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Summability of formal solutions for
singular first-order linear PDEs with
holomorphic coefficients II

Masaki HiBINO
(Okayama University of Science)

We study formal power series solutions for the following first-order linear partial
differential equation with two complex variables:

1) [{eo+ oz + B(z,y)}yDs + {az + b(z,y) }y? Dy ] u(z, y) = f(z,y),

where z, y € C, D, = 0/0z, D, = 0/dy. ap, o; and a are constants, and
ag, a1 # 0. B, b and f are holomorphic functions at the origin. Moreover 8 and b

satisfy
(2) B(z,0) = b(z,0) = 0.

We already know that the equation (1) has a unique formal power series solution
wz,y) = 2 Zoun(z)y™ € O[R][[y]], for some R > 0. Here we say that u(z,y) =

Ym0 Un(2)y™ belongs to O[R][[y]],, if all u,(z) are holomorphic on B(R) = {z €
C; |z| < R} (R > 0 is independent of n), and there exist some positive constants
C and K such that maxj,<g [un(z)] < CK™nlfor alln =0, 1, 2, .... Hence, the
formal solution u(z,y) diverges in general. (The suffix 2 of O[R][[y]], expresses
the Gevrey index of power series.)

So we are concerned with the existence of the Gevrey asymptotic solutions for
the above divergent solution u(z,y), and in particular we are interested in the
Borel summability of u(z,y).

Definitions. (i) For # € R, x > 0 and 0 < p < 400, the sector S(6,«,p) in
the universal covering space of C \ {0} is defined by

) 50,5, = { [anets) - 0] < 5, 0< i <}

We refer to 0, x and p as the direction, the opening angle and the radius of
S(0,k,p), respectively.



(i) Let u(z,y) = 302, un(z)y™ € O[R][[y]], and let U(z,y) be a holomorphic
function on X = B(R) x S(0,,p). Then we say that U(z,y) has u(z,y) as
an asymptotic expansion of the Gevrey order 2 in X if the following asymptotic
estimates hold: there exist some positive constants C' and K such that

N-1
4 max |U(z,y) — un(z)y"| < CKN Nyl
(4) max |U(z,y) ; (2)y"| < lyl
forall y € S(0,k,p) and N =1, 2, .... Then we write this as
(5) U(.?:, y) = u(x, y) in X,

(iii) Let u(z,y) = 302, un(z)y™ € O[R|[ly]l,- We say that u(z,y) is Borel
summable in a direction § if there exists a holomorphic function Uz, y)on X =
B(r) x S(0,k,p) for some 0 < < R, p > 0 and k > 7 which satisfies U(z,y) =,
u(z,y) in X. A given divergent power series u(z,y) € O[R][[y]], is not necessarily
Borel summable in general. However, when u(z, y) is Borel summable in a direction
6, we see that the above holomorphic funtion U (z,y) is unique. So we call this
unique U(z,y) the Borel sum of u(z,y) in a direction 6.

Our purpose is to give conditions which the coefficients of the equation (1) should
satisfy in order to assure the Borel summability of the formal solution in a given
direction 4.

Assumptions. First let us consider the following initial value problem:

d
(6) o= [f‘(f “ltag), (0)=0.

Then we assume the following:

(Assumption 1) (6) has a holomorphic solution ¢ = F(7) on the region B(r)u
5(0,k,+00) for some 7 > 0 and & > 0.

Next, let us define the region =, 4 . consisting of the image of F' by
(7) Sron =18 = F(r); 7 € B(r)US(8,k, +0)},
and let us assume the following:
. ‘ A% o
(Assumption 2) sup |exp — (€7 — 1 + )
§€5r,s,n ay

Next, in order to state assumptions for coefficients, we define the region {2, ¢,

by

) Buse={a =2 (et 1) e Zrae )

aq

< o0.




and define the entire function .Z(£) by

E a
(9) Z(6) = / exp [—f;(e—a“—ualc) da,

For the inhomogeneity term f(z,y) we assume the following:

(Assumption 3) f(z,y) can be continued analytically to 2,4 . x {y € C; ly| <
c} for some ¢ > 0. Moreover, it has the following estimate there. There exist some
positive constants C and § such that

(10) 1|§1l2>cc|f(x,y)| < Cexp [5 ]9 (—aillog (1 + -Z—lzv)> H y T E g

0

Finally, we impose the following conditions for the coefficients 3 (z,y) and b(z, y):

(Assumption 4) B(z,y) and b(z,y) can be continued analytically to §2,, . X
{y € C; |yl < c}. Moreover, there exist some positive constants K, L > 0 and
p > 1 such that

1 o™
ap + arx Oy™
1 omB
ap + ayz dy™
-pP
< KL™ml|E(z)[™*" - [1 + lﬁ (-ilog (1+ ﬂz)> H ,
a o
2 €S g, m=1,2,...;

(11)

(z 0)‘ SKL™mlE(x)|™, 2 € 2.5, m=1,2,...;

(12) ——(2,0) - az

1) |

< KL™m!|E(z)|™ . [1 + '3? (——log (1 + —w)) H _,,’

Qo
{I,'EQ,.,Q,K, m = 1,2,... N

where
acp/a?
(14) B(z) = e"elme (14 2) "

If ¢ € £2,,, it holds that 1 + (a;/ o)z # 0. Accordingly, all functions appearing
n (10)—(13) are well-defined.

Let us state the main theorem.

Main Theorem. Under assumptions (Assumption 1)—(Assumption 4) the
formal solution wu(z,y) of (1) is Borel summable in the direction 0.



On the Cauchy problem for hyperbolic operators of second
order whose coefficients depend only on the time variable

Seiichiro Wakabayashi (Univ. of Tsukuba)

1. Main results

Notations:
the time variable: ¢t € R &% ; ¢ R
the space variables: z = (z1,--- ,7,) € R” Qo §=(&,,6) ER"

Dy = —i0;, Dy = (D1, ,D,) = —i(8ay, -+ ,0s,)
Consider hyperbolic operators of second order whose symbols have the form
1
P(t,z,7,6) =7+ Y aj(t, )1,
7=0 |a|<2—j

where a;,(t,z) € C*([0,00) x R"), and the Cauchy problem

(CP) {P-(t,z, D;, D,)u(t,z) = f(t,z) in [0,00) x R™,

Diu(t, 2)l=o = u(x) inR* (j=0,1).
We consider everything in the framework of C'°.

Def: We say that (CP) is C* well-posed if

(B) VfeC®([0,00) xR™), Yu; € C®(R™) (j =0,1), Jue C=([0,00) x R™) satisfying
(CP). (Existence) :

(U) Ifs>0,ue C®([0,00) x R*), Diu(t,z)=o=0inR" (j=0,1)&
supp P(t,z, Dy, Dy)u C {t > s}, then suppu C {t >s}. (Uniqueness)
Throughout the talk we assume that
Aot ) = ajo(t) ifj+|al=2.
By coordinate transformation we may assume that P(t,z, 7, &) has the following form:

P(t,z,7,6) = 7 — a(t,€) + bo(t, z)7 + b(t, z, &) + c(t, z),

a‘(tv 6) = Z aj,k(t)gjfk, b(ta , 6) = Z bj(t’ $)£j, aj,k(t) = a‘k,j(t)'

k=1
Moreover, by Lax-Mizohata theorem we may assume that
(H) a(t,€) >0 for (t,¢) € [0,00) x R”
('see S. Mizohata, J. Math. Kyoto Univ. 1 (1961), 109-127). From Ivrii-Petkov’s result



we can assume without loss of generality that
(F) a(t,§) #0in ¢ for V¢ € R™\ {0}
('see V. Ya. Ivrii and V. M. Petkov, Russian Math. Surveys 29 (1974), 1-70).

Sufficiency:
We assume in “Sufficiency” that
(A) the a;x(t) are real analytic ( for simplicity),

(B) the coefficients do not depend on z, i.e.,
bo(t,z) = bo(t), b(t,z,€) =b(t,£), c(t,z)=c(t).
Let €2 be a neighborhood of [0,00) in C such that the a;(t) are analytic in €2, and put
R(E) ={(ReN)y; A€ Qand a(N,§) =0} for & € R™\ {0},

. where a; = max{a,0}. The following condition is a kind of the Levi condition:
(L) VT' >0, 3C > 0 s.t.

min [t —7[[b(t,&)| < Cv/a(t,€) for (t,€) € [0,T] x (R™\ {0}).

TER(E)
Thm 1: Under (A), (B) and (L) (CP) is C* well-posed.
Remark: R(£) can be replaced in (L) by R/(¢) satisfying
sup #(R'(§)N{t < T}) < oo for VT > 0,
£€R™\{0}
where # A denotes the number of the elements of a set A.

Def: (i) Let f be a function on R. We say that f(t) is a semi-algebraic function if
the graph of f is a semi-algebraic set, i.e., the graph of f is a set defined by polynomial
eauations and inequalities. (ii) Let to € R, U be a neighborhood of t, and f: U — R.
We say that f is semi-algebraic at to if 3¢ > 0s.t. {(t,y) € R% y = f(t) and |t — to| < ¢}
is a semi-algebraic set.

Necessity:
We assume in “Necessity” that
(A)" the a;x(t) and b;(t,z) (1 < j < n) are real analytic functions of ¢ € [0, 00).

Let t9 > 0, zp € R™ and ¢° € S*1. If n > 3, we assume that
(A)(ioc0y the aji(t) and b;(t, 2% (1 < j < n) are semi-analytic at to.

The following condition is very similar to the condition (L):

(L) (to,20,0y 3U: nbd of to, I conic nbd of £°, 3C > 0 s.t.
min |t —7{[b(t,2°, )| < CV/a(t,€) for (t,€) € U xT.

TER(E)

Thm 2: Assume that (A)’ and (B) are satisfied. Moreover, we assume that (A)’(’to’zo)

is satisfied if n > 3. Then (L), 40¢0) is necessary for C* well-posedness.



Remark: Assume that (A) and (B) are satisfied, and that (A){p,0) 18 valid for any
to =2 0if n > 3. Then (CP)is C* well-posed if and only if (L) is satisfied

related results:

* Colombini-Ishida-Orrd: ~ Ark. Mat. 38 (2000), 223-230.
(CP) is C* well-posed if (B) is satisfied and the following conditions are satisfied:

k€N, 3C>0st k>2and Y5 [da(t )| #0
for (¢,&) € [0,00) x S*1

(68, €)] < Calt, §)V/2~1/* for (,€) € [0,00) x S
* Nishitani: J. Math. Kyoto Univ. 24 (1984), 91-104.
2. Outline of Proof of Thm 1

We consider the Cauchy problem for an ordinary differential operator with the param-
eters £ and ¢ € [0, 1]:
{(P(t, Dy, €) = el€?)ue(t, &) = f(£,€),
’UE(O, é) = ﬂo(f), (Dtvf)(oa'g) = ﬁl(g)

We adopt the following energy forms:

gs(t> f; ’7) = Es(t> 6) exp[—y@(t, 5)]7

where v > 0 and

Ee(t,€) = |0ve(t, )1” + (a(t, €) + el€]* + W (¢, €)")|e(t, &),
®(t,8) =t + D log(v/(t— 7)) + 1+ (t —7)(O)Y?)

TER(E)
+log(\/t2(€)4/3 + 1 + t(€)*/3),
W(t,€) = 0,9(t,€), (&) = (1+ ¢*)Y2

Note that
O log(VA(, €)% + 1+ A(t,€)) = BA(t,€) /At ) + 1.

Then we have for v > 1

BE(t, &) < |f(t, 6 exp[—7D(t, &) /W (¢, £),
E.(1€57) < £.(0,67) + / expl—1®(s, €)]| f(s, O)12/W (s, €) ds,

and Thm 1 can be proved by a standard argument.



Gevrey regularities of solutions of nonlinear singular
partial differential equations

Hidetoshi TAHARA
Department of Mathematics, Sophia University,
Email: h-tahara@hoffman.cc.sophia.ac.jp

§1. Introduction. For o > 1 and an open subset V of R? we denote by £17}(V)
the set of all functions f(x) € C°°(V) satisfying the following: for any compact subset
K of V there are C > 0 and h > 0 such that

max |02 f(z)] < Chl¥|a]l®, Va e N™.
zeK .

A function in the class £{7}(V') is called an ultra-differentiable function of the Gevrey
class of order o.

For an interval [0,7] = {t € R; 0 <t < T} we denote by C°°([0,T], £{}(V)) the
set of all infinitely differentiable functions u(t,z) in ¢t € [0, T] with values in £ 114%)
equipped with the usual local convex topology (see Komatsu [1]).

The class £{7}([0,T] x V) can be defined in the same way.

We note the following example:

Example 1.1. Let (t,z) € [0,T] xR, k € N*(= {1,2,...}) and let us consider
(1.1) (t8 + 1)*u — t*8%u = f(¢,z).

The following results are known:

(1) (1.1) is uniquely solvable in C=([0,T), EL7H(R)) for any o > 1.

(2) If k> 2, (1.1) is also uniquely solvable in E1°}([0,T] x R) for any o > 1.

(8) But, in the case k = 1, the equation (1.1) is not uniquely solvable in &l (jo, T
R) for any o > 1.

By (1), for any 0 > 1 and any f(t,z) € £1°3([0, T] x R) we have a unique solution

u(t,x) € C*([0,T], £¥°H(R)) of (1.1); therefore whether or not (1.1) has a solution in
ELe}([0,T] x R) is reduced to the following problem:

Problem 1.2. If u(t,z) € C*°([0,T],£{?}(R)) is a solution of (1.1), can we have the
result u(t,z) € £} ([0, 7] x R) ?

§2. In the linear case. About this problem, the author has given in [3] a
sufficient condition for the problem to be affirmative: the result was as follows. Let
(2.1) P=(3)"+ Y ajaltz)(td,) 82

Jt+lal<m,j<m

where m € N* and a;4(t,z) € £91([0,T] x V) (j + |a] < m, j < m). We denote by
kja the order of zero point ¢t = 0 of a;4(t,x): that is,

(2.2) kjo = inf{k € N; (8faja)(0,2) # 0 on V}.



Theorem 2.1 ([3]). We set A = {(j,); kjo < |a|}, and suppose:
1) kjo > 0 holds if || > 0, and
2) o satisfies

(2.3) 1<0<1+min [oo, min (wﬂ .
(J,x)eA la] . kj,a

Then, if u(t,z) € C*([0,T], E7}(V)) satisfies (Pu)(t,z) € (0, T) x V), we have
u(t,z) € EL7H([0,T] x V).

§3. In the nonlinear case.” Let m € N*, A = {(j,2) e NxN"; j+|a| <m,j <
m} and d = #A be fixed. In this section we will consider the nonlineat equation

(3.1) (td)"u = F(t,x, D™u) with D™y = {(tat)fagu}(j,a)e,\.

We denote by z = {zja}(ja)en the variable in R? (which corresponds to D™u =
{(t0,)03u}(jayen)- Let 2 be an open subset of R; x R? x RY, and let F(t,z,z) be a
C® function on Q. Let ¢ > 1, T > 0, and let V be an open subset of R™.

The main assumptions are as follows.

c1) m>1is an integer:

e) F(t,z,2) € loXQ):

c3) u(t,z) € C([0,T],£{H(V)) is a solution of (3.1) on [0,T] x V.
The condition ¢3) includes the property: (t,z) € [0,T] x V = (t,z, D™u(t, z)) € Q.
We set

kjo =inf{k € N; (8;“(617/82]',&))(0, z, D™u(0,z)) Z0 on V},
A={(j,a); kja < |af}.

Theorem 3.1 ([4]). Suppose the conditions c1) ~ c3), and
1) kjo > 0 holds if |a| > 0,
2) o satisfies

. . m—j—bl}
3.2 1<o<1 , —_— .
(3.2) <o <1+min {oo (jgx)lélA( ol — T )

Then we have u(t,z) € £173([0,T] x V).

References.
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[3] H. Tahara : Singular hyperbolic systems, VIII. On the well-posedness in Gevrey
classes for Puchsian hyperbolic equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math.,
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On the Deficiency Index of Even
Order Symmetric Differential
Expressions with Essential Spectrum

Marian P. Roque
Institute of Mathematics
University of the Philippines - Diliman
- Quezon City, Philippines
Bernd Schultze
Department of Mathematics
University of Duisburg-Essen, Essen, Germany

Abstract

We consider real symmetric expressions of order m = 2n which are
of the form " '
My =Y (=1) (pjy) D,

=0
where p; € CI(I,R) for j = 0,...,nand p, > O0Oon [ = [1,00). The
spectral properties of M we shall be considering consist of the essential
spectrum of M, denoted by o.(M), and the nullities of M, denoted by
nul(M — X) which are defined as follows :

oe(M) = {AeC | range Ti(M — Al 2) is not closed}
nul(M —X) = dim ker(Ty(M — M 2)) for A e C,

where Iz is the identity on £2(I) and Ty(M — A 2) is the maximal
operator generated by M — Al 2. Since the nullities of M are constant
in C\R, we consider the nullity only for A = i. We refer to this nullity
as the deficiency index of M and denote it by d(M).

In this paper, we shall show that for all n, k € N with n < k < 2n,
there exist expressions M of order 2n with nonempty essential spectrum
such that d(M) = k. A brief historical background on the deficiency
index problem will also be discussed.
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A note on wave equations in Einstein & de Sitter
spacetime

Anahit Galstian, Department of Mathematics, University of Texas-Pan Amer-
ican, 1201 W. University Drive, Edinburg, TX 78541-2999, USA

Tamotu Kinoshita, Institute of Mathematics, University of Tsukliba, Tsukuba,
Ibaraki 305-8571, Japan

Karen Yagdjian, Department of Mathematics, University of Texas-Pan Amer-
ican, 1201 W. University Drive, Edinburg, TX 78541-2999, USA

The current note is concerned with the wave propagating in the universe
modeled by the cosmological models with expansion. We are motivated by
the significant importance of the solutions of the partial differential equations
arising in the cosmological problems for our understanding of the universe.
The covariant wave equation in Einstein & de Sitter spacetime is given by

(1) B — t73 A + 24710, = f(t, z).

One can not expect the wellposedness of the initial valued problem for this
equation due to the singular coefficient ¢~ %. Therefore, we shall impose a
different kind of initial condition on the equation as

(2) lim t(t,2) = po(2), lim (t0,46(t,2) +(t,:2) +3t~ Ao (2)) = 1 ().

We denote the unit ball and the unit sphere by B and S™ respectively,
and denote the area of S™ by w,, and define the operator M, by
27 Hh(z +r) +h(a:—r )} for n =1,
a = n—/ l‘+'f‘:g'/2 for n=2747...

1 n—
8r(;8r) - T 2/Sn_1 h(z + ry)dS, for n=3,5,...

M,[h)(r;z) :={ wp(n -7
1
Wn—1(n — 2)!!

. Then we can get the following;:
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Theorem 1 Assume that ¢o, ¢ € C*°(R}) and f € C*([0,00) x R?), and
that with some € > 0 one has for a, |a] < [(n+1)/2]

02 f(t, )| + 60,02 f(t, )| < Cat*™2 for all z € R and for all small t > 0.
Then, the solution 1 = v(t,z) to the problem (1) and (2) is represented by

1 3 OM,
Y(t) = LM Lol 3110 - 5 D2nld

2 1 ,1-p1/3
% /0/ b(1+b* — ) M, [ f (-,tb)] (3t s;z)dsdb.
0

L
(3t1/3,x)+g/(1—32)Mn[(p1](3t1/33,x)ds
0

2

Remark: The original equation in Einstein & de Sitter spacetime is consid-
ered only for the problem in the spatial dimension n = 3.

In fact, by putting u(t,z) = ti(¢, ), the problem (1) and (2) can be
reduced to the problem

u— t7 5 Au = tf(t,x)

and
lim u(t,z) =¢o(z), lim (Bu(t,z)+3t™50p0(x) ) = 1 (z).

We solve this problem for the proof of Theorem 1.

References
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Reconstruction of penetrable obstacles
in acoustics

Sei Nagayasu (7K ZZEE) (Hokkaido University)
Gunther Uhlmann (University of Washington)
Jenn-Nan Wang (£#%%) (National Taiwan University)

Let D be an unknown obstacle with an unknown index of refraction subset of a
larger domain 2 with a homogeneous index of refraction. Assume that D is penetra-
ble. We send an acoustic wave from the boundary of ). Suppose that we are given
all possible Cauchy data or the Dirichlet-to-Neumann measured on 8. The inverse
problem we consider in this talk is to determine the shape of D using the boundary
measurements.

Let Q C R? be a bounded domain with C2-boundary. Let D € Q be an open
set with C*-boundary. We assume yp € C?(D) satisfies 7p > ¢, for some positive
constant c,. We define 5 := 1+ ypxp, where p is the characteristic function of D.
Let k > 0. We consider the Dirichlet problem

{v.(wvwk%:omﬂ, ®

v= fondf.

We remark that when D = () (that is, ¥ = 1 on ) the problem (f) is the following
boundary value problem for the Helmholtz equation:

vg = f on Of). ®

{ Avy + k*vg = 0in Q,
We now assume that k? is neither a Dirichlet eigenvalue of the operator —V - (¥Ve) in
{2 nor it of the operator —A in ). Then we can define the Dirichlet-to-Neumann (DN)
maps Ap, Ag : HY2(0Q) — H~2(5Q) as

(v is the solution to (})), Apf := ?—1—;9 (vo is the solution to )

v
Apf =~
0 O [

ov

since () and () have the unique solution, respectively. We remark that the operator Ay
is known data because it is determined only by § and k. The operator Ap corresponds
to observation data on 9f2. On the other hand, D and ~vp are unknown data. We
consider the inverse problem that one reconstructs D from the DN map Ap. In this
talk, we try to reconstruct D by the enclosure method with complex geometrical optics
(CGO) solutions having polynomial-type phase functions for the Helmholtz equation.

The reconstruction procedures by the enclosure method for the case of impene-
trable obstacles are given by Ikehata [I] and Nakamura-Yoshida [NY]. However, we
need more precise analysis in the case ¢ etrable obstacles. Indeed, although the



coefficient of the equation is smooth in the case of impenetrable obstacles, it only has
piecewise smoothness in the case of penetrable obstacles. Hence we need to analyze
more precisely, for example apply the result of Li-Vogelius {LV] and so on.

We now state CGO solutions we use. We construct them by using the idea of [UW]
(which gives CGO solutions for the Laplace equation) and the Vekua transformation.
We first fix a number ¢, € C with |c,| = 1 and a point z, = (.1, Z.2) € R?\ Q, and
choose () = ¢, ((z1 — Tu1) + i(z2 — x*2))N as a phase function. We may assume
z, = 0 without loss of generality by a parallel translation. We choose an open cone I’
with the cone point 2, (= 0) and the opening angle /N satisfying Ren(z) > 0 for all
z € I'. We denote the Vekua transformation by 7} (see (13.9) on page 58 in [V]):

TV (z) == V(z) - kl:z:[/o V(1= s*)z) Ji(k|z|s) ds,

where J,, is the Bessel function of the first kind of order m. It is known that the Vekua
transformation 7T} maps harmonic functions to solutions to the Helmholtz equation. We
define Vi!(z) := Ty (exp(n(-)/ h))(z). We want to use the following functions V; ()
as CGO solutions:

Vin(@) 1= dila) exp () Vi(@)
= e (31 +1(@)] ) (40 +0) (-0,

where ¢; () is the suitable cut-off function which is identically equal to zero outside
of I'. Unfortunately, the function V;, itself does not satisfy the Helmholtz equation
at the hands of the cut-off function. Then we define fin = Vinloa, and consider the
solution vy 5, = g to the Dirichlet problem () with the Dirichlet data ft,n- The CGO
solution we use here is vg .

Now we define the indicator function E(t, h) by

E(t,h) = / (Ap = Ag)funTondo  fort>0, >0
o0

with the CGO solution vy, (We remark vy n|on = fin). We remark that E(t, h) is
determined only by known data and observation data. On the other hand, we define
e D by
©p := sup Ren(z)
zeDNT

(see Figure). This corresponds to a “support function”. We remark that ©p is deter-
mined by unknown data D. However, if we can reconstruct © 5 from the observa-
tion data (or E(t, h)) then we can obtain some information about the shape of D. In
particular, for example if we know a priori that D is star-shaped then the shape of D is
completely reconstructed. Briefly speaking, our result is

1
0 if>>6ep,
lim E(t, h) = :
- +oo if = < Op,

13
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Renlr) = —}—(< Op)
’ Ren(z) = Op
Rey(x) = %(> Op)

xo

Figure.

in particular,
1

B sup{t >0 lim E(t,h) = o}'

©p

Hence we can reconstruct ®p from observation data. The detail is as follows:

Theorem. Let DN # 0. We assume that the set {x € ' : Ren(z) = ©p} N oD
consists only of one point xo, and the “relative curvature” to ng(z) = ©p of D at z,
does not vanish. Then the following holds:

e For 1/t > Op, there exist C,c; > 0 such that |[E(t,h)| < Ce~/h,

e For 1/t = Op, there exists ¢ > 0 such that E(t,h) > ch™1/2.

o For 1/t < ©p, there exist c,cy > 0 such that E(t,h) > ce®/h,

We omit to state the definition of “relative curvature” here. However we remark
that the curvature assumption is always satisfied as long as NV is large enough. Hence
we can say that the curvature assumption is minor.
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Existence of classical solutions near characteristic points of first
order nonlinear partial differential equations in real domains

Sunao OUCHI
(Sophia Univ. Tokyo)

Let
F(z,u,uz) =0 (1)

be a nonlinear partial differential equation in a neighbourhood of Q@ C R? of
z = 0, where F'(z,u,p) is a real-valued smooth function in a neighborhood
of (z,u,p) = (0,0,0) € R?%+! such that F(0,0,0) = 0.

If F;,(0,0,0) # 0 for some ¢, then it follows from the theory of first order
partial differential equations that we have solutions by solving noncharacter-
istic Cauchy problem with the method of characteristic (see [1], [4]).

If

F,(0,0,0)=0 for i=1,2,---,d, (2)

the above theory is not applicable. If F(z,u,p) is analytic, the existence
of analytic solutions is studied under the condition (2), for example [2], [3]
and [5]. In these papers firstly they construct a solutions of formal power
series and next show the convergence under a condition, so called, Poincaré’s
condition.

However if F'(z, u,p) is not analytic, it seems that general existence results
are not known. The purpose of this lecture is that we construct a solution

i

u(z) of F(z,u,u;) = 0 in a neighborhood of z = 0 with u(0) = 0 and -

uz,(0) = 0 (1 <7 < d) under condition (2).
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A family of K3 surfaces and a GKZ differential equation induced
from a Fano polytope

Toshimasa Ishige
Inst. of Math. and Physics
Chiba University

October 20, 2009

0 Overview

In this talk, we deal with a relationship between a family of elliptic K3 surfaces and a GKZ hypergeometric
differential equation which are both induced from a Fano polytope. They are connected each other in the
sense that the periods of the former constitute the basis of the solution space of the latter and they share
the monodromy group which is isomorphic to the Hilbert modular group for v/2. We will give an elliptic
fibration to the family of K3 surfaces. In the generic case, a member surface of the family has singular
fibres consisting of one of the type IV* ,one of the type I 0, and six of the type I, following the Kodaira’s
notation. Confluences of the singular fibers occur for the special subfamilies, which correspond to the
singular loci of the GKZ differential equation. The main result is that the monodromies for the closed
paths around some certain singular loci generate the entire monodromy group. As a tool to analyse the
monodromy, we will use a numerical computation for the monodromy representation relative to a certain
basis.

As a starting point, the family of K3 surfaces and the GKZ differential equation are induced below from
the Fano polytope. The rest of the story will be told in the talk.

1 A family of K3 surfaces

1.1 Polytope P

We first derive a family of surfaces from a Fano polytope.

Definition 1.1. A three dimensional polytope in R3 is a Fano polytope if and only if
1. (0,0,0) is an interior point.
2. any vertex is in Z3.
3. any face is a triangle and its three vertices generate Z3.

It is known that there are 18 Fano polytopes upto isomorphism. Out of those, we pick up a 5 vertexed
Fano polytope

100 0 -1
=010 0 -1,
001 -1 -1

where each column represents a vertex.
We enlarge P3 by adding a column and a row as follows.



(1.1)

Let the elements of the first row of A represent 6 parameters z, . . ., zg with exponent 1. Let the second
through forth elements of each column of A represent the terms t1, ¢y, £3 in this order with the exponent
being the value of the elements. Thus each column of A represent the product of the parameter and
the terms corresponding to its elements. Following these rules, we derive the equation with parameters
T1,...,T6:

@1 + Taty + T3t + Tats + 5ty -+ xety g gt = 0.

Multiplying t1tot3, we have
t1t2t3($1 + xot1 + x3ly + x4t3) + xs5t1te + 26 = 0.

Put z = xat1,y = z3t2, 2 = x4t3. We get

T5
zyz(z1 + T+ y+2) + ——2y + 26 = 0.
ToT3T4 T2Z3

Put
TyZTs b= ToXT3T4Te ) (12)

A =
]}12 ’ .’L’14

Then the equation is reduced to the following which is an affine representation of a K3 surface Sxu
zyz(z+y+2z+1)+ Ay +p=0,with A\ pueC. (1.3)

So we obtain a two parameter family of K3 surfaces F = {S) ,}.

2 A GKZ-hypergeometric differential equation

In addition to the K3 surface family F, the matrix 4 of (1.1) equipped with a column vector B8 ezt
as a parameter induces a GKZ-hypergeometric differential equation. We write up A again and fix 8 as

follows:

1111 1 1 -1

0100 0 -1 0

A=loo 10 0o -1|° P=]|o

0001 -1 -1 0
In order to determine the differential equation from this data, we need the following preparations; Let
the columns of A correspond to 6 variables z1, ..., zs of the differential equation. Z-solutions of Av =0
are '

v(l,n) =t n), ..., vs(,n) = 14(~2,0,0,1,1,0) + nt(-4,1,1,1,0,1) I,n € Z.

Let I(l,n) ={i € Z | 1 < i < 6,1(L,n) > 0} and J(I,n) = {j € Z | 1 <37 <6,u(l,n) <0} Let
vy = *(—1,0,0,0,0,0) which is a solution of Avy = 3. Let 0y, = a%i(i =1,...,6), the Euler operators.

17
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Then the GKZ-hypergeometric differential equation consists of the following two systems;

1st system of equations:

6
(Z 01,) p=-p,
i=1
(ezz — Oz )o =0,
Oy — 825 )p =0,
(Bzy = Oz — 0z)p =0. (2.1)
2nd system of equations:

11 (=) - 1

X
iel(l,n) N jed(l,n)

9 —v;(l,n)
(———) ¢ forall I,ne€Z. (2.2)

c‘hj

The 1st system (2.1) is equivalent to the claim that ¢ is of the form

1
p=—@(A\p), where A= Eﬁ;—i, m= xz_msic‘;_xe. (2.3)
T xry Ty

Note that these A, u correspond to A, u in (1.2). Thus we have

0905 = 9>\7 ea:s = gua
Oy = —Ozg =04, Oz =0z, =0,, 6y, =0, + 0z =0\ +0,,
O, = —(0zy + ... +0g6) — 1 = =205 — 40, — 1. (2.4)

The 2nd system (2.2) is reduced to

oo _ o
83046155 - a.’t%’
8¢ 3By

(9.’1123.2333:136 = 6x46:v§ ’ (2.5)

From (2.4) we have

82 1 1 1
*—6:”463:5 = E a4 Eezs = TaTs (6x + 911)9)\*
02 1 1 1 1
—67% - (E_1 1 Zgzl = Eowl (021 - 1) = .’11_%-(20)\ + 40# + 1)(20)‘ + 46” + 2)’
83 1 1 3 T4l 3
= = — =——0 3
(9:1226:1,‘38:176 ToZ3Te 9129% 016 X2I3xg 9“ m‘ll 12 s
8 1 1 1 1
= —0,. = —=06,.6 -1) = 0 0, 0y —1).
0r,0z  wazs "t a0 xexd 240z (0z; —1) 1’4Z§( A+ 0u)62(6x — 1)

Hence we can reduce the number of the variables and rewrite the GKZ-hypergeometric differential
equation.
Let Ly, Ly be differential operators as

L1 = N26x + 46, +1)(205 + 46, + 2) — 6x(0x +0,,),
Ly = X263 — u(6x +60,)0\(0x — 1). (2.6)

Then the equations (2.1),(2.2) are equivalent to

Lip=0, Lyp=0. (2.7)



Period differential equations for families of K3 surfaces derived
from some reflexive polytopes

KEFH1T (Atsuhira Nagano, Waseda Univ. M2)
October 20, 2009

The concept of reflexive polytope is introduced by Batyrev ([B]). Among them three dimensional
ones are listed by Ohtsuka ([O]). We have the following 5 three dimensional reflexive polytopes with 5

verteces having at most terminal singularities:
100 -1 0 1 0 0 -1 100 0 -1
P,=10 -1 0 ],Ps=|0 0 0 —-1},P,=10 10 0 -1])],
0 0 -1 0 1 -1 -1 0 01 -1 =2
0 0 -1
0 -1 0}.
1

1 -1 -1 1
Ps=1{0 -1 -1}, =10
00 0 -1 0 -1 -1

By using the vertices like a Newton polygon, we obtain families of K 3 surfaces with 2 complex parameters
from each of them. For Pj there is a detailed study by Ishige ([I]).
For the four rest cases we obtained:

—_ O O =
_ O O = O
O R O O M= O

(1) power series expressions of a period of the families of K'3 surfaces,

(2) a system of defferential equations for these periods,

(3) the Pfaffian systems corresponding to those systems and their singular loci,
and that '

(4) all these Pfaffians are integrable with 4-dimensional space of solutions.

Remark 0.1. Recently Takayama and Nakayama ([T-N]) have made a computer calculation for the
Groebner basis to get the system of differential equations for 3-dimentional Fano polytopes with at most
6 verteces.

Remark 0.2. We ezpect that we shall be able to define the lattice structure of our K3 surfaces, the period
domain, the monodromy group. We restrict our attention to the aspect of differential equation, and omit
all these subsequent arguments in our talk.

Case P,

By using the vertices and the origin as a Newton polygon, we obtain a family of affine complex algebraic
surfaces with parameters ay,--- ,ag:

xyzz(al:c +ayy+aszz+as+asz"t + aex'ly‘lz‘z) =0.
By choosing only effective parameters, we obtain the following family F; with 2 parameters A, p:
SO p)zy2(z +y+z+ 1)+ Azyz +p=0. (0.1)

For a generic parameters (A, ), the minmal compact nonsingular model is a K3 surface. So we have
unique (up to a constant factor) holomorphic 2-form on it. That is given by
zdz Adz

Y= 9F/ay (0:2)
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where F = zy2%(z +y + z + 1) 4+ Azyz + p and Fy means the partial derivative for y. The period of
S(A, p) is obatined by the integration of w on some 2-cycle. For sufficiently small A, 4 and &, we have a
lifting of a real torus {|z| = €} x {|z| = €} to a 2-cycle T near the origin on S(Ap).

We have
. _ N2 - _1\ym (5m+2n)' n,m
r)(A,F)_Lw_(sz) n;o( D e (0.3)
Set

1111 1 1 -1
(ot 00 0 -1}, [o
A= 0010 0 -1 A= 0
0 001 -1 -2 0

By this data we obtain a GKZ hypergeometric differential equation L; = Ly = 0 with

{L1 = 0x(0x + 20,) — A(20x + 50, + 1)(205 + 50, + 2), 04)

Ly = X203 + by (65 — 1)(20x + 56, + 1),

where 0y = A&, 0, = p% (see [H]), and n(A, u) satisfies this system. It has a 6-dimensional solution
space, and it is not irreducible. By some geometric observation we expect 7 satisfies a 4-dimensional

system. By a direct calculation we obtain the system L; = Lz = 0 for 5 with

{Ll = 0x (0 + 20,) — A(205 + 50, + 1)(205 + 50, + 2), 05)

Ly = A2(463 — 20,0, + 502) — 8X3(1 + 305 + 50,, + 202 + 50,6,,) + 2505 (0 — 1).

We can transform the system (0.5) to an explicit Pfaffian system, and we know that satisfies the
integrability condition. So we can say that the system (0.5) has a 4-dimensional solution space as
expected. According to this calculation we get the singular locus of the system (0.5):

Ap(A?(4A = 1)® — 2(2 + 25X(20A — 1)) — 31252) = 0. (0.6)

Note that it is composed of three rational curves.

The other cases

We can make similar calculations for the rest of our list. We give only the results.

(i) For Pp, we have the family of K3 surfaces: Fp : zyz(c + y + z + 1) + Az + pzy = 0 and the
dz Adz

holomorphic 2-form w = m, (F2 =zyz(z +y+z+ 1) + Az + pzy). The period of a 2-cycle T near
2/0Y
the origin is given by :
e !
/w = (2m5)? Z (_1)“M,\num_
r

o (m!)2(n)3

The corresponding GKZ equation L; = Ly = 0 is given by

Ly =05 — p(30x +20, +1)(30x + 20, + 2), 0.7)
Ly =63+ X(30x 420, + 1) (305 + 20, + 2) (30 + 26, + 3). ’
The 4-dimensional system L; = L3 = 0 is given by
Ly = 9?\ —-,u(39,\+20u+1)(39,\+29u+2), (0 8)
La = 0x(30x —20,) + ON(30x + 20, + 1)(30x + 20, + 2) + 4ubx (365 + 20, + 1). '

The singular locus is given by Ap(729A% — (4p — 1) + 54A(1 + 12u)) = 0.



(ii)For Ps, we have the family of K3 surfaces: F5 : zyz(z+y+2z+1)4+Az+p = 0 and the holomorphic

dzAd
2-form w = BiF/\/—;y—,(Fs = zyz(z +y+ 2+ 1) + Az + p). The period of a 2-cycle I' near the origin is
5
given by
[ee]
. 4m + 3n)!
=(2 2 _1\n ( AR ™
Jro=em? 3 0 i e

The corresponding GKZ equation L; = Ly = 0 is given by

Ly =202 + pfx(30x + 46, + 1), (0.9)
Ly =0x(0x+0u) + A(30x + 46, + 1)(30x + 40, + 2)(30x + 46, + 3). l
The 4-dimensional system L; = L3 = 0 is given by |
Ly = X02 + pfr (305 + 46, + 1), (0.10)
Ls = X0x(30x +26,,) + pOx(1 = 02) + 9A? (30 + 40, + 1) (305 + 46, + 2). '

The singular locus is given by Au(AZ(1+ 27X)2 — 2Ap(1 + 189A) + (1 + 576))u® — 25643) = 0.
(iii)For the case P,, we have the family F, : zyz(z + y + 2z + 1) + Az + gy = 0 and the holomorphic
de AN dy

OF, [0z’

2-form w = ( Fr = zyz(z +y+ 2z + 1) + Az + py). The period of a 2-cycle T' near the origin is

given by

(0 ) = /F w= (@)Y (n!)z(?::!; (372); I (0.11)

In this case our period is reduced to the Appell hypergeometric function Fy (see Koike [K]):
(A, p) = Fu(1/3,2/3,1,1;27X,27p) = F(1/3,2/3,1;2)F(1/3,2/3,1,;y),

where F' is Gauss hypergeometric function and (1 — y) = 27\, y(1 — z) = 27u.
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A notion of boundedness at infinity
for univariate hyperfunctions

Yasunori OKADA (Chiba University) (& HiH)

Massera studied periodic solutions to periodic ordinary differential equations in
several situations, and in the linear setting, gave the following result ([2, Theorem

4]).

Theorem 1. Consider a system of ordinary differential equations

d

prie a(t)x + b(t),

where a(t) and b(t) are R™*™-valued and R™-valued continuous functions. As-
sume that a(t) and b(t) are 1-periodic. Then the ezistence of a solution which is
bounded in the future implies the existence of a 1-periodic solution.

We were interested in the question whether there is a counterpart to this phe-
nomenon in the framework of hyperfunctions. Since usual hyperfunctions admit
no notion of inequality nor boundedness, our problem might be translated into

Problem. Can we introduce a notion of “boundedness at +o00” into univariate
hyperfunctions, admitting a Massera type theorem?

Note that Chung-Kim-Lee [1] constructed and studied the space Bre of bounded
hyperfunctions in the several variables by duality, using the heat kernel method.

On the other hand, in order to give an answer to the problem, we introduce
the sheaf Zre on D! := RU {#oo} = [—o0, oo] of univariate hyperfunctions
bounded at infinity, (refer to [3]), in a similar manner to the original definitions of
hyperfunctions and Fourier hyperfunctions in one-dimensional case given in Sato

[4]. We also give the relation between Breo and Bre.
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Microlocal analysis of a vortex sheet

hyperfunction = vortex layer
— 1. Imai

Keisuke Uchikoshi
Department of Mathematics,
National Defense Academy

Vortex sheet is a 2D inviscid and incompressible fluid whose velocity
field i(t,z,y) = (u(t,z,y),v(t,z,y)) is discontinuous on a curve I'(t) =
{(z,y) € R*: y = f(t,x)}, which is called the interface. The time
evolution of the interface is described by Birkoff-Rott equation. Althogh
this equation has a long history, the corresponding Cauchy problem is
not solved in a general framework. On the other hand, I. Imai [3] said
that a hyperfunction is a vortex sheet, and we want to show that this
idea is successfully applicable to solve Birkoff-Rott equation.

We assume that the velocity field @ is incompressible everywhere, and
is irrotational outside of I'(¢). The velocity field may be discontinuous
on I'(t), and its vorticity is concentrated there. Let f(t,z) be the above
function which defines I'(¢), and let g(¢,z) be a function which indicates
the strength of the vorticity at each point (z, f(¢,z)) € I'(¢). Then they
satisfy the following Birkoff-Rott equation:

(2) g =—(Ug)a.
Here U(t,z), V(t,z) are determined by
(3) Ult,z) — V=1V (t,z)

\/——_I oo g(t,:l?’) de’
27r coo® — T+ =1f(t,x) — V/=1f(t,2)

r—¢ x+R
hm /
e—++0

This is a singular integral which one usually regards as determined by
fz, g. Differentiating (1) by z, we have the following Cauchy problem
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foo = =Usfe = Ufor + Vg,
(4) 9 =—(Ug)s,
fz(0,2) = fi(z).
The difficulty arises from the integration (3). R. E. Caflisch, O. F. Orel-

lana [1] and C. Sulem, P. L. Sulem, C. Bardos, U. Frisch [4] considered

the case of an analytic f,. J. Duchon, R. Robert [2] considered the case

of a small f,. S. Wu [5] considered the case of & Sobolev function, but

she could not assign the complete value of f,(0,z). We want to show

that if f, is periodic and has Hélder continuity, then (4) has a solutuion.
Let w=1[0,T] x R for T > 0. We define

FP(w) = {h(t,z) € CO(w); h(t,z + 2m) = h(t,z), ||h||, < oo},
where

h(t,z1) — h(t,
l|hllp = sup |h(t,z)]+ sup |h(t, z1) = h(t, z2)]
(t,z)ew (t,21,72)EA Ia;l _ $2|p

A = {(t,z1,29) € [0,T) x R*; 21 # ).
We also define FP*!(w) = {h(t,z) € FP(w); hy(t,z) € FP(w)}. Then we
have the following
Theorem. If f.(z) € FP*Y(w) satisfies [T fo(z)dz = 0 and T > 0 is

small enough, then there exist f,,g € FPt*Y(w) satifying fu, g € FP(w)
and (4).

9
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Geometric properties and decay estimates in
crystal theory in the nearly cubic case (Results

in collaboration with C.Melotti)

Otto Liess

We study algebraic and geometric properties of the slowness surface of the
system of crystal optics for tetragonal crystals in the nearly cubic case. A
first group of results refers to the location and nature of the singular points
of the surfaces under consideration, whereas other results relate to curvature
properties of these surfaces. It is only for these curvature properties that we
need to remain in the nearly cubic case.

These results are needed in the study of the asymptotic behaviour at infinity
of the solutions of the system. We also study the general form of quartic and
sextic surfaces of “slowness type” which are quadratic in their variables and
compare them with the quartics and sextics which appear in the theory of
crystal optics and of crystal acoustics for cubic and tetragonal crystals.

We finally discuss optimality of the decay estimates in the case of an example
of a system which has a number of features which relates it to crystal theory,
but is simpler than the system of crystal acoustics. Since decay estimates are
more robust for first order systems than for scalar equations, we shall apply a
result on a conjecture of P.Lax on the situations under which a scalar constant
coefficient linear partial differential operator is the determinant of a first order
symmetric hyperbolic system.
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Phase space Feynman path integrals via piecewise bicharacteristic
paths and their semiclassical approximations!

Naoto Kumano-go ? (Kogakuin University)

Let T > 0 and z € R%. Let U(T,0) be the fundamental solution for the Schrodinger equation
h

(ihdr — H(T, 2, =0,))U(T,0) =0, U(0,0) =1 (1)

with the Planck parameter 0 < A < 1. By the Fourier transform, we can write

d
H(T,x,gaac)v(w) = (1) /R €T H (T, 7, h&)D(&)déo

or
1\ ;
- (_2;_}9 /deeﬁ(z—zﬂ)"s’OH(T,x,gg)v(xo)dwodfo (2)

with zg, § € R?. Now we consider the function U (T,0,z,&) satisfying

d )
U(T, 0)v(z) = (5%5) [y F U, 0,7, )0 20)drode. 3)

Using the phase space path integral introduced by R. P. Feynman, we formally write
e%(z~aco)~§oU(T,07 z,&) = /e%tﬁ{q,plp{q,p] . (4)

Here (¢,p) : [0,T] — R? x R* are the paths with q(0) = o, ¢(T) = = and p(0) = & in the
phase space, ¢[g,p] is the action of Hamiltonian type defined by

dlapl= [ ple)-da(t)~ [ Hqt),p(e)at, 5)

and the phase space path integral / ~ Dlg,p] is a sum over all the paths (g,p). However, in
the sense of mathematics, the measure D[g, p] does not exist. Furthermore, in the uncertainty
principle, we can not obtain the position ¢(t) and the momentum p(t) at the same time ¢.
In this talk, using piecewise bicharacteristic paths, we prove the existence of the phase space
Feynman path integrals
[ e#497 Flg,pDlg,

with general functional F[g,p] as integrand. More precisely, we give a fairly general class F
such that for any F[g, p] € F, the time slicing approximation converges uniformly on compact
subsets with respect to the final position z and the initial momentum &o-

Assumption 1 H(t,z,£) is a real-valued function of (t,z,€) € R x R¢ x Re. For any multi-
indices a, 8, 020, H(t,z,€) is continuous and |020F H(t,7,€)| < Cap(1+|z| +|&])max@-la+510)

! Naoto Kumano-go and Daisuke Pujiwara, Bull. Sci. math. 182 (2008) 8313-357.
%supported by JSPS. KAKENHI(C)21540196
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Let Aro = (Ty41,Ty,...,T1,Tp) be any division of the interval [0,T], ie.,
AT’O:T=TJ+1>TJ>"‘>T1>T0:0. : (6)

Let tj = T] - 7}_1 and IAT,OI = maXj<ji<j+1 tj. Set Tjy1 = . Let Zj S Rd and gj S Rd for
J=12,...,J. Assume that xyd|Azp| < 1/2. Then we can obtain the bicharacteristic paths
Ity 150 = Gr,15-, (6,25,€5-1) and pry oy, = pryr,_, (8,75,&-1), T < t < T; by Hamilton’s
canonical equation

atq—ijTj—l (t) = (a’EH)(t’ quyTj—l’ﬁanj—l) )

6tij,Tj_1 (t) = —(61)H)(t, qu,Tj_1aﬁTj,Tj_1) ) 7}—1 S t S Tg (7)
with ¢r, 7,_, (T}) = z; and pr;7,_, (Tj-1) = &_1. We define the piecewise bicharacteristic paths
QAT,O = qAT,O(t7 Zjt1, §J$ Zy,y... 761) z1, {07 .'L'()) and pAT,o = pAT‘o(t) ZTj+1, §J) Zj,... 7517 z1, SO) by

qAT,D(t) = q—Tj,Tj—l(t7 Lj, 5;‘—1) ) Tj—l <t< TJ'v qAT,O(O) =Zo,
pAT,o(t) :ﬁ'f},T]’_1(t7 xj,{j—l) ) Tj)‘—-l S t < 1}7 J = 1a27 DRI ']7 J +1. (8)

AT N -
. ' 4
(Oaiﬁo)'(4 k" (0,60).._) (Tj—l &io1)

_ 1 i-j J 1 j-14j T;
The piecewise bicharacteristic path ga,, The piecewise bicharacteristic path PArg

Then the functionals @{qa,.q, Pazels Fldase, Pag,] become functions, i.e.,

¢[QAT,0,PAT,0] = ¢AT’Q (I.]+11€J7 Zy,... 7617 Zy, 50) xO) )

F[QAT,O’pAT,O] = FAT,0($J+1a 5-]7 Zy,-.. afla zy, 50, xO) . (9)
Definition 1 We say that Fq,p] € F if Far, = Flqag,, Par,] satisfies Assumption 2.

Assumption 2 Letm > 0. Letu; > 0, j = 1,2,...,J,J + 1 are non-negative parameters
depending on the division Arg such that 231:11 uj = U < oo. For any integer M > 0, there
exist positive constants Ay, Xy such that for any Arp, any multi-indices o, Bi—1 with |aj],
1Bi—1l <M,j=12,....J,J+1and any 1 < k < J,

J+1
I(H agjjag?__ll)FAT'o(xJ-{-l: 6.]71“]7 s 761) x1, §U7$0)|
7j=1
J+1 . J+1
< Anr (X)L ()™ P20y (14 37 (s + [€5-a]) + Jzol)™, (10)

=1 i=1
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J+1

I(H 6gja€7:11)6xkFAT,o(xJ+l7€J7'TJ7 e ,gl7x17€07x0)|
i=1

< Anr(Xna) " g (T] (2 min85-2h0)y (HZ (] + 1§-1]) + lzo)™. (11)
J#k

Theorem 1 Let T be sufficiently small. Then, for any F[q, p| € F,

) 1
/ ex?9P Fg, p|Dlg,p] =

dJ ) J
: F8lans oo ) dE
IALI,EIILO <27rh) /Rzu e {QAT,ovaT,o] H dz;d§;  (12)

j=1
converges uniformly on compact sets of R with respect to (z, &, o), i.e., (12) is well-defined.

Remark Even when F(g,p] = 1, each integral of the right-hand side of (12) does not converge

absolutely. We treat integrals of this type as oscillatory integrals.

Example We give an example when d = 1, H(z, £) = 22/2 + ¢2/2 and Flg,p] = 1:

Assume that |[T; — Tj_;| < 7/2. By Hamilton’s canonical equation 0udr; 1y, (t) = Py 1y_, (),

01y 15 (t) = =Gy, (1), Tj-1 < t < T with ar, 1, (1) = z; and pr, 1,_, (Tj-1) = &1,

we obtain the bicharacteristic paths

zj cos(t — Tj-1) — -1 sin(T; — t) —zjsin(t — T ) + &1 cos(T; — t)
cos(T; — Tj-1) cos(T; — Tj-1) '

Using the piecewise bicharacteristic paths dar, and pa,,, we can write the functional

®ldar.o, Pag,) as the function

QTj,Tj—l(t) = y P1y 14 (t) =

J+1
¢AT,0 =/[0T)pAT,O 'quT,o(t) -/{OT) (t qATO’pAFO dt Z¢TJ Tj-1 1’],53 1, Zj— 1)
where
2z - €y — (22 4+ €2 ) sin(T: — T
¢ijTj—1(xja§j—1,$j_1) =—I; .gj_1+ 5+ -1 ( j 5] 1) ( J J 1)‘

2c08(T; — Tj-1)

Performing the oscillatory integration with respect to (¢;, ;) in (12), we have

<_1_> / eﬁ¢r 7y (@2,61,81)+ £y 0(1.60, ro)dxldgl — 65457‘ o(z2.£0,%0) (COS(T2 -T1) cos(Ty — TO))

27h, cosT
Using the above relation inductively and taking |Ag| = maxi<j< 11 |Tj — Tj_1| — 0 in (12),
we get the function U(T}, 0, z,&) of the fundamental solution for the Schrodinger equation (1).

e%(z—zo)-goU(T, 0,2,6) = /e%‘b[q”’]'D[q,p]

1y’ S (@56 ) A
= 1 e 3 1 915,15 (25,65 -1,%5-1 e
= alm (27rh> /Rue ~ jlzlldxjd&

J+ 1/2
= lim 6;;057‘,0(33,50,320) H =1 COS(Y} _ ,I}ﬁl)
|ATOI_’0 cosT
1 i 2z & — (2 + &) sin T
_ L. 0
(cosT)1/? P fz( ToGot 2cosT )
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On a Schrodinger operator with a merging pair of a
simple pole and a simple turning point
— WKB theoretic transformation to the canonical form

Shingo Kamimoto (University of Tokyo)

We talk about the transformation of a Schrédinger equation with a merging pair of a simple
pole and a simple turning point (an MPPT equation, for short) to its canonical form and some
properties of its WKB solutions. This is a joint work with T. Kawai (Kyoto univ.), T. Koike
(Kobe univ.) and Y. Takei (Kyoto univ.).

In [AKT] an MPT equation, i.e., a Schrodinger equation with a merging pair of two simple
turning points, was discussed and some properties of its WKB solutions were explicitly described
through a WKB theoretic transformation of an MPT equation to its canonical equation (the
oo-Weber equation in this case). On the other hand, as is shown in [Kol] and [Ko02], a simple
pole of the potential can be also thought of as a kind of turning points. Thus it is a natural
problem to consider an MPPT equation, i.e., a Schrédinger equation with a merging pair of
a simple pole and a simple turning point. The purpose of this talk is to discuss the WKB
theoretic transformation of an MPPT equation to its canonical equation.

Let us first give the specific definition of an MPPT equation. An MPPT equation is a
Schrodinger equation with a large parameter 7 of the following form:

" ( - (céc,(gc,a) @i n_zézgg,_@)) J=o,

dz? z z

where Q;(%,a) (j = 0,1,2) are holomorphic near (Z,a) = (0,0) and Qo(Z,a) satisfies the
following conditions:

Go0,a) £0if a # 0
Qo(%,0) = ¢z + O(&?) with ¢ # 0.
For such an MPPT equation (x) we can construct a transformation of the form

[ee]

2(#,a,n) = 3 17 2(3, 0)

k=0
that transforms (*) to its canonical equation (the co-Whittaker equation in this case)

2 ala (0, a
(%) (%—ﬁ <i+—(x—’172+n"2—————Q ;‘1 )>)w=0
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where a(a, ) = 3, 7 ¥ (a) is an infinite series. To be more precise, z(Z,a,n) and a(a,n) can
be constructed so that they satisfy the following relation:

Q~0(i', a) —1@1(;:10‘) 77_2@2552’ a’) - (_g%)z <% + a(‘;: 77) +n—2Q2(Ova)> _ _;_n—2{x; :f}},

2

where {z;Z} stands for the Schwarzian derivative. Here we note that z(%,a,n) and a(a,n)
are Borel transformable series in a neighborhood of (#,a) = (0,0) with coeficients depending
holomorphically on a. Furthermore, by using z(%,a,7) and a(a,n), we can formally represent
a WKB solution 9(Z,a,n) of (x) with an appropriately chosen WKB solution Y(z,n, ala,n))
of (x) in a neighborhood of (%,a) = (0,0) as follows:

i 1/2
San) = (55) wlolzamimate,n)

Let L and M be the Borel transform of the operators that appear in () and (*x) respectively,
that is, the operators obtained by replacing 7 in (*x) and (xx) by 8,. Note that L and M
are well-defined microdifferential operators since a(a, ) are Borel transformable. Then we can
reinterpret the above transformation from the microdifferential viewpoint as follows (cf. [AY]):
there exist invertible microdifferential operators X and ) that satisfy

LX =YM.

The operators & and Y can be explicitly written in terms of z(Z,a,n). Furthermore, we
can describe the action of X' upon the Borel transform 15(%,a,y) as an integro-differential
operator in a concrete manner, where the Borel transformability of z(Z, a,n) is effectively used.
The details will be explained in the talk.
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