + a_3x^3 + a_2x^2 + a_1x + a_0, \ a_i \in k.$$
where $x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$ has no multiple root. It is called a Picard curve.

We choose a system of basis of $H^1(C, O_C)$ as
\[
\{y/x, y^2/x^2, y^3/x\}.
\]

Let \(\sigma : C \to C \) be the \(p \)-th power Frobenius morphism. Then \(\sigma \) induces a map
\[
\sigma' : H^1(C, O_C) \to H^1(C, O_C)
\]
on cohomology. This map is not linear, but it is \(p \)-linear, namely;
\[
\sigma(\lambda f) = \lambda^p \sigma(f), \quad \lambda \in k, f \in H^1(C, O_C).
\]

If \{\(z_1, z_2, z_3 \)\} is a system of basis of $H^1(C, O_C)$, the action of \(\sigma \) can be represented by a matrix $A = (a_{ij})$, whose entries are defined by
\[
\sigma(z_i) = \sum_{j=1}^{3} a_{ij} z_j, \quad a_{ij} \in k
\]

The matrix A is called the Hasse-Witt matrix of C with respect to the basis \{\(z_1, z_2, z_3 \)\}.

Let $J(C)$ be the Jacobian variety of C. We may assume that $J(C)$ and its canonical embedding $C \to J(C)$ are also defined over k. Let $P_{\sigma'}(t)$ be the characteristic polynomial of σ'.

The zeta function of C is equal to;
\[
Z(C, t) = \frac{F(t)}{(1-t)(1-pt)},
\]

where $F(t) = \sum_{i=0}^{6} b_i t^i$ is the polynomial in $\mathbb{Z}[t]$. And the coefficients b_i of $F(t)$ can be computed with the number of k'-rational points on C.

Let N_r be the number of k'-rational points on C. The coefficients of $F(t)$ are represented as follows;
\[
b_6 = 1, b_5 = N_1 - 1 - p, b_4 = (N_2 - 1 - p^2 + b_2^2)/2, \\
b_3 = (N_3 - 1 - p^3 + b_2^2 + 3b_4b_5)/3, \\
b_2 = pb_4, b_1 = p^2b_5, b_0 = p^3.
\]

We have the following well known equality;
\[
P_{\sigma'}(t) = t^6 F(1/t).
\]

3 The superspecial Picard curves

Let k^m be a finite field of characteristic $p > 0$ with $q = p^m (m \leq 1)$ elements and \bar{k} its algebraic closure. The following theorem is well known:

Theorem 1. Let X be a curve defined over k. Then the Jacobian $J(X)$ is isomorphic to a product of supersingular elliptic curves if and only if the Cartier operator $C : H^0(X, \Omega_X^1) \to H^0(X, \Omega_X^1)$ vanishes.

2
Let X be a curve over k. X is called supersingular, if the Jacobian $J(X)$ is isogenous to a product of supersingular elliptic curves. X is called superspecial, if the Jacobian $J(X)$ is isomorphic to a product of supersingular elliptic curves.

By the Serre duality this is equivalent to vanishing of the Frobenius σ':

$$H^1(X, \mathcal{O}_X^1) \rightarrow H^1(X, \mathcal{O}_X^1).$$

We compute some examples, we get these results by explicit computing.

Theorem 2. Let p be a rational prime with $p > 5$.

1. If $p \equiv 8 \pmod{9}$, then the Jacobian variety of a Picard curve defined over \mathbb{F}_p with an affine equation:

$$y^3 = x^4 - x$$

is superspecial.

2. If $p \equiv 11 \pmod{12}$, then the Jacobian variety of a Picard curve defined over \mathbb{F}_p with an affine equation:

$$y^3 = x^4 - 1$$

is superspecial.

Proof. 1. Assume $p = 9r + 8$, $r \in \mathbb{Z}$ and $y^3 = x^4 - x$.

$$(y/x)^p = (y^3)^{3r+2}y^2/x^p$$

$$= (x^4 - x)^{3r+2}y^2/x^p$$

$$= \sum \binom{3r+2}{k} (-1)^{3r+2-k} x^{3r+3k+2} (y^2/x)^{9r+8}$$

$$= \sum \binom{3r+2}{k} (-1)^{3r+2-k} x^{3(k-2r-2)} (y^2)$$

$$\equiv 0 \pmod{H^1(C, \mathcal{O}_C)}.$$

By the same argument,

$$(y^2/x)^p = (y^3)^{6r+5}y/x^p$$

$$= \sum \binom{6r+5}{k} (-1)^{6r+5-k} x^{3(k-2r-3)-2} (y^2)$$

$$\equiv 0 \pmod{H^1(C, \mathcal{O}_C)}.$$

$$(y^2/x)^p = (y^3)^{6r+5}y/x^p$$

$$= \sum \binom{6r+5}{k} (-1)^{6r+5-k} x^{3(k-r-1)} (y^2)$$

$$\equiv 0 \pmod{H^1(C, \mathcal{O}_C)}.$$
2. Assume \(p = 12r + 11, r \in \mathbb{Z} \) and \(y^3 = x^4 - 1 \).

\[
(y/x)^p = (y^3)^{4r+3}y^2/x^p \\
= (x^4 - 1)^{4r+3}y^2/x^p \\
= \sum \binom{4r+3}{k}(-1)^{4r+3-k}x^{4k}(y^2/x^{12r+11}) \\
= \sum \binom{4r+3}{k}(-1)^{4r+3-k}x^{4(k-3r-2)-3}(y^2) \\
\equiv 0 \pmod{H}^1(C, \mathcal{O}_C).
\]

By the same argument,

\[
(y^2/x)^p = (y^3)^{8r+7}y/x^{2p} \\
= \sum \binom{8r+7}{k}(-1)^{8r+7-k}x^{4(k-6r-5)-2}(y^2) \\
\equiv 0 \pmod{H}^1(C, \mathcal{O}_C).
\]

\[
(y^2/x)^p = (y^3)^{8r+7}y/x^p \\
= \sum \binom{8r+7}{k}(-1)^{8r+7-k}x^{4(k-3r-2)-3}(y^2) \\
\equiv 0 \pmod{H}^1(C, \mathcal{O}_C).
\]

So our Frobenius map is 0-map. That assures our assertions.

\[\square\]

4 Some examples of Picard curves with many rational points

Let \(X \) be a smooth projective curve of genus \(g \) defined over \(\mathbb{F}_q \), with \(q = p^r \) for a rational prime \(p \) and a positive integer \(r \). Let \(N_m \) be the number of \(\mathbb{F}_{q^m} \) rational points of \(X \). It holds

\[1 + q^m - 2gq^{m/2} \leq N_m \leq 1 + q^m + 2gq^{m/2}. \]

This is called the Weil bound.

Let \(C \) be a superspecial curve defined over \(\mathbb{F}_p \), the number of rational points of \(C \) attains the Weil bound.

In the preceding section, we have two examples of superspecial Picard curves. we computed the zeta functions of these curves for some rational primes.

Example 1. Let \(p = 17 \), and \(C \) be the curve over \(\mathbb{F}_{17} \) with affine model:

\[
C : y^3 = x^4 - x.
\]

\(\sharp C(\mathbb{F}_p) = 18 \), \(\sharp C(\mathbb{F}_{p^2}) = 392 = 1 + 172 + 2\cdot317 \) and \(\sharp C(\mathbb{F}_{p^3}) = 4914 \). The zeta function of \(C/\mathbb{F}_{17} \) is:

\[
Z(C, t) = \frac{(1 + 17t^2)^3}{(1 - t)(1 - 17t)}.
\]
The number of the rational points $N_m = \#C(F_{p^m})$ is:

$$N_m = 1 + 17^m - 3(\sqrt{-17}^m + (\sqrt{-17})^m).$$

For $e \in \mathbb{N}$,

$$N_{2e} = 1 + 17^{2e} - 6 \cdot (-17)^e.$$

Example 2. Let $p = 11$, and C be the curve over F_{11} with affine model:

$$C : y^3 = x^4 - 1.$$

$\#C(F_p) = 12$, $\#C(F_{p^2}) = 188 = 1 + 112 + 2 \cdot 311$ and $\#C(F_{p^3}) = 1332$. The zeta function of C/F_{11} is:

$$Z(C, t) = \frac{(1 + 11t^2)^3}{(1-t)(1-11t)}.$$

The number of the rational points $N_m = \#C(F_{p^m})$ is:

$$N_m = 1 + 11^m - 3(\sqrt{-11}^m + (\sqrt{-11})^m).$$

For $e \in \mathbb{N}$,

$$N_{2e} = 1 + 11^{2e} - 6 \cdot (-11)^e.$$

References

