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1. Introduction

In this talk we shall study the exact asymptotic analysis of a so-called
homology equation and the normal form theory of a singular vector
field. A homology equation is a system of partial differential equa-
tions which appear in linearizing a singular vector field by the change
of independent variables. We shall introduce a (large) parameter in
the homology equation by taking the eigenvalue(s) of the linearized
vector field as a new parameter. This new parameter agrees with the
one introduced by Aoki-Kawai-Takei for the Painlevé equation if we
restrict the variable in the homology equation so that the homology
equation reduces to the symmetric form of a Painlevé equation. (cf.
[7]) By constructing the WKB solution of a homology equation, we will
see that the classical Poincaré series solution of the homology equation
coincides with the WKB solution via resummation procedure (and an-
alytic continuation). Next we discuss the small denominator problem
via resummed WKB solution and the appearence of a natural boundary
of WKB solution.

2. Homology equation

Let x = (x1, . . . , xn) ∈ Cn, n ≥ 2 be the variable in Cn. We consider
a singular vector field near the origin of Cn

X =
n∑

j=1

aj(x)
∂

∂xj

, aj(0) = 0, j = 1, . . . , n,

where aj(x) (j = 1, 2, . . . , n) are holomorphic in some neighborhood of
the origin. We set

X(x) = (a1(x), . . . , an(x)),
∂

∂x
= (

∂

∂x1

, . . . ,
∂

∂xn

),

and write

X = X(x) · ∂

∂x
, X(x) = Λx + R(x),

R(x) = (R1(x), . . . , Rn(x)), R(x) = O(|x|2),
where Λ is an n-square constant matrix.
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We want to linearize X by the change of variables,

(T ) x = u(y), u = (u1, . . . , un),

namely,

X(u(y))
∂y

∂x

∂

∂y
= X(u(y))

(
∂x

∂y

)−1
∂

∂y
= Λy

∂

∂y
.

It follows that u satisfies the equation

X(u(y))

(
∂u

∂y

)−1

= Λy,

that is

Λu + R(u) = Λy
∂u

∂y
≡ Lu.

Now we introduce a parameter η−1 in the homology equation by re-
garding the eigenvalues of Λ as a new parameter. It follows that we
obtain

η−1Luj = λjuj + Rj(u), j = 1, . . . , n.

In the following we write x instead of y for the sake of simplicity.
If u = x + v(x), then by the same argument we obtain

(∗)η η−1Lvj = λjvj + Rj(x + v(x)), j = 1, . . . , n.

Remark. If we restrict the variable of the homology equation to one
variable appropriately, then the homology equation is reduced to the
symmetric form of the Painlevé equation. Clearly, one can introduce a
parameter η in the Schorödinger equation as the inverse of a Planck con-
stant. Then by the monodromy preserving deformation, Aoki-Kawai-
Takei introduced a parameter in the (symmetric form of ) Painlevé
equation.

η−1U ′
1 = λ1 + U1(U2 − U3),

η−1U ′
2 = λ2 + U2(U3 − U1),

η−1U ′
3 = λ3 + U3(U1 − U2).

The above introduction of a large parameter in the homology equation
agrees with that of the Painlevé equation, if the homology equation is
reduced to the symmetric form of a Painlevé equation.

3. WKB solution

A WKB solution (0 - instanton solution)
A WKB solution (0 - instanton solution) v(x, η) of (∗)η is a formal
power series solution of the form

v(x, η) =
∞∑

ν=0

η−νvν(x) = v0(x) + η−1v1(x) + · · · ,



3

where the series is a formal power series in η with coefficients vν(x)
holomorphic vector functions in x in some open set independent of ν.

Definition (turning point). The point x such that

det (Λ + (∂R/∂z)(x + v0)) = 0(3.1)

is called a turning point of the equation (∗)η.

Remark. If

(A.1) λj 6= 0, j = 1, . . . , n,

then the origin x = 0 is not a turning point of (∗)η for any v0, because
det Λ 6= 0. Then, we have

Proposition Assume that det Λ 6= 0. Then every coefficients of a
WKB solution is uniquely determined as a holomorphic function of x
in a neihborhood of the origin x = 0 independent of ν.

Definition (Resonance condition). We say that η is resonant, if

n∑
i=1

λiαi − ηλj = 0,(3.2)

for some α = (α1, . . . , αn) ∈ Zn
+, |α| ≥ 2 and j, 1 ≤ j ≤ n. If η is not

resonant, we say that η is nonresonant.

Definition (Poincaré condition) We say that a homolgy equation
satisfies a Poincaré condition, if the convex hull of λj, (j = 1, . . . , n)
in the complex plane does not contain the origin.

4. Summability of a WKB solution in a Poincaré region

For the direction ξ, (0 ≤ ξ < 2π) and the opening θ > 0 we define
the sector Sξ,θ by

Sξ,θ =

{
η ∈ C; |Argη − ξ| < θ

2

}
,(4.1)

where the branch of the argument is the principal value. Then we have

Theorem 1. (Resummation) Suppose that

(C) | Arg λj| < π

4
, j = 1, . . . , n.

Then, there exist a direction ξ, an opening θ > π, a neighborhood U
of the origin x = 0 and V (x, η) such that V (x, η) is holomorphic in
(x, η) ∈ U×Sξ,θ and satisfies (∗)η. The function V (x, η) is a Borel sum
of the WKB solution v(x, η) in U × Sξ,θ when η →∞ in the following
sense. Namely, for every N ≥ 1 and R > 0 , there exist C > 0 and
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K > 0 such that∣∣∣∣∣V (x, η)−
N∑

ν=0

η−νvν(x)

∣∣∣∣∣ ≤ CKNN !|η|−N−1,(4.2)

∀(x, η) ∈ U × Sξ,θ, |η| ≥ R.

5. A Poincaré solution via analytic continuation of a
WKB solution

We shall make an analytic continuation (with respect to η) of a
resummed WKB solution to the right half plane. We note that there
exist an infinte number of resonaces on the right-half plane < η > 0
which accumulate only at infinity. The solution may be singular with
respect to η at the resonances. We have

Theorem 2. Suppose that (C) is verified. Then the resummed WKB
solution is analytically continued to the right half plane as a single-
valued function except for resonances. If the nonresonance condition
holds, then the analytic continuation of a resummed WKB solution
to η = 1 coincides with a classical Poincaré solution of a homology
equation.

6. WKB solution in a Siegel domain- small denominators

In this section we assume that we are in a Siegel domain. Moreover,
we assume, for the sake of simplicity

λj ∈ R (j = 1, 2, . . . , n) are linearly independent over Q.

Then the set of all resonances is dense on R. This implies that the
resummed WKB solution has a natural boundary on the real axis.
We will study the small denominator problem from the viewpoint of a
WKB analysis.
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