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Definition 1 We denote by (S7)'(R?) the dual space of the Gel’fand-Shilov space S (R%).
Main Theorem 1 Let U(z,t) € C®(R? x (0,00)) satisfy the following conditions:

(gt- - A) Ulz,t) =0, in RY x (0, 00).

Ve >0, 3C. > 0 s.t. [U(z, )|

< Ceexple(jz|7 + (1/8)"/Cr 1),
reRY 0<t<1.

or
Every € > 0, there is a positive constant C. ¢ such that
[U(z,t)| < Cepe, z e RY, £ >0,

Then U(z,t) has the following asymptotic expansions:
SN AN i
U(z,t) ~ kz_o EA’“U’ u€ (S%) (RY), such that u = }gno U(z,t) ).
Namely, for any even N,
N
I Ak o) ¥ = s} (w?
tg%'<U(xat))§0>_’§lH< xu’ﬂo)‘t —'0’ pE %( )7

where Ay =82 +---+ 02,
As an antecedent result about this investigation, K.Yoshino and Y.Oka also obtained the similar result
for tempered distributions S, the Fourier-hyperfunctions(S})’ and hyperfunctions A’(K) (See [4] and [5]
).

Moreover by choice of the space of a test function ¢, we partially find the convergence of the asymptotic

series as follows:

Proposition 1 Letu € S, p>1/2 and p € .511 }/22 . Then the asymptotic series

— (A™u, ) .
}:( :!(’ot

n=0

converges in {|t| < 1/(2e*)p?>B?}.




By using A. D. Sokal’s result([3]), we obtain the fallowing result:
Proposition 2 Let U(z,t) satisfies the following conditions:
’(1) U(:It, t) € Cm(Rd x (09 OO)),

(2) ?——A U(z,t) =0

at b ’
(3) VT >0, ¥e >0,3C; >0 s.t.

|U(z,t)] < Ceexple(z] + (1/1)], € R%, 0<t< T, (r=1).

Moreover for any ¢ € S}(R?), we put

_ A"
bn - """;L‘!"""": (u - %I»I‘)Y(I)U(:B, t))

and 4
=) bn .
Q)= ("
n=0
then we obtain
_1 —¢/t
W) =1 [ fo(Qe < ac, teDa,

where D = {t € C | Ret™* > R}
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A construction of instanton-type solutions for Painlevé
hierarchy by using multiple-scale analysis
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Abstract

In this talk, by using the multiple-scale analysis, we construct the instanton-type solu-
tions of the first Painlevé hierarchy. We first recall the explicit form of the first Painlevé

hierarchy (P)m (m =1, 2, ..., ) with a large parameter n (> 0)
dus
=L = o, J=12 .. m,
. (1)
v; .
"1Eij—=2(uj+1+u1uj+wj), ]=]_, 2, .., MM,

where u;, v; are unknown functions with the conventional assumption w,,; = 0 and w;
denotes a polynomial of u; and v; defined by the following recursive relation

1 J Jj—1 1 Jj—1
wj = 3 Zukuj+1_k + Z UpWj—f — 5 ka’l)j_k +cj+ 5jmt. (2)

k=1 k=1 k=1
Here ¢; is a constant and d;,, stands for the Kronecker’s delta. If m = 1, (P); is

equivalent to the traditional first Painlevé equation with a large parameter 7).

The instanton-type solutions of (FP;),, was first constructed by Y.Takei. ([T1],[T2]).
Y. Takei constructed instanton-type solutions by using singular perturbative reduction
of a Hamiltonian system to its Birkhoff normal form. On the other hand, by using
the multiple-scale analysis, T. Aoki constructed instanton-type solutions to the second
member of the first Painlevé hierarchy (), in [A]. In this talk, we generalize the method
given in [A] so that it may be applied to (P)nm.

References

[A] T.Aoki, Multiple-Scale Analysis for Higher-Order Painlevé Equations, RIMS
Kokytiroku Bessatsu B2, 2007, 89-97.

[Ko] T.Koike, On the Hamiltonian structures of the second and the forth Painlevé hierar-
chies and degencrate Garnier systems, RIMS Kokytiroku Bessatsu B2, 2007, 99-127.

[KKNT] T.Kawai, T.Koike, Y.Nishikawa and Y.Takei, On the Stokes geometry of higher
order Painlevé equations, Astérisque, Vol. 297, 2004, 117-166.

[KT] T.Kawai and Y. Takei, Half of the Toulose Project Part 5 is completed - Structure
theorem for instanton-type solutions of (Pjy)m, ( J = I, II or IV ) near a simple
p-turning point of the first kind, RIMS Kékytroku Bessatsu B5, 2008, 99-115.

[T1] Y .Takei, Instanton-type formal solutions for the first Painlevé hierarchy, Algebraic
Analysis of Differential Equations, Springer-Verlag, 2008, 307-319.

[T2] Y.Takei, Toward the exact WKB analysis for instanton-type solutions of Painlevé
hierarchies, RIMS Kokytiroku Bessatsu B2, 2007, 247-260.
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In this talk, we consider the following integral:

u= /exp {n (t* + z2t® + z1t) } dt, (1)

where 7 is a large parameter and the path of integration is taken to be rapidly
decresing at infinity. This integral is called Pearcey integral.
The Pearcey integral (1) satisfies the following system of partial differential
equations:
8

]
-~ 2 2——— 3 =
4(%? + 2291 G +z17 )U 0, .
8 8 @)
77'3';2‘—6—:1:%)“-—-0. .

A WKB solution for (2) was constructed by Aoki ([A]).
In the meanwhile, it is well known that for fixed z, the integral (1) satisfies a
third order differential equation discussed by Berk, Nevins and Roberts ([BNR]):

4d—3+2m 2i+:z: Blu=0 (3)
dz3 Mgy T -

This differential equation (3) has a virtual turning point and a new Stokes curve
([AKT, BNR]). By Aoki-Kawai-Takei ([AKT)), the connection formula for a new
Stokes curve is obtained through the single valuedness of WKB solutions near
a crossing at Stokes curves. o ‘
The purpose of this talk is to show that a connection formula for a new Stokes
curve is obtained from a connection formula by considering exact WKB analysis
for a holonomic system satisfied by the Pearcey integral in two variables.
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On the characterization of Stokes graphs for second
order Fuchsian equations
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Let us consider a second order differential equation
) (~g + @) v =0

Here 7 is a large parameter and @ is a rational function. The exact WKB analysis is
very powerful in studying global problems of Equation (1). For example, if it is Fuchsian,
we can calculate the monodromy group under some generic assumptions([SAKT], [AKT],
[KT]). In order to carry out such calculations, first we need to know the topological
configuration of turning points (zeros of @), singular points (poles of @) and Stokes
curves (real one-dimensional curves defined by Q). These objects form a (multi)graph
on the Riemann sphere, which is called the Stokes graph of Equation (1). According to
[SAKT] and [KT], if Fuchsian, any Stokes graph has the following remarkable properties;
it is connected and each face is quadrilateral (in a wide sense). When the number of
turning points is small, it was also confirmed, though experimentally, that these properties,
combined with some trivial ones, characterize the set of Stokes graphs, that is, for any
sphere graph having such properties, there exists a potential ) which realizes the given
graph as its Stokes graph (up to topological isomrphism)([SAKT], [KT], [AI]).

In this talk, reviewing the basic properties of Stokes graphs, we show mathematically
that the properties mentioned above indeed characterize the set of Stokes graphs for
second order Fuchsian equations even if there are many turning points.
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