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Abstract

In this note, we study an approxima-
tion property of regular fuzzy neu-
ral network(RFNN). It is shown that
any fuzzy-valued measurable func-
tion can be approximated by the
four-layer RFNN in the sense of
fuzzy integral norm for the finite
sub-additive fuzzy measure on R.
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1 Introduction

In neural network theory, the learning ability
of a neural network is closely related to its
approximating capabilities, so it is important
and interesting to study the approximation
properties of neural networks. The studies on
this matter were undertaken by many authors
and a great number of important results were
obtained ([1, 4, 13] etc). The similar approx-
imation problems in fuzzy environment were
investigated by Buckley [2, 3], P. Liu [7, 8] and
other authors. In [8] Liu proved that contin-
uous fuzzy-valued function can be closely ap-
proximated by a class of regular fuzzy neu-
ral networks (RFNNs) with real input and
fuzzy-valued output. In this note, by using
Lusin’s theorem on fuzzy measure space, we
show that such RFNNs is pan-approximator
for fuzzy-valued measurable function. That
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is, any fuzzy-valued measurable function can
be approximated by the four-layer RFNNs in
the sense of fuzzy integral norm for the finite
sub-additive measure on R.

2 Preliminaries

We suppose that (X, ρ) is a metric space, and
that O and C are the classes of all open and
closed sets in (X, ρ), respectively, and B is
Borel σ-algebra on X, i.e., it is the smallest
σ-algebra containing O.

A set function µ : B → [0, +∞] is called a
fuzzy measure([11]), if it satisfies the following
properties: (FM1) µ(∅) = 0; (FM2) A ⊂ B
implies µ(A) ≤ µ(B). A fuzzy measure µ is
called null-additive ([15]), if for any E, F ∈ B
and µ(F ) = 0 imply µ(E ∪ F ) = µ(E); sub-
additive ([12]), if for any E, F ∈ B we have
µ(E ∪ F ) ≤ µ(E) + µ(F ).

In this paper, we always assume that µ is a
finite, sub-additive and continuous fuzzy mea-
sure on B.

Consider a nonnegative real-valued measur-
able function f on A and the fuzzy integral of
f on A with respect to µ, which is denoted by

(S)
∫

A
f dµ

,
∨

0≤α<+∞
[α ∧ µ({x : f(x) ≥ α} ∩A)]

Theorem 2.1 (Lusin’s theorem cf. [6, 14])
Let (X, ρ) be metric space and µ be null addi-
tive fuzzy measure on B. If f is a real-valued
measurable function on E ∈ B, then, for every



ε > 0, there exists a closed subset Fε ∈ B such
that f is continuous on Fε and µ(E−Fε) < ε.

3 Approximation in fuzzy mean by
regular fuzzy neural networks

In this section, we study an approximation
property of the four-layer RFNNs to fuzzy-
valued measurable function in the sense of
fuzzy integral norm for fuzzy measure on R.

Let F0(R) be the set of all bounded fuzzy
numbers, i.e., for Ã ∈ F0(R), the following
conditions hold:

(i) ∀ α ∈ (0, 1], Ãα , {x ∈ R | Ã(x) ≥ α} is
the closed interval of R;

(ii) The support Supp(Ã) , cl{x ∈ R |
Ã(x) > 0} ⊂ is a bounded set;

(iii) {x ∈ R | Ã(x) = 1} 6= ∅.

For simplicity, supp(Ã) is also written as Ã0.
Obviously, Ã0 is a bounded and closed inter-
val of R. For Ã ∈ F0(R), let Ãα = [a−α , a+

α ]
for each α ∈ [0, 1] and we denote

|Ã| ,
∨

α∈[0,1]

(|a−α | ∨ |a+
α |).

For Ã, B̃ ∈ F0(R), define metric d(Ã, B̃) be-
tween Ã and B̃ by

d(Ã, B̃) ,
∨

α∈[0,1]

dH(Ãα, B̃α)

where dH means Hausdorff metric: for A,B ⊂
R,

dH(A,B)

, max

{
sup
x∈A

inf
y∈B

(|x− y|), sup
y∈B

inf
x∈A

(|x− y|)
}

.

It is known that (F0(R), d) is a completely
separable metric space ([5]). Also we note
that the next assertion which is used in later.

Proposition 3.1 ([8]) Assume Ã, Ã1, Ã2 ∈
F0(R), and W̃i, Ṽi ∈ F0(R)(i = 1, 2, · · · , n).
Then

(1) d(Ã · Ã1, Ã · Ã2) ≤ |Ã| · d(Ã1, Ã2),

(2) d(
n∑

i=1

W̃i,

n∑

i=1

Ṽi) ≤
n∑

i=1

d(W̃i, Ṽi).

By the well known extension principle, each
function f : Rn → R may be extended to one
F0(R)n → F(R) and, for each fuzzy number,
the addition, the multiplication and the mul-
tiplication by a scalar are defined by the ex-
tension princile ([8]).

Let T be a measurable set in Rn, (T,B∩T, µ)
finite fuzzy measure space. Let L(T ) denote
the set of all fuzzy-valued measurable function

F̃ : T → F0(R).

For any F̃1, F̃2 ∈ L(T ), d(F̃1, F̃2) is measur-
able function on (T,B ∩ T ), we will write a
fuzzy integral norm as

4S(F̃1, F̃2) , (S)
∫

T
d(F̃1, F̃2)dµ.

Proposition 3.2 Let F̃1, F̃2, F̃3 ∈ L(T ),
then

4S(F̃1, F̃3) ≤ 2(4S(F̃1, F̃2) +4S(F̃2, F̃3)).

Proof. From subadditivity of µ, we have

4S(F̃1, F̃3) = (S)
∫

T
d(F̃1, F̃3)dµ

=
∨

α∈[0,∞)

{α ∧ µ(T ∩ (d(F̃1, F̃3))α}

≤
∨

α∈[0,∞)

{α ∧ µ(T ∩

(d(F̃1, F̃2)α
2
∪ d(F̃2, F̃3)α

2
))}

≤
∨

α∈[0,∞)

{α ∧ [µ(T ∩ d(F̃1, F̃2)α
2
)

+µ(T ∩ d(F̃2, F̃3)α
2
)]}.

Because of the elementary inequality: a∧ (b+
c) ≤ (a∧ b)+(a∧ c) where a, b, c ≥ 0, we have

4S(F̃1, F̃3)

≤
∨

α∈[0,∞)

{α ∧ µ(T ∩ d(F̃1, F̃2)α
2
)



+α ∧ µ(T ∩ d(F̃2, F̃3)α
2
)}

≤
∨

α∈[0,∞)

[α ∧ µ(T ∩ d(F̃1, F̃2)α
2
)]

+
∨

α∈[0,∞)

[α ∧ µ(T ∩ d(F̃2, F̃3)α
2
)]

≤
∨

α∈[0,∞)

[α

2
∧ µ(T ∩ d(F̃1, F̃2)α

2
)

+
α

2
∧ µ(T ∩ d(F̃1, F̃2)α

2
)
]

+
∨

α∈[0,∞)

[α

2
∧ µ(T ∩ d(F̃2, F̃3)α

2
)

+
α

2
∧ µ(T ∩ d(F̃2, F̃3)α

2
)
]

≤
∨

α
2
∈[0,∞)

[α

2
∧ µ(T ∩ d(F̃1, F̃2)α

2
)
]

+
∨

α
2
∈[0,∞)

[α

2
∧ µ(T ∩ d(F̃1, F̃2)α

2
)
]

+
∨

α
2
∈[0,∞)

[α

2
∧ µ(T ∩ d(F̃2, F̃3)α

2
)
]

+
∨

α
2
∈[0,∞)

[α

2
∧ µ(T ∩ d(F̃2, F̃3)α

2
)
]

= 2
(
4S(F̃1, F̃2) +4S(F̃2, F̃3)

)
.

Definition 3.1 ([8]) A fuzzy-valued func-
tion Φ̃ : T → F0(R) is called a
fuzzy-valued simple function, if there exist
Ã1, Ã2, . . . , Ãm ∈ F0(R), such that ∀ x ∈ T ,

Φ̃(x) =
m∑

k=1

Ãk · χTk
(x)

where Tk ∈ B∩T (k = 1, 2, . . . , m), Ti ∩Tj =
∅ (i 6= j) and T =

⋃m
k=1 Tk.

Immediately, if S(T ) denotes the set of all
fuzzy-valued simple functions, then S(T ) ⊂
L(T ).

Similar to the proof of Proposition 3.2 and by
using subadditivity of µ, we can obtain the
following proposition.

Proposition 3.3 Let µ be a finite, sub-
additive and continuous fuzzy measure on R.
If F̃ ∈ L(T ), then for every ε > 0, there exists
Φ̃ε ∈ S(T ) such that

4S(F̃ , Φ̃ε) < ε.

Define

H[σ] ,
{

H̃

∣∣∣∣∣ H̃(x) =
n∑

i=1

W̃i Vi[σ]

}

where

Vi[σ] ,
m∑

j=1

Ṽij · σ(x · Ũj + Θ̃j)

and σ, by the same notation, is a given ex-
tended function of σ : R → R (bounded,
continuous and nonconstant), and x ∈
R, W̃i, Ṽij , Ũj , Θ̃j ∈ F0(R).

For any H̃ ∈ H[σ], H̃ is a four-layer feed-
forward RFNN with activation function σ,
threshold vector (Θ̃1, . . . , Θ̃m) in the first hid-
den layer(cf. [8]).

Restricting fuzzy numbers Ṽij , Ũj , Θ̃j ∈
F0(R), respectively, to be real numbers
vij , uj , θj ∈ R, we obtain the subset H0[σ] of
H[σ]:

H0[σ] ,
{

H̃

∣∣∣∣∣ H̃(x) =
n∑

i=1

W̃i vi[σ]

}
.

where

vi[σ] ,
m∑

j=1

vij · σ(x · uj + θj).

Let define two classes of pan-approximation
which is fundamental to our results.

Definition 3.2 (1) H0[σ] is call the pan-
approximator of S(T ) in the sense of 4S,
if for ∀ Φ̃ ∈ S(T ), ∀ ε > 0, there exists
H̃ε ∈ H0[σ] such that 4S(Φ̃, H̃ε) < ε.

(2) For F̃ ∈ L(T ), H[σ] is call the pan-
approximator for F̃ in the sense of 4S,
if ∀ ε > 0, there exists H̃ε ∈ H[σ] such
that 4S(F̃ , H̃ε) < ε.



By using Lusin’s theorem (Theorem 2.1),
Proposition 3.2 and 3.3 we can obtain the
main result in this paper, which is stated in
the following.

Theorem 3.1 Let (T,B∩T, µ) be fuzzy mea-
sure space and µ be finite, sub-additive and
continuous. Then,

(1) H0[σ] is the pan-approximator of S(T ) in
the sense of 4S.

(2) H[σ] is the pan-approximator for F̃ in the
sense of 4S.

Proof. By using the conclusion of (1) and
Proposition 3.3 we can obtain (2). Now we
only prove (1). Suppose that Φ̃(x) is a fuzzy-
valued simple function, i.e.,

Φ̃(x) =
m∑

k=1

χTk
(x) · Ãk (x ∈ T ).

For arbitrarily given ε > 0, applying Theorem
2.1 (Lusin’s theorem) to each real measurable
function χTk

(x), for every fixed k (1 ≤ k ≤
m), there exists closed set Fk ∈ B ∩ T such
that

Fk ⊂ Lk and µ(Lk − Fk) <
ε

2m

and χTk
(x) is continuous on Fk.

Therefore, for every k there exist a
Tauber-Wiener function σ and pk ∈
N, v

′
k1, v

′
k2, · · · , v

′
kpk

, θ
′
k1, θ

′
k2, · · · , θ

′
kpk

∈ R,
and w

′
k1,w

′
k2, · · · ,w

′
kpk

∈ Rn such that

∣∣∣∣ χTk
(x)−

pk∑

j=1

v
′
kj ·σ(〈w′

kj , x〉+θ
′
kj)

∣∣∣∣<
ε

2
m∑

k=1

|Ãk|

for x ∈ Lk. Note that we can assume∑m
k=1 |Ãk| 6= 0, without any loss of generality.

Denote L =
⋂m

k=1 Lk, then T = L ∪ (T − L).
By the subadditivity of µ, we have

µ(T − L) = µ(
⋃m

k=1(T − Lk))

≤ ∑m
k=1 µ(T − Lk) <

ε

2
.

We take β1 = 0, βk =
∑k−1

i=1 pi, k = 2, · · · ,m,
and p =

∑m
k=1 pk. For k = 1, 2, · · · , m, j =

1, 2, · · · , p, we denote

vkj =

{
v
′
k(j−βk), if βk < j ≤ βk+1,

0 otherwise,

θkj =

{
θ
′
k(j−βk), if βk < j ≤ βk+1,

0 otherwise,

wkj =

{
w
′
k(j−βk), if βk < j ≤ βk+1,

0 otherwise,

then, for any k ∈ {1, 2, · · · ,m}, we have
∑p

j=1 vij · σ(〈wkj , x〉+ θkj)

=
∑pk

j=1 v
′
ij · σ(〈w′

kj , x〉+ θ
′
kj).

Now denote that

H̃(x) =
m∑

k=1

Ãk·



p∑

j=1

vkj · σ(〈wkj , x〉+ θkj)


 ,

then H̃ ∈ H0[σ].

In the reminder part of this section we will
prove 4S(H̃, Φ̃) < ε. Denote

Bkj = vkj · σ(〈wkj , x〉+ θkj)

and
B
′
kj = v

′
ij · σ(〈w′

kj , x〉+ θ
′
kj).

By using Proposition 3.1 and noting µ(T −
L) < ε/2, we have

4S(H̃, Φ̃)

= (S)
∫

T
d(H̃, Φ̃)dµ

=
∨

0≤α<+∞

[
α ∧ µ(T ∩ (d(H̃, Φ̃))α)

]
.

Since

µ(T ∩ d(H̃, Φ̃)α)

= µ


T ∩ d




m∑

k=1

Ãk ·
p∑

j=1

Bkj ,

m∑

k=1

χTk
(x) · Ãk

)

α

)

≤ µ
(
(L ∪ (T − L)) ∩ (Cmp)α

)

≤ µ (L ∩ (Cmp)α) + µ ((T − L) ∩ (Cmp)α)



where the notation of set Cmp is assigned as

Cmp =
m∑

k=1

|Ãk| · d
(

p∑

k=1

Bkj , χTk
(x)

)
.

Hence 4S(H̃, Φ̃) is dominated by
∨

0≤α<+∞

[
α ∧ µ

(
L ∩ (Dmp)α

)]

+
∨

0≤α<+∞
[α ∧ µ ((T − L))]

≤
∨

0≤α<+∞

[
α ∧ µ

(
L ∩ (

D′
mp

)
α

)]
+

ε

2

Here, for simplicity, we use the notations of

Dmp =
m∑

k=1

|Ãk| ·
∣∣∣∣∣∣

p∑

j=1

Bkj − χTk
(x)

∣∣∣∣∣∣
and

D′
mp =

m∑

k=1

|Ãk| · d



pk∑

j=1

B
′
kj − χTk

(x)


 .

Now we estimate the first part in the above
formula. If x ∈ L, then for every k =
1, 2, · · · ,m, we have x ∈ Lk, hence
∣∣∣∣ χTk

(x)−
pk∑

j=1

v
′
kj ·σ(〈w′

kj , x〉+θ
′
kj)

∣∣∣∣<
ε

2
m∑

k=1

|Ãk|
,

for every k = 1, 2, · · · ,m. That is, for x ∈ L,

D′
mp =

m∑

k=1

|Ãk| · d



pk∑

j=1

B
′
kj − χTk

(x)


 <

ε

2
.

Therefore,
∨

0≤α<+∞

[
α ∧ µ

(
L ∩ (

D′
mp

)
α

)]

=
∨

α∈[0, ε
2
]

[
α ∧ µ

(
L ∩ (

D′
mp

)
α

)]

+
∨

α∈[ ε
2
,∞)

[
α ∧ µ

(
L ∩ (

D′
mp

)
α

)]

=
∨

α∈[0, ε
2
]

[
α ∧ µ

(
L ∩ (

D′
mp

)
α

)]

≤ ε

2
.

Thus, combining with the previous evalua-
tion, we obtain

4S(H̃, Φ̃)
≤ ∨

0≤α<+∞
[
α ∧ µ

(
L ∩ (

D′
mp

)
α

)]
+

ε

2
< ε.

The proof of (1) is now completed. 2
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