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Abstract

In this paper, we generalize the theory of Witt vectors to higher di-
mensional case, based on the functional equation lemma by Hazwinkel,
and show that the classical Dieudonne formula also holds in this case.

Introduction

0.1 Notation

We denote by N = {0,1,2,...} the set of natural numbers. Note that we
assume 0 € N. Throughout this paper, we assume that every ring is unital. For
a commutative ring A, we denote by A* the group of units in A.

Let T = (T1,...,T,) be an r-tuple of indeterminates. For a commutative
ring A, we denote the formal power series ring A[[Ty,...,T;]] by A[[T]]. Let
f(T) = Y ;cnn aiT" € A[[T]] be a formal power series and let 7 : A — A be
an endomorphism of A. Here i = (i1,...,i,) € N", T* = T}* ... T/r. Then we
denote the series Y, yn 7(a;)T" by 7 f(T). For an ideal a of A, n € N and power
series f(T), g(T) € A[[T]], f = g (mod degn) (resp. f = g (mod degn,a))
means f —g € (T1,...,T,)" (vesp. f—g e (Th,...,T.)" + aA[[T]).

For a commutative ring R, we denote by M, ,(R) (resp. M, (R)) the ring
of m x n matrices (resp. n x m matrices) with coefficients in R. For a =
(aij) € My, n(R) and k € N, we denote the matrix (afj) by a'*). For example,
if T =4YT,...,T,) € K[[T]]", then T*) = {(TF, ... TF). Here {(—) means the
transpose.
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1.1 Higher dimensional functional equation lemma

Let (X))aea be a family of indeterinates. Unless otherwise specified, we extend
the action of o on K to K[X) | A € A] (resp. K[[X) | A € A]]) so that
o(Xy)=X{. If R=K[X;; |1 <i<m, 1<j<n]is the polynomial ring with
indeterminates X;; over K, then o*(X) = (qu;) for X = (X;;) € My,n(R),
Let T'=*%(Ty,...,T}) be an r-tuple of indeterminates.

Theorem 1.1.1 (higher dimensional functional equation lemma, Hazewinkel
[Haz78, 11, 10.1]). Let K be a commutative ring, A a subring of K, p a prime
number, q¢ a power of p, a an ideal of A, and 0 : K — K an endomorphism of
K. We assume the following.



(1) For anya € A, o(a) =a? (mod a).

(2) pea.

(3) Foranyr € Z>1 and b€ K, if a"b € a, then a"o(b) € a.
Let n € Zso and let (s;)32, be a sequence of matrices si(i,7) € My (K) such
that asg(i,7) C My (A) for any k € Z>y1. For a, b € My, ,(K) and an ideal
b, we write @ = b (mod b) if a —b € bM,, ,(O). Let Xq,...,X, be inde-
terminates and X = Y(X1,...,X,). Here *(=) implies the transpose. Let
9(X) = (9:(X1,..., X)) € A[[X]]™ be an m-tuple of power series such that

g(0,...,0) = 0. Then there exists uniquely f(X) = (fi(X1,..., X)) € K[[X]]™
such that

FX) =g(X)+ Y siol f(X )
=1

and f(0,...,0) =0. We denote the above f(X) by fo(X).

For f(X) = 3, b, X" € K[[X]]™, we consider the following
condition:

,,,,, 7 )ENT

(1.1.1) if there exist 1 <4 < j < n such that r;, r; > 0, then b, = 0.
Lemma 1.1.2. Let the notation and the assumption be as in Theorem 1.1.1.
(1) If f(X) € K[[X]]™ satisfies (1.1.1), then f(X) can be written as

FX) =) a X%, (a; € My n(K)).
=0

Here we regard X as a column vector (X1, ..., X,) € K[[X]]".
(2) If g(X) € A[[X]]™ satisfies (1.1.1), then so is fo(X).
Proof. Easy. O

Theorem 1.1.3 (higher dimensional functional equation lemma, Hazewinkel
[Haz78, II, 10.2]). Let K, A, a, 0, p, q be as in Theorem 1.1.1. Let n € Z~g
and let (si)72, be a sequence of matrices si(i,7) € M, (K) such that ask(i,j) C
Mn(A) for any k € Z>1. Let g(X) = (g:(X1,..., X)) € A[[Xy,..., X,]]"
(resp. 9(X) = (;(X1,...,Xm)) € A[[X1,...,Xn]]"™) be a power series in
X = (X1,...,X,) (resp. a power series in X = (X1,..., X)) with coefficients
in A. Supposet that g(X) = 0 (mod degl), g(X) = 0 (mod deg1) and that
09i
0X;

the Jacobian matriz J(g) = of g is invertible in € M, (A). Then

-
we have the following.

(1) F(X,Y) = f; (fo(X) + f4(Y)) has its coefficients in A.
(2) £, (f5(X1,..., X)) has its coefficients in A.

(3) If h(X) € A[[X]]" is an n-tuple of power series in X such that h(X)
0 (mod degl), then there exists h(X) € A[[X]]" such that fy(h(X))
Jr(X)-

@) If a(2) € AllZ1,.... 2", B(Z) € K|[Z1,...,Zi]]", then for all r =
1,2,3,...,

a(Z2)=p(2) (mod a") & fy(a(Z)) = f4(B(Z))  (mod a”).



2 Higher dimensional Witt vectors

In this section, we define Witt functor with respect to a certain function, called
of Witt type. The functor is a generalization of that defined in [Mat19].

2.1 ¢-typical series of Witt type and ghost polynomials

Let p a prime, g a power of p, O a discrete valuation ring, K the field of fractions
of O, P the valuation ideal, kK = O/P, and 7 a uniformizer of O. We assume
that k is of characteristic p. Let o be a ring endomorphism of K such that
a(0) C O, o(m)/m € O*, and o(a) = a? (mod 7O) for any a € O.

Definition 2.1.1. Let [(T) = Y% %T%") € K[[T)]" (v; € M,(K)) be an
r-tuple of power series in T' = (T1,...,T,). We say I(T) is of Witt type if the
following conditions hold.

(L1) ~o is the identity matrix I of M, (O).
(L2) 7"y, € GL,(O) for n € N.
(L3) o(rl7m) = v lamss (mod 72) for n € .

Theorem 2.1.2. Let s; (i = 1,2,...) be a sequence of matrices s; € M (K)
such that ws1 € GL,.(O) and ws; € M,(O). Let

YT € KT, (v € My (K))

5
i
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be an r-tuple of power series in T that safisfies vo € GL,.(O) and
(2.1.1) UT) =Y sioll(T4) € O[[T])".
i=1

Then I(T) satisfies the condition (L2) and (L3) of Definition 2.1.1. In partic-
ular, if o is the identity matriz, then I(T) is of Witt type.

Proof. We prove (1) by induction on n. For n = 0, the assertion follows from
the assumption. Let n > 0 and suppose that the assertion holds for 1,...,n—1.
Since [(T) satisfies (2.1.1), we have

(2.1.2) Yo=Y 50" (Yn—i) € M,(O)

i=1
and 7y, = Yo 780 (Yn—i) = 7"s10(Yn-1) (mod TM,(O)). By the as-
sumption and the induction hypothesis, we have

det(7"s10(n_1)) = det(msy) det(7" o (v,_1)) € GL,.(O)

and the assertion holds for n.

Next we prove (2) by induction on n. By (2.1.2), we can write 71 = s10(70)+
c1, Y2 = 810(71) +820%(Y0) + ¢ for some ¢y, co € M,.(O). Since %—1 € M, (0)
by (1), we have

si(c(o)n 't — o) ') = s202 ()1 + st — eyt € TM,(0)



and hence o(y0)y; " — o(71)7, ' € 72M,(O). Therefore a(7; 'v0) — 75 'm1 €
72 M,.(O) and the assertion for n = 0 holds. Let n > 0. By (2.1.2), we have

n+1
P10 (7 ZS’L (m+1-i)o (") (mod ™)

n+2
Vnt20 (V1) Z 510" (Yn42-i)o(vpt1) (mod ™).
Therefore
’yn+1U(’7;1) — ’)’n+20'("/;i1)
n+1
= Z 51( (7n+1 i)o (7771) - JZ(’YTL—}-Q—i)O—("Y;},l))
i=1
(2.1.3) - )
- 5n+20"+2(70)0(7n$1) (mod 7")
n+1

=2 si(o 0o 07) = 7 neao i) (mod #7)

By the induction hypothesis, 0(7;_11%) = 7;_12%“ (mod 7#+2) for 0 <i < n—1.
It follows that Uj(’yijfl%) = U(’Y;rlj%-s—j—l) (mod 7*2) for i, j such that 0 <
i<n—1land1<j<n+1—i Thisimplies 07(v;)o(Vitj—1) = Uj(%H)a(yijrlj)
(mod 7*7). Considering the case where i is n +1 — 4 and j is i, we can see
0 (Ynt1-1)0 (1) = 0 (Ynt2—i)o (7 t1) (mod 7™F1) for 1 < < n+1. Then we
have 7,410 (77 1) = Yns20(v,41) (mod 77) by (2.1.3) and hence, o(v,,}17) =
Jrkzner (mod 7). 0

The converse also holds.

Theorem 2.1.3. If I(T) is of Witt type, then there exists a sequence s1,Sa,. ..
of matrices s; € M.(K) such that ws1 € GL.(O), ws; € M,.(O) for i > 2 and
I(T) satisfies

(2.1.4) Zsza (T') e O[T))".

Proof. Tt suffices to show that the existence of s1,s2,--- € M,.(K) such that

n

Vn — Z 50" (Yn_i) € M, (O) for any n € N.

i=1

We prove the existence of s; by induction on ¢. For ¢ = 1, s; = v, satisfies
the condition 7s; € GL,.(O). Suppose that there exist si,...,s, € K such
that ms; € GL,.(0), ns; € M,(O) for i > 2 and v, — > i, 80 (Yn—i) €
M, (O). We prove that there exists s,+1 € K such that 7s,11 € M,.(O) and
Vo1 — iy 80" (i) € M, (O). By (L3), we have o* (v, 111 Yn—k) = Yo i17n
(mod 7"+2~%) and hence

Yo g1 = 0" (1,20  (ns1—k)  (mod 7" F)



for 1 <k <n. Then we obtain

Tnt1 = 0 (Y 21)o(7n)  (mod 7 1)

o (ns1-s) = ' (mm_)o (vt )o () (mod )
for 1 < i < n. Therefore, by the induction hypothesis,

Yn+1 — Z SiUi(%LHfi)
i=1

=70 (7, 11) ZSU Yn-i)o (1o () (mod 77 )

(’Yn Zsz 'Vn i > U(’Y;_ll)’}/n =0 (IIlOd 71'_1).

Thus, Sp41 = Ynt1 — Yoy Si0 (Ynt1-i) satisfies the required condition. O

Corollary 2.1.4. Let X = (X1,...,X,), Y = (Y1,...,Y,) be r-tuples of inde-
terminates. If I(T) € K[[T]" is of Witt type, then

G(X,Y) = I U(X) +1(Y)) € O[[X, Y]

and G(X,Y) is an r-dimensional commutative formal group law over O [Haz78,
11, 9.1].

Next, We define ghost polynomials for [(T") of Witt type.
Definition 2.1.5. Let (X,,),en be a series of r-tuples of indeterminates X,, =
(Xn,i)i<i<r. We also denote (Xo,X1,...) by X. For a commutative ring R,
we denote R[Xy; | 1 <k <mn, 1<i<r|by RX1,...,X,] and R[X,,; | n €
N, 1 < i <7r] by R[X]. For n € N, we define the n-th ghost polynomial vector
Pn(X) = (én,i(X)) € O[X]" for I(T) by

X):Z’Y Yrn—iXi? _Z'Y Yn—i
=0

We denote (¢o(X), ¢1(X),...) by ¢(X) or ¢. Since ¢,(X) € O[Xo,..., X,]",
we often write ¢, (X) as ¢,(Xo, ..., Xn).

We also define a matrix variant. Let R be a commutative ring. For C' =
(cij) € M.(A) and m € Zxo, we denote (cj}) by C‘™) . For a sequence ¢ =
(¢nij) € [1en Mr(A), we denote by ¢4 4') the sequence (c Yw, cgm, S
Definition 2.1.6. Let X = (X,,),en be a series of r2-tuple of indeterminates

Xn = (Xn,i;) 1 <4,5 <r). Weregard X,, as an element of M,(O[X]).
For I(T") € KJ[[T]] of Witt type, we define the n-th ghost polynomial matriz

On(X) = (0n,5(X)) € My(O[X]) for I(T) by

n—k n—k
q q
n . n Xk-,n Xk,lr
_ -1 (¢"7%) _ -1 .
X)=> v Xy = Y ek . :
k=0 k=0 n—k n—k
q q
Xk rl Xk,rr



As in Definition 2.1.5, we denote (¢o(X),1(X),...) by Eé(&) or ii; Since
quSn(K) € M. (O[Xy,...,X,]), we often write gzNSn(X) as ¢7n(XO, e X))

In the rest of this section, we fix a series [(T') = >°2 7T € O[T of Witt
type (Definition 2.1.1) and denote the ghost polynomial vectors and matrices

for I(T) by ¢, ¢.

Lemma 2.1.7. Let X,, = "(Xp,1,..-, Xnr) (resp. Xn = (Xn,ij)ij)nen) and
X = (Xn)n€N~ Then, fOT n €N, ¢n(£) € O[l]r (resp' (bn(X) T(O[l]))
and the following hold.

(1) $ni1(X) = X0 + 9 mn (X1, Xni1)

(resp. dni1(X) = Xéan) + Y1 ®bn (X1, -, X))
(2) ¢n+1(g) = U*an(lq) (mOd 7Tn+1)

(resp. Gp41(X) = 0.hn(X'?) (mod 7"+1)).

Proof. We prove the vector version. The assertion for matrices can be proven in
the same way. Since 7, 1v,_; € 7' M,.(O) by (L2), we have ¢, (X) € O[X]". (1)
is evident by the definition. We prove (2). By (L3), fy;lla(%) = 7;120(7i+1)
(mod 7*+20) for i € N. Then we get 7.0 (i) = 7, 410(7n) (mod 7+20) for
i < n by induction. Therefore (v, )o(v;) = 7,1 17vi+1 (mod 7"+10). Since
Y0 € THML(O) by (L2),

¢n+1(&) - U*(an(&q)

n
_ _ n+1l—1i _
=> (7n-§1—1’7n+1—i - 0'(% Wn—i)) Xj + Yt170Xnt1 =0 (mod 7).
=1

O

Definition 2.1.8. Let A be a commutative O-algebra. Then we define ¢4 :
HneN AT — HngN A" so that, for @ = (an)n € HnEN A", pala) = (dn(a))n.
We also define ¢4 : [[,cy Mr(A) — [l,eny Mr(A) so that, for a = (an)n €
[L.en Mr(A), bala) = (an(g))n We call ¢4 and ¢4 the ghost maps for I(T)
on A. We often denote ¢4 (resp. 5 4) by ¢ (resp. 5) for simplicity.

Lemma 2.1.9. Let A be a commutative O-algebra and 04 : A — A a o-
semilinear ring endomorphism such that o4(a) = a? (mod w) for any a € A.
Let b= (b;) € A" and c = (c;5) € M, (A).

(1) If oa(b) = b9 (mod 7), then oa(b?) =b7"" (mod 7F+1) for k € N.

(2) If oa(c) =t (mod 7), then O'A(C<qk>) = (") (mod 7*+1) for k € N.
(3) 0a(¢n(b)) = 04 (b?) (mod 7" *1)
(4)

4) 04(hn(c)) = 02hn(c!?) (mod 7" F1).



Proof. Tt is easy to see that, if c4(a) = a? (mod ) for a € A, then UA(aqk) =
a?"" (mod 7*+1) for k € N. (1) and (2) follows immediately. Since we

can prove (3) and (4) in the same way, we only show (4). By (2), we have

oalc)d" ) = c§qn+1ﬂ> (mod 7" *1=%). Since a4 (7, 1vn—i) € M, (O),

n

n—1i n n+1l—i
0A(0n(0)) = D 0alry n-i)oale) " ) = oatyy el
i=0 =0

= 04l =) (@) = 0,6,(c!) (mod 7).
1=0

2.2 Witt functors

Proposition 2.2.1. Let A be a commutative O-algebra.
(1) If w is a non zero-divisor in A, then ¢4 and 5,4 are injective.
(2) If 7 is invertible in A, then ¢4 and ba are bijective.

(3) Assume that there exists a o-semilinear ring endomorphism oq : A — A
such that 0(a) = a? (mod ) for any a € A. Then, for (un)n € [[,en A"
(resp. [l,en Mr(A)),

(Un)n € G4 (H A”) S 04(Un) = Upyr  (mod 7T

neN

(resp. (un)n € (EA <H MT(A)> & 0a(tup) = Unyr  (mod 771))

neN

Proof. (1) Since 7", € GL,(O) by (L2) of Definition 2.1.1, if 7 is a non zero-
divisor in A, then, for a € A", v, 'a = (7"v,) 'n"a = 0 implies a = 0. Hence
the injectivity of ¢4 is evident. We can prove (2) in a similar way. We prove
(3) for the case of matrices. The case of vectors can be proven in the same way.
Assume that u = (un)n = ¢a(a) for a = (an)n € [[,eny Mr(A). By Lemma 2.1.7
and Lemma 2.1.9, ¢,,11(a) = 0.0, (a'?) = 04(¢n(a)) (mod 7). Therefore,
04(tn) — 41 = 74 (0n(@)) — Gni1(a) =0 (mod 7+1),

We show the converse by induction on n. Assume that o4(u,) = Upy1
(mod 7" *1) for any n € N. It is evident that there exists ag € M,(A) such
that ¢g(ap) = ug. Suppose that there exist ag,...,a, € M,.(A) such that u; =
oi(ag, .. .,a;) for 0 <i < n. It suffices to show that there exists a,+1 € M,(A)
(¢"t7h

such that nglan_ﬂ = Upt1 _Z?:o ’}/,;_,’l_lfyn_i_l_ia . By the same argument

as in the proof of Lemma 2.1.9, we obtain

n ntl—i ~
Z 77:-51—1'7n+1*ia§q = o(én(ao,...,an)) (mod 7Tn+1)

=0



and hence

n
_ +1—i) __ e
Un+1 — Zvni17n+l—ia§n )= Unt1 = 0(Pnlao, ... an))

=0

=tUpi1 —0(u,) =0 (mod 7"1).

Therefore V11 (unt1 — i g 7;i17n+1,ia§n+lﬂ>) € M, (A) and it satisfies the
condition for a,41. O
Theorem 2.2.2. Let X, ,;, YV,; (n € N, 1 < i < r) be families of indeter-
minates. We write X,, = Y(X1,...,X,), Yo = {(Y1,...,Y), X = (X,)nen
and Y = (Y,)nen. Then there exist sequences of r-tuples S = (Sp(X,Y))n,
P=(P,(X,Y)), and I(X) = (I,(X)) whose components are polynomials with
coefficients in O such that the following equations hold:

(1) ¢(8) = ¢(X) + o(Y),
(2) ¢(P) = ¢(X)o(Y),

3) o(I) = —¢(X).

Moreover, we have S, (X,Y), P,(X,Y) € O[Xo,...,Xn,Y0,...,Y3]", and I,(X) €
O[Xo,...,X,]". There also exists uniquely a sequence of vectors C(z) = (Cp(2))n
for each x € O such that

(4) ¢(C(2)) = ("(¢"(@),-..,0"(@))), € [1,en O"

Proof. Let A = O[X,Y] and define the o-semilinear endomorphism o4 of O-
algebra A so that oa(Xn i) = X! ;, 0a(Yo:) =Y, Let up = ¢n(X) +¢n(Y) €
[[,en A" for n € N Then they clearly satisfy 04(un) = upy1 (mod ).
Hence the exisitence and uniqueness of S follows from Proposition 2.2.1. We
can show the existence and uniqueness of P, I and C in the same way. O

Definition 2.2.3. Let A be a commutative O-algebra and let W (A) be [], .y A"
as a set. We define addition and multiplication of W (A) by a+ b= S(a,b) and
ab = P(a,b) for a, b € W(A). Then I(a) +a = 0. W(A) is a ring with these
operations and ¢4 : W(A) = ],y A" is a ring homomorphism. Here we re-
gard [],cny A" as a ring product of A”. For € O, we define C(x) € W(O)
by C(z). Since o is a ring homomorphism, C' defines a ring homomorphism
O — W(0O) and we can regard W(O) as an O-algebra. For a commutative O-
algebra A, we often identify C'(x) with the image by the natural homomorphism
W(O) — W(A). Then C defines a ring homomorphism O — W (A) and we can
regard W(A) as an O-algebra. For a € W(A), we call the components of ¢ 4(a)
the ghost components of a.

Let (comO-Alg) be the category of commutative O-algebras. We can regard
W as a functor from (comO-Alg) to (comO-Alg). Then W is representable by
O[X]. The structure of addition W x W — W as a functor is given by the O-
homomorphisms S* : O[X] — O[X,Y] such that S*(X,) = S,(X,Y). We omit
the detail for the structure of multiplication etc. We denote by ¢* : O[X] —
O[X] the O-endomorphism such that ¢*(X,,) = ¢,(X). Then ¢* induces a
morphism of functors ¢4 : W(A) — [[,cy A" on A.



Definition 2.2.4. We call the functor W : (comO-Alg) — (comO-Alg) defined
above the Witt functor for I(T).

Let A be a commutative O-algebra. For n € N, we denote by A" the

O-algebra A with the structure map O 2% © — A. Then pa 2 W(A) —
[L.en A" g s pa(a) is O-linear. Let P(T) € O[T be a polynomial. Since
W(A) is an O-algebra, we can regard P(T') as the map P : W(A) — W(A)
that sends ¢ € W(A) to P(a) € W(A). Then by Theorem 2.2.2 the following

diagram is commutative

W (A) _%a Len Ale™)”

pJ |r

W(A) =245 [,en A"

Remark 2.2.5. Let (60'P)y : [[,en A" = [],en A7 be the map which sends
(Zn)n to (62 P(2y))n. Then the commutativity of the above diagram means
that the following diagram is commutative

W(A) L HnEN A"

PJ l(a::mn

W(A) —2 [Len A"

We also have matrix variants of a Witt functor. Let X, ; j, Y ; (n € N, 1 <

Xp1a1 - Xpar
i,7 < r) be families of indeterminates. We write X,, = :
KXnr1 0 Yorr
Yoi1 - Yair
and Y, = : © |, X = (Xu)n, ¥ = (V). Replacing ¢ by ¢
Yor1i 0 Yarr

in Theorem 2.2.2, we obtain series of matrices of polynomials S = (5, (X,Y)),
P=(P,(X,Y)) € O[X,Y] and I = (I,(X)) € O[X] such that

(2) On (E) = b (X )571 (Y) (matrix multiplication),

(3) 6n(l) = —n(X)
for n € N. For a commutative O-algebra A, we define W(A) = [1.en Mr(A) as

a set. Using the polynomials above, we can equip W(A) with a ring structure
so that the map

W(A) =22 TLen Mo (A)
W N W
a=(a,) — (¢u(a))

is a ring homomorphism. Let (O-Alg) be the category of the O-algebras. From
the construction above, we obtain the functor W : (comO-Alg) — (O-Alg).



Moreover, for each x € O, there exists uniquely a sequence of square matrices
C(x) = (Cp(x)), such that

(4) $(C(@)) = (0" (2)];)n-

Then C defines a ring homomorphism O — W(A) and we can regard W(A) as
an O-algebra in a similar way as in the case of W(A).

Lemma 2.2.6. Let Y, ;;, X,; (n € N, 1 <i,j < r) be families of indeter-
Yn,l,l e Yn,l,r Xn,l

minates. We write Y,, = , X, = , Y = (Ya)nen
Yn,r,l o Yn,r,r Xn,'r

and X = (Xpn)nen. Then there exists uniquely a segence of r-tuples Q(Y, X) =

(Qn(Y, X)) = (Qn,i (Y, X))i)n whose components Qn; (n € N, 1 <i<r)are

polynomials with coefficients in O such that $(Q) = G(Y)d(X) in M, (O[Y, X]).

Proof. Let A = O[Y, X] and define the o-semilinear endomorphism o4 of O-
algebra A so that 04 (Yn,i ;) =Y, 5, 0a(Xni) = X ;. Let u, = G (Y)n(X) €
[I,en A" for n € N. By Lemma 2.1.9, 04(¢,(Y)) = ¢pnt1(Y) (mod 7™ *1) in
M, (A) and 0 4(¢n (X)) = ¢ni1(X) (mod 77F1) in A™ and hence o4 (up) = U1
(mod 7" *!) for n € N. Therefore the exisitence and uniqueness of @ follows
from Proposition 2.2.1. B O

Definition 2.2.7. Let Y and X be as in Lemma 2.2.6. We define O-endomorphisms
¢* + OY] — O[Y] and ¢* : O[X] — O[X] so that ¢* (V) = ¢n,i;(Y)
and ¢*(X,) = ¢ni(X). Let Qn(Y,X) (n € N) be as in Lemma 2.2.6. We
identify O[Y] ®o O[X] with O[Y, X] and define an O-algebra homomorphism
G* : O[X] — O[Y, X] so that G*(X,) = Qn(Y, X). Let g* : O[X] — O[Y, X]

be an O-endomorphism defined by ¢*(X,,) = ZZ=1 Y,.i. X5 k. By the defintion

of Q,,, the following diagram is commutative

OlY] @0 0[X] 227" 0[Y] ®0 O[X]

G*T Tg*

0[X] <¢—* o[X].

Then, for a commutative O-algebra A, the above diagram induces the following
commutative diagram.

W (A) x W(A) 259 [T My (A) X [T en A7

.| Jon

¢ r
W(A) = HnEN AT

Thus we have an action G4 of W(A) on W(A), which is functorial on A.

Example 2.2.8. Let K = F,(6) be a rational function field over a finite field
F, of order ¢, v : K — Z U {oo} be the normalized §-adic discrete valua-

tion, O = Fy[0]) the valuation ring. We denote [i] = 97 — 0 for i € N
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and define Lo = 1, L; = [i][i —1]---[1] for i > 1. Let T = (?) and
2

oo _1 7/ oz
(T) = Z (=1) (1 12) <T1). Then {(T) satisfies the following functional

= L; 0 15
equation.
T\ (6 6\, (T} 0
() -0 ) -0 (D () <o
The n-th ghost polynomial of I(T) is ¢y ( :i —)'Ln i x7
ghost poly n T R

i=

2.3 Frobenius, Verschiebung and Teichmiiller lift

Lemma 2.3.1. Let X,,; (n € N, 1 <i <) be a family of indeterminates. We
denote X, =" (Xp1,..., Xnr) and X = (Xp)nen. Let f*: O[X] — O[X] be an
O-endomorphism defined by f*(X,) = Xnt1, t.e., [ (Xni) = Xny1,4 forn €N,
1 < i < r. Then there exists a unique O-homomorphism F* : O[X] — O[X]
such that F* o ¢* = ¢* o f*.

0[x] «¥— 0[X]

al ]f

O[X] «*— O[x
Proof. The map F* is determined by the images F,(X) € O[X]" of X,, (n €
N), so it suffices to show that there exists a series of r-tuples (F,, (X)), such
that ¢n((Fn(X))n) is equal to ¢*(f*(X,)) = ént1(X). Let o : O[X] —
O[X] be an O-endomorphism such that o(X,(j)) = X, (j)?. By Lemma 2.1.7,
0(Ins1(X)) = 02ns1(X 7)) = ¢pia(X) (mod 772) and hence the assertion
follows from Proposition 2.2.1. O

Lemma 2.3.2. Let Y, ;; (n € N, 1 < 4,5 < r) be a family of indeter-

Yn,l,l e Yn,l,r
minates. We denote Y, = and Y = (Yp)nen. Let
Yn,r,l e Yn,r,’r
f*: OY] — O[Y] be an O-endomorphism defined by f*(Y,) = Yni1, i.e.,
[*(Ynij) = Yngi4j forn € N, 1 < i,5 < r. Then there exists a unique

O-homomorphism F* : O[Y] — O[Y] such that F* o ¢* = ¢* o f*.

OfY] «—— OfY]

F*T i Tf*

oly] £ o[y

Proof. We can prove the lemma in the same way as Lemma 2.3.1 O

11



Definition 2.3.3. From F™* in Lemma 2.3.1 (resp. Lemma 2.3.2), we obtain

a morphism of functors F' : W — W (resp. F : W — W) such that, for any
object A in (O-Alg), the following diagrams are commutative.

W(A) 245 [ A7 W(A) —225 T Mo (A)
Fl , if resp. Fl ) J{f
W(A) ~25 e A7 W(A) 22 [Len Mo (A)

Here f : [[,en A" = Ilaen A" or f 2 Ilen Mr(A) = Tl,en Mr(A) is the
map which sends (a;); to (a;41)i. F: W(A) — W(A) is a ring homomorphism
because so is f. We call F a Frobenius of W or W. Let F,(X) € O[X] (n € N) be
a sequence of polynomials as in the proof of Lemma 2.3.1, i.e., ¢ ((Fpn(X))m) =
¢n+1(X) for any n € N. Then for a € W(A), F(a) = (Fn(a))n. It is easy to
see that F,,(X) € O[Xo,...,Xnt+1]". Moreover, F is o-semilinear, i.e., for any
x € O and a € W(A), F(za) = o(x)F(a). For the proof, we can reduce to the
case that A = O[X] and a = X. Since ¢(o(2)F (X)) = (6" (o(z)) f*(H(X)))n =
(0" (@) pp11(X))n = f*((0™(2)Pn (X)) = ¢(F(2X)), the assertion follows.

Lemma 2.3.4. Let X be as in Lemma 2.3.1. Let v,(X) = v, ' m-1Xn_1 €
O[X]" and let v* : O[X] — O[X] be an endomorphism of O-algebras such that
v*(X,) = vn(X). Let V* : O[X] — O[X] be an O-endomorphism such that
V*(Xy) = Xpo1 forn > 1 and V*(Xo) = 0. Then the following diagram is
commutative.

Proof. We have V*¢* = ¢*v* from the calculation below.

V(6" (X)) = V*(¢n(X)) = 60(0, X0, X1,-..) = S 70 i X0
=1

n—1 n—1
n—1—i n—1—i
= Z Yo X = Z Yol - X
i=0 i=0

= Y 10n-1(X) = 6" (v 1 Xno1) = ¢ (v (X)),
OJ

Definition 2.3.5. From V* in Lemma 2.3.4, we obtain a morphism of functors
V : W — W such that for any object A in (O-Alg), the following diagram is
commutative.

W(A) =245 ], en A"

vl |»

W(A) =225 Len A"

12



Here v((an)n) = (95, ' Yn-1)@n-1)n (we define a_; = 0). We call V a Ver-
schiebung. For any object A in (O-Alg), V : W(A) — W(A) is an endo-
momorphism of modules, but it is not necessarily O-linear. In fact, we have
V(o(xz)a) = zV(a) for any x € O and a € W(A).

Definition 2.3.6. We define a Verschiebung V : W — W in the same way as

in Definition 2.3.5. Then for a commutative O-algebra A and a = (ag,a1,...) €

W (A), V(ag, ai,...) = (0,a0,a1,...). fwedefine v : [T, ey Mr(A) = [T, e Mr(A)
so that v(ug,uy,...) = v(y; "o, vy “Y1u1, 75 Y2uz, . .. ), then the following di-
agram is commutative.

W(A) —2 T, Mo (A)

J s

W(A) =25 ], en Mo (A)

Definition 2.3.7. Let A be a commutative O-algebra. We define a Teichmiiller
lft 7 A" — W(A) (resp. 7 : M.(A) - W(A)) by 7(a) = (a,0,...). Tt
is evidently a morphism of functors from (comO-Alg) to (comO-Alg) (resp.
(comO-Alg) to (O-Alg)).

Remark 2.3.8. When r = 1, for a = (an), and b = (00,0,0,...) € W(A4),
ab = (anbgn)n7 but it is not for » > 1. For example, consider the case of

Example 2.2.8. Let a = (<a01> , (au) ,> and b = <<b01) , <0) ,>
ao2 a2 bo2 0

Then ab = <<a01b01> , a11b81 + a12b81 — a12b82

PRI

q
ap2bo2 a12bdy

Definition 2.3.9. We define p = (0, 1,.,0,...) € W(O), where [. is the identity

matrix of degree r. Then it is easy to see that 5(3) = (0,77 0,75 '71,...) €
[Tnen M:(O).

For a commutative O-algebra, we regard p as an element of W (A) or W(A)
via W(0) — W(A) or W(0) — W(A).
Lemma 2.3.10. Let A be a commutative O-algebra. As a map from W(A) to
W(A) or W(A) — W(A), we have the following.

(1) VF = p,
(2) FV = F(u).

Here we regard p and F(u) as left multiplication endomorphisms via G (Defi-
nition 2.2.7).

Proof. We prove the statements for W(A). It suffices to show the correspond-
ing equalities for ghost components. For any commutative O-algebra A and
a € [],en A", we have 9(VF(a)) = vf(¢(a) = (0,71 '¢1(a). 75 'nd2(a),...) =
¢(1)é(a). Thus we obtain (1). Similarly fv(¢(a)) = (17 ' do(a)), 72 ' N1 (g, .-

)
F(d(1)d(a) = ¢(F(1))d(a) proves (2). We can show the statements for W (A)
in the same way. O
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3 Artin-Hasse exponentials

3.1 Series in formal groups

Let R be a commutative ring. Let X = (X1,...,X,)and Y = (Y1,...,Y,) be r-
tuples of indeterminates and G(X,Y) = (G;(X,Y)) € R[[X, Y]] a r-dimensional
formal group law over R ([Haz78, 9.1]). If A is a commutative R-algebra, I C A
an ideal and A is I-adically complete, then G defines a group law on [ I :=
I x -+ xI. We denote the addition and the subtraction of []" I with respect to
G by +¢ and —¢.

Lemma 3.1.1. Let R, G = G(X,Y), A and I be as above. If f = (fi),9 =
(g:) €I I, then f —g g € [[" I™ is equivalent to f —g € [[" I™.

Proof. By the formal implicit function theorem [Haz78, A.4.7], there exists
©(X) = (pi(X)); € TT" R[[X]] such that G(X, (X)) = 0. Then

and there exist a square matrix of degree r Q(X,Y) € M, (R[[X,Y]]) such that

G1(X, o(Y)) X1 -V
Gr(X, o(Y)) X, - Y,
Since p;(X) = —X; (mod deg2), Q(X,Y) = I, (mod degl) and Q(X,Y) is

invertible in M, (R[[X,Y]]). Since f —¢ g = G(f,2(9)) = QU 9)(f — 9), the
assertion holds. O

In the following, we denote a sum with respect to G by 31 |/ G5 etc.

Lemma 3.1.2. Let A be a commutative R-algebra, I and ideal of A and assume
that A is I-adically complete. Let r € Zso and let a = (an)nen € [[,en A"
(an = (ani)1<i<r € A7), Iflim, o0 an, = 0, then GZn%O a; converges.

Proof. By Lemma 3.1.1, the sequence of finite sums b,, = GZ?:O a; with respect
to G is a Cauchy sequence. O

3.2 Artin-Hasse exponentials

We use the same notation as in §2.1. Let T' = (T1,...,T,) be an r-tuple of
indeterminates. We often regard 7' as a column vector (Ty,...,T,). When
r = 1, we identify T with T}. We fix a series I[(T) € K][T]]" of functional
equation type, i.e., I(T) satisfies

(3.2.1) UT) - isiaiz(T@”) e O[[T)]".
i=1

for a sequence of s; € M,(K) such that 7s; € GL,.(O) and 7s; € M, (O) for
i > 2. By Hazewinkel’s higher dimensional functional equation lemma (Theo-
rem 1.1.3), I (U(X) +1(YV)) € O[[X, Y]] (X = (X1,...,X,), Y = (Y1,...,Y}))
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and defines r-dimensional formal group law (Corollary 2.1.4). We denote it by
G = G(X,Y). We often denote [=1(T) by exps(T). We also fix another series

T) =Y "I € K], (v € Mo(K))
i=0

of Witt type that satisfies the same functional equation (3.2.1). Then lo(T") is
of Witt type by Theorem 2.1.2. We denote by W the Witt functor for Io(T).
We denote by ¢, (X) and ¢,,(Y) the n-th ghost polynomials for W.

Definition 3.2.1. We define the Artin-Hasse exponential for | and Iy to be
E(T) = 171(1o(T)). By Theorem 1.1.3 (2), E(T) € [[" TOI[[T]]. Here TO[[T]]
is the ideal of O[[T]] generated by T1,...,T;.

Example 3.2.2. Consider the case where K = Q, p a prime, O = Z(,), 0 = id,

[} n o i

T T
=1,1T) = — and [o(T) = ——. In thi G(X,)Y)=X4Y-XY

) = 30 T and o) = 3 I thiscase, GXLY) = X+
is the formal multiplicative group, ¢, (X) = Xgn +prn71 + .-+ p"X, is the
classical n-th ghost polynomial and

_ o T

1Y (1o(T)) =1 — exp (— > pi) € TZ ) [[T])-

i=0

Lemma 3.2.3. Let R be a commutative O-algebra and I an ideal of R. Assume
that R is I-adically complete. Let x = (xn)neny € W(R) (zn = (Tni)1<i<r)
and suppose that x, € HTI for any n € N and that lim,, o x, = 0. Then
Gy o E(w;) converges in [[" 1.

Proof. By the assumption that z,, € [ I, each E(z,) converges in [[" I, be-
cause E(T) € TO[[T)]". Since lim,_,oc E(z,) =0, 37 E(z,,) converges by
Lemma 3.1.2. O

Let A be a commutative O-algebra and T = (T4, ...,T,) an r-tuple of in-
determinates. We denote by T A[[T]] the ideal of A[[T]] generated by Ti,..., T,
and we equip [[" TA[[T]] with (T1,...,T;)-adic topology. Then [[" T A[[T]] is
complete with respect to this topology and we can define a group structure on
it by G. We denote this group by ([[" TA[[T]], +¢)-

Let a = (an)neny € W(A) and [T] = (T,0,0,...). Let b = (by)nen = a[T].
then we can easily see by induction that b, € [["(TA[[T]]))?". Thus E(a[T]) =
Gy o E(b;) converges.

Definition 3.2.4. Let A be a commutative O-algebra and T = *(T4,...,T)).
For a = (a;); € W(A) (resp. W(A))7 we define

E(a,T) := E(a[T]) € TA[T])",
where [T] = (T,0,...) € W(A[[T]]) is a Teichmiiller lift (Definition 2.3.7) of T.

Remark 3.2.5. When r = 1, then a[T] = (a;T9") and hence E(a,T) =
G320, E(a;T7). Inparticular, when I(T) = —log(1-T) and lo(T) = > oc_, T*" /p™
as in Example 3.2.2,

E(a,T):l—HeXp( Z asz )

=0 m=0
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On the other hand, when r > 2, g[T] is not necessarily equal to (aiTqi). See
Remark 2.3.9.

Lemma 3.2.6. Let A be a commutative O-algebra. Let a = (an)neny € W(A)
or W(A), T="(T1,...,T,) and b= (b;); = a[T]. Then we have

S tofb) = 3" (a7
=0 n=0
(7’65])- ilo(bi) = i% (&n(a)T<qn>)> .
=0 n=0

Proof. We show the case of ¢. The assertion follows from the calculation below.

Zlo(bi) = 227 b<q ) = Z 27n lb<qn K
i=0 =0 j=0 n=0 =0
=3 (Zvnlvn b 1>> Z%dm
n=0 =0
o0

= Z Yn (Pn(a)pn(T)) = Z Yn (an(Q)T(qn))
n=0 n=0

We can show the case of 5 in the same way. O

Remark 3.2.7. Note that v, (¢,(a)T9") does not necessarily equal (v, ¢y (a)) 79"
in the above calculation.

Proposition 3.2.8. Let a = (a,)n € W(A) (resp. W(A)). In (A®o K[[T]))",

E(a,T) = expg (i T (qﬁm(a)T<qm>)> )
m=0

Proof. We use the same notation as in Lemma 3.2.6. By Lemma 3.2.6, we have

o5 = ($0) (5 e orr)).

O
By E(a,T), we can define a map

BE(—,T): W(A) = [[TAIT]] (resp. W(A) = [[TAlT))
Proposition 3.2.9. If w is a non zero-divisor in A, then E(—,T) : W(A) —
[T TA[[T]] (resp. W(A) — []" TA[[T]]) is injective.

Proof. By the assumption, TA[[T]] — T(A ®o K)[[T]] is injective. Since ¢4 :
W(A) = Il,en A" (resp. b W( ) = Ien Mr(A)) is injective by Proposi-
tion 2.2.1 (1) and ¢, (a) (resp. éyn(a)) are determined by S0 0 (6n(@)T4)
(resp. > o oVn ((Zn (Q)T@n))) for all n € N, the assertion holds. O
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Corollary 3.2.10. Under the assumption of Lemma 3.2.6, the map E(—,T) :
W(A) — (TA[T))",+¢g) (resp. W(A) — (TA[T)]",+c)) which sends a to
E(a,T) is a homomorphism of groups, i.e.,

E(a+b,T)=E(a,T)+¢ EO,T).
Proof. We prove the assertion for ¢ € W(A). We can reduce to the case where

A = O[X]. Then it is enough to show the additivity in [[(A ®o K[[T]])". By
Proposition 3.2.8,

E(a+b,T) = expg <Zwm(¢ma+b >)>
m=0
b (Z (e b>>T<qm>)>
m=0
Pa (Z Ym (¢m T<q ) + Z Ym (¢7n >)>
m=0 m=0
= €XpPg <Z TYm ((bm T<q ) +G expg (Z TYm (¢m (b)T<qm>)>
m=0 m=0
(a,T) +¢ E(b,T)
The case of a € W(A) can be proven in a similar way. O
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