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Abstract

In this paper, we generalize the theory of Witt vectors to higher di-
mensional case, based on the functional equation lemma by Hazwinkel,
and show that the classical Dieudonne formula also holds in this case.

Introduction

0.1 Notation

We denote by N = {0, 1, 2, . . . } the set of natural numbers. Note that we
assume 0 ∈ N. Throughout this paper, we assume that every ring is unital. For
a commutative ring A, we denote by A× the group of units in A.

Let T = (T1, . . . , Tr) be an r-tuple of indeterminates. For a commutative
ring A, we denote the formal power series ring A[[T1, . . . , Tr]] by A[[T ]]. Let
f(T ) =

∑
i∈Nn aiT

i ∈ A[[T ]] be a formal power series and let τ : A → A be

an endomorphism of A. Here i = (i1, . . . , ir) ∈ Nr, T i = T i1
1 · · ·T ir

r . Then we
denote the series

∑
i∈Nn τ(ai)T

i by τ∗f(T ). For an ideal a of A, n ∈ N and power
series f(T ), g(T ) ∈ A[[T ]], f ≡ g (mod deg n) (resp. f ≡ g (mod deg n, a))
means f − g ∈ (T1, . . . , Tr)

n (resp. f − g ∈ (T1, . . . , Tr)
n + aA[[T ]]).

For a commutative ring R, we denote by Mm,n(R) (resp. Mn(R)) the ring
of m × n matrices (resp. n × n matrices) with coefficients in R. For a =
(aij) ∈ Mm,n(R) and k ∈ N, we denote the matrix (akij) by a⟨k⟩. For example,

if T = t(T1, . . . , Tr) ∈ K[[T ]]r, then T ⟨k⟩ = t(T k
1 , . . . , T

k
r ). Here t(−) means the

transpose.

1

1.1 Higher dimensional functional equation lemma

Let (Xλ)λ∈Λ be a family of indeterinates. Unless otherwise specified, we extend
the action of σ on K to K[Xλ | λ ∈ Λ] (resp. K[[Xλ | λ ∈ Λ]]) so that
σ(Xλ) = Xq

λ. If R = K[Xij | 1 ≤ i ≤ m, 1 ≤ j ≤ n] is the polynomial ring with

indeterminates Xij over K, then σk(X) = (Xqk

ij ) for X = (Xij) ∈ Mm,n(R),

Let T = t(T1, . . . , Tr) be an r-tuple of indeterminates.

Theorem 1.1.1 (higher dimensional functional equation lemma, Hazewinkel
[Haz78, II, 10.1]). Let K be a commutative ring, A a subring of K, p a prime
number, q a power of p, a an ideal of A, and σ : K → K an endomorphism of
K. We assume the following.
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(1) For any a ∈ A, σ(a) ≡ aq (mod a).

(2) p ∈ a.

(3) For any r ∈ Z≥1 and b ∈ K, if arb ∈ a, then arσ(b) ∈ a.

Let n ∈ Z>0 and let (sk)
∞
k=1 be a sequence of matrices sk(i, j) ∈ Mm(K) such

that ask(i, j) ⊂ Mm(A) for any k ∈ Z≥1. For a, b ∈ Mm,n(K) and an ideal
b, we write a ≡ b (mod b) if a − b ∈ bMm,n(O). Let X1, . . . , Xn be inde-
terminates and X = t(X1, . . . , Xn). Here t(−) implies the transpose. Let
g(X) = (gi(X1, . . . , Xn)) ∈ A[[X]]m be an m-tuple of power series such that
g(0, . . . , 0) = 0. Then there exists uniquely f(X) = (fi(X1, . . . , Xn)) ∈ K[[X]]m

such that

f(X) = g(X) +

∞∑
i=1

siσ
i
∗f(X

⟨qi⟩)

and f(0, . . . , 0) = 0. We denote the above f(X) by fg(X).

For f(X) =
∑

r=(r1,...,rn)∈Nn brX
r ∈ K[[X]]m, we consider the following

condition:

(1.1.1) if there exist 1 ≤ i < j ≤ n such that ri, rj > 0, then br = 0.

Lemma 1.1.2. Let the notation and the assumption be as in Theorem 1.1.1.

(1) If f(X) ∈ K[[X]]m satisfies (1.1.1), then f(X) can be written as

f(X) =

∞∑
i=0

aiX
⟨i⟩, (ai ∈ Mm,n(K)).

Here we regard X as a column vector t(X1, . . . , Xn) ∈ K[[X]]n.

(2) If g(X) ∈ A[[X]]m satisfies (1.1.1), then so is fg(X).

Proof. Easy.

Theorem 1.1.3 (higher dimensional functional equation lemma, Hazewinkel
[Haz78, II, 10.2]). Let K, A, a, σ, p, q be as in Theorem 1.1.1. Let n ∈ Z>0

and let (sk)
∞
k=1 be a sequence of matrices sk(i, j) ∈ Mn(K) such that ask(i, j) ⊂

Mn(A) for any k ∈ Z≥1. Let g(X) = (gi(X1, . . . , Xn)) ∈ A[[X1, . . . , Xn]]
n

(resp. g(X) = (gi(X1, . . . , Xm)) ∈ A[[X1, . . . , Xm]]n) be a power series in
X = (X1, . . . , Xn) (resp. a power series in X = (X1, . . . , Xm)) with coefficients
in A. Supposet that g(X) ≡ 0 (mod deg 1), g(X) ≡ 0 (mod deg 1) and that

the Jacobian matrix J(g) =

(
∂gi
∂Xj

)∣∣∣∣
X=0

of g is invertible in ∈ Mn(A). Then

we have the following.

(1) F (X,Y ) = f−1
g (fg(X) + fg(Y )) has its coefficients in A.

(2) f−1
g (fg(X1, . . . , Xn)) has its coefficients in A.

(3) If h(X) ∈ A[[X]]n is an n-tuple of power series in X such that h(X) ≡
0 (mod deg 1), then there exists h(X) ∈ A[[X]]n such that fg(h(X)) =
fh(X).

(4) If α(Z) ∈ A[[Z1, . . . , Zl]]
n, β(Z) ∈ K[[Z1, . . . , Zl]]

n, then for all r =
1, 2, 3, . . . ,

α(Z) ≡ β(Z) (mod ar) ⇔ fg(α(Z)) ≡ fg(β(Z)) (mod ar).
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2 Higher dimensional Witt vectors

In this section, we define Witt functor with respect to a certain function, called
of Witt type. The functor is a generalization of that defined in [Mat19].

2.1 q-typical series of Witt type and ghost polynomials

Let p a prime, q a power of p, O a discrete valuation ring, K the field of fractions
of O, P the valuation ideal, κ = O/P, and π a uniformizer of O. We assume
that κ is of characteristic p. Let σ be a ring endomorphism of K such that
σ(O) ⊂ O, σ(π)/π ∈ O×, and σ(a) ≡ aq (mod πO) for any a ∈ O.

Definition 2.1.1. Let l(T ) =
∑∞

i=0 γiT
⟨qi⟩ ∈ K[[T ]]r (γi ∈ Mr(K)) be an

r-tuple of power series in T = (T1, . . . , Tr). We say l(T ) is of Witt type if the
following conditions hold.

(L1) γ0 is the identity matrix I of Mr(O).

(L2) πnγn ∈ GLr(O) for n ∈ N.

(L3) σ(γ−1
n+1γn) ≡ γ−1

n+2γn+1 (mod πn+2) for n ∈ N.

Theorem 2.1.2. Let si (i = 1, 2, . . . ) be a sequence of matrices si ∈ Mr(K)
such that πs1 ∈ GLr(O) and πsi ∈ Mr(O). Let

l(T ) =

∞∑
i=0

γiT
⟨qi⟩ ∈ K[[T ]]r, (γi ∈ Mr(K))

be an r-tuple of power series in T that safisfies γ0 ∈ GLr(O) and

(2.1.1) l(T )−
∞∑
i=1

siσ
i
∗l(T

⟨qi⟩) ∈ O[[T ]]r.

Then l(T ) satisfies the condition (L2) and (L3) of Definition 2.1.1. In partic-
ular, if γ0 is the identity matrix, then l(T ) is of Witt type.

Proof. We prove (1) by induction on n. For n = 0, the assertion follows from
the assumption. Let n > 0 and suppose that the assertion holds for 1, . . . , n−1.
Since l(T ) satisfies (2.1.1), we have

(2.1.2) γn −
n∑

i=1

siσ
i(γn−i) ∈ Mr(O)

and πnγn ≡
∑n

i=1 π
nsiσ

i(γn−i) ≡ πns1σ(γn−1) (mod πMr(O)). By the as-
sumption and the induction hypothesis, we have

det(πns1σ(γn−1)) = det(πs1) det(π
n−1σ(γn−1)) ∈ GLr(O)

and the assertion holds for n.
Next we prove (2) by induction on n. By (2.1.2), we can write γ1 = s1σ(γ0)+

c1, γ2 = s1σ(γ1)+s2σ
2(γ0)+c2 for some c1, c2 ∈ Mr(O). Since γ−1

i ∈ πiMr(O)
by (1), we have

s1
(
σ(γ0)γ

−1
1 − σ(γ1)γ

−1
2

)
= s2σ

2(γ0)γ
−1
2 + c2γ

−1
2 − c1γ

−1
1 ∈ πMr(O)
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and hence σ(γ0)γ
−1
1 − σ(γ1)γ

−1
2 ∈ π2Mr(O). Therefore σ(γ−1

1 γ0) − γ−1
2 γ1 ∈

π2Mr(O) and the assertion for n = 0 holds. Let n > 0. By (2.1.2), we have

γn+1σ(γ
−1
n ) ≡

n+1∑
i=1

siσ
i(γn+1−i)σ(γ

−1
n ) (mod πn)

γn+2σ(γ
−1
n+1) ≡

n+2∑
i=1

siσ
i(γn+2−i)σ(γ

−1
n+1) (mod πn+1).

Therefore

γn+1σ(γ
−1
n )− γn+2σ(γ

−1
n+1)

≡
n+1∑
i=1

si

(
σi(γn+1−i)σ(γ

−1
n )− σi(γn+2−i)σ(γ

−1
n+1)

)
− sn+2σ

n+2(γ0)σ(γ
−1
n+1) (mod πn)

≡
n+1∑
i=2

si

(
σi(γn+1−i)σ(γ

−1
n )− σi(γn+2−i)σ(γ

−1
n+1)

)
(mod πn)

(2.1.3)

By the induction hypothesis, σ(γ−1
i+1γi) ≡ γ−1

i+2γi+1 (mod πi+2) for 0 ≤ i ≤ n−1.

It follows that σj(γ−1
i+1γi) ≡ σ(γ−1

i+jγi+j−1) (mod πi+2) for i, j such that 0 ≤
i ≤ n−1 and 1 ≤ j ≤ n+1− i. This implies σj(γi)σ(γi+j−1) ≡ σj(γi+1)σ(γ

−1
i+j)

(mod πi+j). Considering the case where i is n + 1 − i and j is i, we can see
σi(γn+1−i)σ(γ

−1
n ) ≡ σi(γn+2−i)σ(γ

−1
n+1) (mod πn+1) for 1 ≤ i ≤ n+1. Then we

have γn+1σ(γ
−1
n ) ≡ γn+2σ(γ

−1
n+1) (mod πn) by (2.1.3) and hence, σ(γ−1

n+1γn) ≡
γ−1
n+2γn+1 (mod πn+2).

The converse also holds.

Theorem 2.1.3. If l(T ) is of Witt type, then there exists a sequence s1, s2, . . .
of matrices si ∈ Mr(K) such that πs1 ∈ GLr(O), πsi ∈ Mr(O) for i ≥ 2 and
l(T ) satisfies

(2.1.4) l(T )−
∞∑
i=1

siσ
i
∗l(T

⟨qi⟩) ∈ O[[T ]]r.

Proof. It suffices to show that the existence of s1, s2, · · · ∈ Mr(K) such that

γn −
n∑

i=1

siσ
i(γn−i) ∈ Mr(O) for any n ∈ N.

We prove the existence of si by induction on i. For i = 1, s1 = γ1 satisfies
the condition πs1 ∈ GLr(O). Suppose that there exist s1, . . . , sn ∈ K such
that πs1 ∈ GLr(O), πsi ∈ Mr(O) for i ≥ 2 and γn −

∑n
i=1 siσ

i(γn−i) ∈
Mr(O). We prove that there exists sn+1 ∈ K such that πsn+1 ∈ Mr(O) and

γn+1−
∑n+1

i=1 siσ
i(γn−i) ∈ Mr(O). By (L3), we have σk(γ−1

n+1−kγn−k) ≡ γ−1
n+1γn

(mod πn+2−k) and hence

γ−1
n γn+1 ≡ σk(γ−1

n−k)σ
k(γn+1−k) (mod πn−k)

4



for 1 ≤ k ≤ n. Then we obtain

γn+1 ≡ γnσ(γ
−1
n−1)σ(γn) (mod π−1)

σi(γn+1−i) ≡ σi(γn−i)σ(γ
−1
n−1)σ(γn) (mod π0)

for 1 ≤ i ≤ n. Therefore, by the induction hypothesis,

γn+1 −
n∑

i=1

siσ
i(γn+1−i)

≡ γnσ(γ
−1
n−1)σ(γn)−

n∑
i=1

siσ
i(γn−i)σ(γ

−1
n−1)σ(γn) (mod π−1)

≡

(
γn −

n∑
i=1

siσ
i(γn−i)

)
σ(γ−1

n−1)γn ≡ 0 (mod π−1).

Thus, sn+1 := γn+1 −
∑n

i=1 siσ
i(γn+1−i) satisfies the required condition.

Corollary 2.1.4. Let X = (X1, . . . , Xr), Y = (Y1, . . . , Yr) be r-tuples of inde-
terminates. If l(T ) ∈ K[[T ]]r is of Witt type, then

G(X,Y ) := l−1(l(X) + l(Y )) ∈ O[[X,Y ]]r

and G(X,Y ) is an r-dimensional commutative formal group law over O [Haz78,
II, 9.1].

Next, We define ghost polynomials for l(T ) of Witt type.

Definition 2.1.5. Let (Xn)n∈N be a series of r-tuples of indeterminates Xn =
(Xn,i)1≤i≤r. We also denote (X0, X1, . . . ) by X. For a commutative ring R,
we denote R[Xk,i | 1 ≤ k ≤ n, 1 ≤ i ≤ r] by R[X1, . . . , Xn] and R[Xn,i | n ∈
N, 1 ≤ i ≤ r] by R[X]. For n ∈ N, we define the n-th ghost polynomial vector
ϕn(X) = (ϕn,i(X)) ∈ O[X]r for l(T ) by

ϕn(X) =

n∑
i=0

γ−1
n γn−iXi

qn−i

=

n∑
i=0

γ−1
n γn−i


Xqn−i

i,1
...

Xqn−i

i,r

 .

We denote (ϕ0(X), ϕ1(X), . . . ) by ϕ(X) or ϕ. Since ϕn(X) ∈ O[X0, . . . , Xn]
r,

we often write ϕn(X) as ϕn(X0, . . . , Xn).

We also define a matrix variant. Let R be a commutative ring. For C =
(cij) ∈ Mr(A) and m ∈ Z≥0, we denote (cmij ) by C⟨m⟩. For a sequence c =

(cn,ij) ∈
∏

n∈N Mr(A), we denote by c⟨q
i⟩ the sequence (c

⟨qi⟩
1 , c

⟨qi⟩
2 , . . . ).

Definition 2.1.6. Let X = (Xn)n∈N be a series of r2-tuple of indeterminates
Xn = (Xn,i,j) (1 ≤ i, j ≤ r). We regard Xn as an element of Mr(O[X]).
For l(T ) ∈ K[[T ]] of Witt type, we define the n-th ghost polynomial matrix

ϕ̃n(X) = (ϕ̃n,i,j(X)) ∈ Mr(O[X]) for l(T ) by

ϕ̃n(X) =

n∑
k=0

γ−1
n γn−kX

⟨qn−k⟩
k =

n∑
k=0

γ−1
n γn−k


Xqn−k

k,11 · · · Xqn−k

k,1r
...

. . .
...

Xqn−k

k,r1 · · · Xqn−k

k,rr

 .
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As in Definition 2.1.5, we denote (ϕ̃0(X), ϕ̃1(X), . . . ) by ϕ̃(X) or ϕ̃. Since

ϕ̃n(X) ∈ Mr(O[X0, . . . , Xn]), we often write ϕ̃n(X) as ϕ̃n(X0, . . . , Xn).

In the rest of this section, we fix a series l(T ) =
∑∞

i=0 γiT
qi ∈ O[[T ]]r of Witt

type (Definition 2.1.1) and denote the ghost polynomial vectors and matrices

for l(T ) by ϕ, ϕ̃.

Lemma 2.1.7. Let Xn = t(Xn,1, . . . , Xn,r) (resp. Xn = ((Xn,ij)ij)n∈N) and

X = (Xn)n∈N. Then, for n ∈ N, ϕn(X) ∈ O[X]r (resp. ϕ̃n(X) ∈ Mr(O[X]))
and the following hold.

(1) ϕn+1(X) = X0
qn+1

+ γ−1
n+1γnϕn(X1, . . . , Xn+1)

(resp. ϕ̃n+1(X) = X
⟨qn+1⟩
0 + γ−1

n+1γnϕn(X1, . . . , Xn+1)).

(2) ϕn+1(X) ≡ σ∗ϕn(X
q) (mod πn+1)

(resp. ϕ̃n+1(X) ≡ σ∗ϕ̃n(X
⟨q⟩) (mod πn+1)).

Proof. We prove the vector version. The assertion for matrices can be proven in
the same way. Since γ−1

n γn−i ∈ πiMr(O) by (L2), we have ϕn(X) ∈ O[X]r. (1)
is evident by the definition. We prove (2). By (L3), γ−1

i+1σ(γi) ≡ γ−1
i+2σ(γi+1)

(mod πi+2O) for i ∈ N. Then we get γ−1
i+1σ(γi) ≡ γ−1

n+1σ(γn) (mod πi+2O) for

i ≤ n by induction. Therefore σ(γ−1
n )σ(γi) ≡ γ−1

n+1γi+1 (mod πn+1O). Since

γ−1
n+1γ0 ∈ πn+1Mr(O) by (L2),

ϕn+1(X)− σ∗ϕn(X
q)

=

n∑
i=1

(
γ−1
n+1γn+1−i − σ

(
γ−1
n γn−i

))
Xqn+1−i

i + γ−1
n+1γ0Xn+1 ≡ 0 (mod πn+1).

Definition 2.1.8. Let A be a commutative O-algebra. Then we define ϕA :∏
n∈N Ar →

∏
n∈N Ar so that, for a = (an)n ∈

∏
n∈N Ar, ϕA(a) = (ϕn(a))n.

We also define ϕ̃A :
∏

n∈N Mr(A) →
∏

n∈N Mr(A) so that, for a = (an)n ∈∏
n∈N Mr(A), ϕ̃A(a) = (ϕ̃n(a))n. We call ϕA and ϕ̃A the ghost maps for l(T )

on A. We often denote ϕA (resp. ϕ̃A) by ϕ (resp. ϕ̃) for simplicity.

Lemma 2.1.9. Let A be a commutative O-algebra and σA : A → A a σ-
semilinear ring endomorphism such that σA(a) ≡ aq (mod π) for any a ∈ A.
Let b = (bi) ∈ Ar and c = (cij) ∈ Mr(A).

(1) If σA(b) ≡ bq (mod π), then σA(b
qk) ≡ bq

k+1

(mod πk+1) for k ∈ N.

(2) If σA(c) ≡ c⟨q⟩ (mod π), then σA(c
⟨qk⟩) ≡ c⟨q

k+1⟩ (mod πk+1) for k ∈ N.

(3) σA(ϕn(b)) ≡ σ∗ϕn(b
q) (mod πn+1)

(4) σA(ϕ̃n(c)) ≡ σ∗ϕ̃n(c
⟨q⟩) (mod πn+1).
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Proof. It is easy to see that, if σA(a) ≡ aq (mod π) for a ∈ A, then σA(a
qk) ≡

aq
k+1

(mod πk+1) for k ∈ N. (1) and (2) follows immediately. Since we
can prove (3) and (4) in the same way, we only show (4). By (2), we have

σA(ci)
⟨qn−i⟩ ≡ c

⟨qn+1−i⟩
i (mod πn+1−i). Since σA(γ

−1
n γn−i) ∈ πiMr(O),

σA(ϕn(c)) =

n∑
i=0

σA(γ
−1
n γn−i)σA(ci)

⟨qn−i⟩ ≡
n∑

i=0

σA(γ
−1
n γn−i)c

⟨qn+1−i⟩
i

≡
n∑

i=0

σA(γ
−1
n γn−i)(c

⟨q⟩
i )⟨q

n−i⟩ ≡ σ∗ϕn(c
⟨q⟩) (mod πn+1).

2.2 Witt functors

Proposition 2.2.1. Let A be a commutative O-algebra.

(1) If π is a non zero-divisor in A, then ϕA and ϕ̃A are injective.

(2) If π is invertible in A, then ϕA and ϕ̃A are bijective.

(3) Assume that there exists a σ-semilinear ring endomorphism σA : A → A
such that σA(a) ≡ aq (mod π) for any a ∈ A. Then, for (un)n ∈

∏
n∈N Ar

(resp.
∏

n∈N Mr(A)),

(un)n ∈ ϕA

(∏
n∈N

Ar

)
⇔ σA(un) ≡ un+1 (mod πn+1)

(resp. (un)n ∈ ϕ̃A

(∏
n∈N

Mr(A)

)
⇔ σA(un) ≡ un+1 (mod πn+1))

Proof. (1) Since πnγn ∈ GLr(O) by (L2) of Definition 2.1.1, if π is a non zero-
divisor in A, then, for a ∈ Ar, γ−1

n a = (πnγn)
−1πna = 0 implies a = 0. Hence

the injectivity of ϕA is evident. We can prove (2) in a similar way. We prove
(3) for the case of matrices. The case of vectors can be proven in the same way.
Assume that u = (un)n = ϕA(a) for a = (an)n ∈

∏
n∈N Mr(A). By Lemma 2.1.7

and Lemma 2.1.9, ϕn+1(a) ≡ σ∗ϕn(a
⟨q⟩) ≡ σA(ϕn(a)) (mod πn+1). Therefore,

σA(un)− un+1 = σA(ϕn(a))− ϕn+1(a) ≡ 0 (mod πn+1).
We show the converse by induction on n. Assume that σA(un) ≡ un+1

(mod πn+1) for any n ∈ N. It is evident that there exists a0 ∈ Mr(A) such
that ϕ0(a0) = u0. Suppose that there exist a0, . . . , an ∈ Mr(A) such that ui =
ϕi(a0, . . . , ai) for 0 ≤ i ≤ n. It suffices to show that there exists an+1 ∈ Mr(A)

such that γ−1
n+1an+1 = un+1−

∑n
i=0 γ

−1
n+1γn+1−ia

⟨qn+1−i⟩
i . By the same argument

as in the proof of Lemma 2.1.9, we obtain

n∑
i=0

γ−1
n+1γn+1−ia

⟨qn+1−i⟩
i ≡ σ(ϕ̃n(a0, . . . , an)) (mod πn+1)
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and hence

un+1 −
n∑

i=0

γ−1
n+1γn+1−ia

⟨n+1−i⟩
i ≡ un+1 − σ(ϕ̃n(a0, . . . , an))

≡ un+1 − σ(un) ≡ 0 (mod πn+1).

Therefore γn+1(un+1 −
∑n

i=0 γ
−1
n+1γn+1−ia

⟨n+1−i⟩
i ) ∈ Mr(A) and it satisfies the

condition for an+1.

Theorem 2.2.2. Let Xn,i, Yn,i (n ∈ N, 1 ≤ i ≤ r) be families of indeter-
minates. We write Xn = t(X1, . . . , Xr), Yn = t(Y1, . . . , Yr), X = (Xn)n∈N
and Y = (Yn)n∈N. Then there exist sequences of r-tuples S = (Sn(X,Y ))n,
P = (Pn(X,Y ))n and I(X) = (In(X)) whose components are polynomials with
coefficients in O such that the following equations hold:

(1) ϕ(S) = ϕ(X) + ϕ(Y ),

(2) ϕ(P ) = ϕ(X)ϕ(Y ),

(3) ϕ(I) = −ϕ(X).

Moreover, we have Sn(X,Y ), Pn(X,Y ) ∈ O[X0, . . . , Xn, Y0, . . . , Yn]
r, and In(X) ∈

O[X0, . . . , Xn]
r. There also exists uniquely a sequence of vectors C(x) = (Cn(x))n

for each x ∈ O such that

(4) ϕ(C(x)) =
(
t(σn(x), . . . , σn(x))

)
n
∈
∏

n∈N Or.

Proof. Let A = O[X,Y ] and define the σ-semilinear endomorphism σA of O-
algebra A so that σA(Xn,i) = Xq

n,i, σA(Yn,i) = Y q
n,i. Let un = ϕn(X)+ϕn(Y ) ∈∏

n∈N Ar for n ∈ N. Then they clearly satisfy σA(un) ≡ un+1 (mod πn+1).
Hence the exisitence and uniqueness of S follows from Proposition 2.2.1. We
can show the existence and uniqueness of P , I and C in the same way.

Definition 2.2.3. LetA be a commutativeO-algebra and letW (A) be
∏

n∈N Ar

as a set. We define addition and multiplication of W (A) by a+ b = S(a, b) and
ab = P (a, b) for a, b ∈ W (A). Then I(a) + a = 0. W (A) is a ring with these
operations and ϕA : W (A) →

∏
n∈N Ar is a ring homomorphism. Here we re-

gard
∏

n∈N Ar as a ring product of Ar. For x ∈ O, we define C(x) ∈ W (O)
by C(x). Since σ is a ring homomorphism, C defines a ring homomorphism
O → W (O) and we can regard W (O) as an O-algebra. For a commutative O-
algebra A, we often identify C(x) with the image by the natural homomorphism
W (O) → W (A). Then C defines a ring homomorphism O → W (A) and we can
regard W (A) as an O-algebra. For a ∈ W (A), we call the components of ϕA(a)
the ghost components of a.

Let (comO-Alg) be the category of commutative O-algebras. We can regard
W as a functor from (comO-Alg) to (comO-Alg). Then W is representable by
O[X]. The structure of addition W ×W → W as a functor is given by the O-
homomorphisms S∗ : O[X] → O[X,Y ] such that S∗(Xn) = Sn(X,Y ). We omit
the detail for the structure of multiplication etc. We denote by ϕ∗ : O[X] →
O[X] the O-endomorphism such that ϕ∗(Xn) = ϕn(X). Then ϕ∗ induces a
morphism of functors ϕA : W (A) →

∏
n∈N Ar on A.

8



Definition 2.2.4. We call the functor W : (comO-Alg) → (comO-Alg) defined
above the Witt functor for l(T ).

Let A be a commutative O-algebra. For n ∈ N, we denote by A(σn) the

O-algebra A with the structure map O σn

−−→ O → A. Then ϕA : W (A) →∏
n∈N A(σn)r; a 7→ ϕA(a) is O-linear. Let P (T ) ∈ O[T ] be a polynomial. Since

W (A) is an O-algebra, we can regard P (T ) as the map P : W (A) → W (A)
that sends a ∈ W (A) to P (a) ∈ W (A). Then by Theorem 2.2.2 the following
diagram is commutative

W (A)
∏

n∈N A(σn)r

W (A)
∏

n∈N A(σn)r.

ϕA

P P

ϕA

Remark 2.2.5. Let (σn
∗P )n :

∏
n∈N Ar →

∏
n∈N Ar be the map which sends

(xn)n to (σn
∗P (xn))n. Then the commutativity of the above diagram means

that the following diagram is commutative

W (A)
∏

n∈N Ar

W (A)
∏

n∈N Ar.

ϕ

P (σn
∗P )n

ϕ

We also have matrix variants of a Witt functor. Let Xn,i,j , Yn,i,j (n ∈ N, 1 ≤

i, j ≤ r) be families of indeterminates. We write Xn =

Xn,1,1 · · · Xn,1,r

...
. . .

...
Xn,r,1 · · · Yn,r,r


and Yn =

Yn,1,1 · · · Yn,1,r

...
. . .

...
Yn,r,1 · · · Yn,r,r

, X = (Xn)n, Y = (Yn). Replacing ϕ by ϕ̃

in Theorem 2.2.2, we obtain series of matrices of polynomials S̃ = (S̃n(X,Y )),

P̃ = (P̃n(X,Y )) ∈ O[X,Y ] and Ĩ = (Ĩn(X)) ∈ O[X] such that

(1) ϕ̃n(S̃) = ϕ̃n(X) + ϕ̃n(Y ),

(2) ϕ̃n(P̃ ) = ϕ̃n(X)ϕ̃n(Y ) (matrix multiplication),

(3) ϕ̃n(Ĩ) = −ϕ̃n(X)

for n ∈ N. For a commutative O-algebra A, we define W̃ (A) =
∏

n∈N Mr(A) as

a set. Using the polynomials above, we can equip W̃ (A) with a ring structure
so that the map

W̃ (A)
∏

n∈N Mr(A)

∈ ∈

a = (an) (ϕ̃n(a))

ϕ̃A

is a ring homomorphism. Let (O-Alg) be the category of the O-algebras. From

the construction above, we obtain the functor W̃ : (comO-Alg) → (O-Alg).
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Moreover, for each x ∈ O, there exists uniquely a sequence of square matrices
C(x) = (Cn(x))n such that

(4) ϕ̃(C(x)) = (σn(x)Ir)n.

Then C defines a ring homomorphism O → W̃ (A) and we can regard W̃ (A) as
an O-algebra in a similar way as in the case of W (A).

Lemma 2.2.6. Let Yn,i,j, Xn,i (n ∈ N, 1 ≤ i, j ≤ r) be families of indeter-

minates. We write Yn =

Yn,1,1 · · · Yn,1,r

...
. . .

...
Yn,r,1 · · · Yn,r,r

, Xn =

Xn,1

...
Xn,r

, Y = (Yn)n∈N

and X = (Xn)n∈N. Then there exists uniquely a seqence of r-tuples Q(Y ,X) =
(Qn(Y ,X))n = ((Qn,i(Y ,X))i)n whose components Qn,i (n ∈ N, 1 ≤ i ≤ r) are

polynomials with coefficients in O such that ϕ(Q) = ϕ̃(Y )ϕ(X) in Mr(O[Y ,X]).

Proof. Let A = O[Y ,X] and define the σ-semilinear endomorphism σA of O-

algebra A so that σA(Yn,i,j) = Y q
n,i,j , σA(Xn,i) = Xq

n,i. Let un = ϕ̃n(Y )ϕn(X) ∈∏
n∈N Ar for n ∈ N. By Lemma 2.1.9, σA(ϕn(Y )) ≡ ϕn+1(Y ) (mod πn+1) in

Mr(A) and σA(ϕn(X)) ≡ ϕn+1(X) (mod πn+1) in Ar and hence σA(un) ≡ un+1

(mod πn+1) for n ∈ N. Therefore the exisitence and uniqueness of Q follows
from Proposition 2.2.1.

Definition 2.2.7. Let Y andX be as in Lemma 2.2.6. We defineO-endomorphisms
ϕ̃∗ : O[Y ] → O[Y ] and ϕ∗ : O[X] → O[X] so that ϕ̃∗(Yn,i,j) = ϕ̃n,i,j(Y )

and ϕ̃∗(Xn) = ϕn,i(X). Let Qn(Y ,X) (n ∈ N) be as in Lemma 2.2.6. We
identify O[Y ] ⊗O O[X] with O[Y ,X] and define an O-algebra homomorphism
G∗ : O[X] → O[Y ,X] so that G∗(Xn) = Qn(Y ,X). Let g∗ : O[X] → O[Y ,X]
be an O-endomorphism defined by g∗(Xn) =

∑r
k=1 Yn,i,kXn,k. By the defintion

of Qn, the following diagram is commutative

O[Y ]⊗O O[X] O[Y ]⊗O O[X]

O[X] O[X].

ϕ̃∗⊗ϕ∗

G∗ g∗

ϕ∗

Then, for a commutative O-algebra A, the above diagram induces the following
commutative diagram.

W̃ (A)×W (A)
∏

n∈N Mr(A)×
∏

n∈N Ar

W (A)
∏

n∈N Ar.

GA

ϕ̃A×ϕA

gA

ϕA

Thus we have an action GA of W̃ (A) on W (A), which is functorial on A.

Example 2.2.8. Let K = Fq(θ) be a rational function field over a finite field
Fq of order q, ν : K → Z ∪ {∞} be the normalized θ-adic discrete valua-

tion, O = Fq[θ](θ) the valuation ring. We denote [i] = θq
i − θ for i ∈ N

10



and define L0 = 1, Li = [i][i − 1] · · · [1] for i ≥ 1. Let T =

(
T1

T2

)
and

l(T ) =

∞∑
i=0

(−1)i

Li

(
1 −i
0 1

)(
T1

T2

)
. Then l(T ) satisfies the following functional

equation.

l

(
T1

T2

)
−
(
θ θ
0 θ

)−1

l

(
T q
1

T 2
2

)
=

(
θ θ
0 θ

)−1

l

((
θ θ
0 θ

)(
T1

T2

))
∈ O[[T ]].

The n-th ghost polynomial of l(T ) is ϕn(X) =

n∑
i=0

(−1)iLn

Ln−i

(
1 i
0 1

)
Xqn

i .

2.3 Frobenius, Verschiebung and Teichmüller lift

Lemma 2.3.1. Let Xn,i (n ∈ N, 1 ≤ i ≤ r) be a family of indeterminates. We
denote Xn = t(Xn,1, . . . , Xn,r) and X = (Xn)n∈N. Let f∗ : O[X] → O[X] be an
O-endomorphism defined by f∗(Xn) = Xn+1, i.e., f

∗(Xn,i) = Xn+1,i for n ∈ N,
1 ≤ i ≤ r. Then there exists a unique O-homomorphism F ∗ : O[X] → O[X]
such that F ∗ ◦ ϕ∗ = ϕ∗ ◦ f∗.

O[X] O[X]

O[X] O[X]

ϕ∗

F∗ f∗

ϕ∗

Proof. The map F ∗ is determined by the images Fn(X) ∈ O[X]r of Xn (n ∈
N), so it suffices to show that there exists a series of r-tuples (Fn(X))n such
that ϕn((Fn(X))n) is equal to ϕ∗(f∗(Xn)) = ϕn+1(X). Let σ : O[X] →
O[X] be an O-endomorphism such that σ(Xn(j)) = Xn(j)

q. By Lemma 2.1.7,

σ(ϕn+1(X)) = σ∗ϕn+1(X
⟨q⟩) ≡ ϕn+2(X) (mod πn+2) and hence the assertion

follows from Proposition 2.2.1.

Lemma 2.3.2. Let Yn,i,j (n ∈ N, 1 ≤ i, j ≤ r) be a family of indeter-

minates. We denote Yn =

Yn,1,1 · · · Yn,1,r

...
. . .

...
Yn,r,1 · · · Yn,r,r

 and Y = (Yn)n∈N. Let

f∗ : O[Y ] → O[Y ] be an O-endomorphism defined by f∗(Yn) = Yn+1, i.e.,
f∗(Yn,i,j) = Yn+1,i,j for n ∈ N, 1 ≤ i, j ≤ r. Then there exists a unique

O-homomorphism F ∗ : O[Y ] → O[Y ] such that F ∗ ◦ ϕ̃∗ = ϕ̃∗ ◦ f∗.

O[Y ] O[Y ]

O[Y ] O[Y ]

ϕ̃∗

F∗ f∗

ϕ̃∗

Proof. We can prove the lemma in the same way as Lemma 2.3.1
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Definition 2.3.3. From F ∗ in Lemma 2.3.1 (resp. Lemma 2.3.2), we obtain

a morphism of functors F : W → W (resp. F : W̃ → W̃ ) such that, for any
object A in (O-Alg), the following diagrams are commutative.

W (A)
∏

n∈N Ar

W (A)
∏

n∈N Ar

ϕA

F f

ϕA

resp.

W̃ (A)
∏

n∈N Mr(A)

W̃ (A)
∏

n∈N Mr(A)

ϕ̃A

F f

ϕ̃A


Here f :

∏
n∈N Ar →

∏
n∈N Ar or f :

∏
n∈N Mr(A) →

∏
n∈N Mr(A) is the

map which sends (ai)i to (ai+1)i. F : W (A) → W (A) is a ring homomorphism

because so is f . We call F a Frobenius ofW or W̃ . Let Fn(X) ∈ O[X] (n ∈ N) be
a sequence of polynomials as in the proof of Lemma 2.3.1, i.e., ϕn((Fm(X))m) =
ϕn+1(X) for any n ∈ N. Then for a ∈ W (A), F (a) = (Fn(a))n. It is easy to
see that Fn(X) ∈ O[X0, . . . , Xn+1]

r. Moreover, F is σ-semilinear, i.e., for any
x ∈ O and a ∈ W (A), F (xa) = σ(x)F (a). For the proof, we can reduce to the
case that A = O[X] and a = X. Since ϕ(σ(x)F (X)) = (σn(σ(x))f∗(ϕ(X)))n =
(σn+1(x)ϕn+1(X))n = f∗((σn(x)ϕn(X)n) = ϕ(F (xX)), the assertion follows.

Lemma 2.3.4. Let X be as in Lemma 2.3.1. Let vn(X) = γ−1
n γn−1Xn−1 ∈

O[X]r and let v∗ : O[X] → O[X] be an endomorphism of O-algebras such that
v∗(Xn) = vn(X). Let V ∗ : O[X] → O[X] be an O-endomorphism such that
V ∗(Xn) = Xn−1 for n ≥ 1 and V ∗(X0) = 0. Then the following diagram is
commutative.

O[X] O[X]

O[X] O[X]

ϕ∗

V ∗ v∗

ϕ∗

Proof. We have V ∗ϕ∗ = ϕ∗v∗ from the calculation below.

V ∗(ϕ∗(Xn)) = V ∗(ϕn(X)) = ϕn(0, X0, X1, . . . ) =

n∑
i=1

γ−1
n γn−iX

⟨qn−i⟩
i−1

=

n−1∑
i=0

γ−1
n γn−1−iX

⟨qn−1−i⟩
i−1 = γ−1

n γn−1

n−1∑
i=0

γ−1
n−1γn−1−iX

⟨qn−1−i⟩
i−1

= γ−1
n γn−1ϕn−1(X) = ϕ∗(γ−1

n γn−1Xn−1) = ϕ∗(v∗(Xn)),

Definition 2.3.5. From V ∗ in Lemma 2.3.4, we obtain a morphism of functors
V : W → W such that for any object A in (O-Alg), the following diagram is
commutative.

W (A)
∏

n∈N Ar

W (A)
∏

n∈N Ar

ϕA

V v

ϕA

12



Here v((an)n) = ((γ−1
n γn−1)an−1)n (we define a−1 = 0). We call V a Ver-

schiebung. For any object A in (O-Alg), V : W (A) → W (A) is an endo-
momorphism of modules, but it is not necessarily O-linear. In fact, we have
V (σ(x)a) = xV (a) for any x ∈ O and a ∈ W (A).

Definition 2.3.6. We define a Verschiebung V : W̃ → W̃ in the same way as
in Definition 2.3.5. Then for a commutative O-algebra A and a = (a0, a1, . . . ) ∈
W̃ (A), V (a0, a1, . . . ) = (0, a0, a1, . . . ). If we define v :

∏
n∈N Mr(A) →

∏
n∈N Mr(A)

so that v(u0, u1, . . . ) = v(γ−1
1 u0, γ

−1
2 γ1u1, γ

−1
3 γ2u2, . . . ), then the following di-

agram is commutative.

W̃ (A)
∏

n∈N Mr(A)

W̃ (A)
∏

n∈N Mr(A)

ϕ̃A

V v

ϕ̃A

Definition 2.3.7. Let A be a commutative O-algebra. We define a Teichmüller
lift τ : Ar → W (A) (resp. τ : Mr(A) → W̃ (A)) by τ(a) = (a, 0, . . . ). It
is evidently a morphism of functors from (comO-Alg) to (comO-Alg) (resp.
(comO-Alg) to (O-Alg)).

Remark 2.3.8. When r = 1, for a = (an)n and b = (b0, 0, 0, . . . ) ∈ W (A),

ab = (anb
qn

0 )n, but it is not for r > 1. For example, consider the case of

Example 2.2.8. Let a =

((
a01
a02

)
,

(
a11
a12

)
, . . .

)
and b =

((
b01
b02

)
,

(
0
0

)
, . . .

)
.

Then ab =

((
a01b01
a02b02

)
,

(
a11b

q
01 + a12b

q
01 − a12b

q
02

a12b
q
02

)
, . . .

)
.

Definition 2.3.9. We define µ = (0, Ir, 0, . . . ) ∈ W̃ (O), where Ir is the identity

matrix of degree r. Then it is easy to see that ϕ̃(µ) = (0, γ−1
1 γ0, γ

−1
2 γ1, . . .) ∈∏

n∈N Mr(O).

For a commutative O-algebra, we regard µ as an element of W (A) or W̃ (A)

via W (O) → W (A) or W̃ (O) → W̃ (A).

Lemma 2.3.10. Let A be a commutative O-algebra. As a map from W (A) to

W (A) or W̃ (A) → W̃ (A), we have the following.

(1) V F = µ,

(2) FV = F (µ).

Here we regard µ and F (µ) as left multiplication endomorphisms via G (Defi-
nition 2.2.7).

Proof. We prove the statements for W (A). It suffices to show the correspond-
ing equalities for ghost components. For any commutative O-algebra A and
a ∈

∏
n∈N Ar, we have ϕ(V F (a)) = vf(ϕ(a)) = (0, γ−1

1 ϕ1(a), γ
−1
2 γ1ϕ2(a), . . . ) =

ϕ̃(µ)ϕ(a). Thus we obtain (1). Similarly fv(ϕ(a)) = (γ−1
1 ϕ0(a)), γ

−1
2 γ1ϕ1(a, . . . ) =

f(ϕ̃(µ))ϕ(a) = ϕ̃(F (µ))ϕ(a) proves (2). We can show the statements for W̃ (A)
in the same way.
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3 Artin-Hasse exponentials

3.1 Series in formal groups

Let R be a commutative ring. Let X = (X1, . . . , Xr) and Y = (Y1, . . . , Yr) be r-
tuples of indeterminates and G(X,Y ) = (Gi(X,Y )) ∈ R[[X,Y ]] a r-dimensional
formal group law over R ([Haz78, 9.1]). If A is a commutative R-algebra, I ⊂ A
an ideal and A is I-adically complete, then G defines a group law on

∏r
I :=

I × · · ·× I. We denote the addition and the subtraction of
∏r

I with respect to
G by +G and −G.

Lemma 3.1.1. Let R, G = G(X,Y ), A and I be as above. If f = (fi), g =
(gi) ∈

∏r
I, then f −G g ∈

∏r
In is equivalent to f − g ∈

∏r
In.

Proof. By the formal implicit function theorem [Haz78, A.4.7], there exists
φ(X) = (φi(X))i ∈

∏r
R[[X]] such that G(X,φ(X)) = 0. Then

G(X,φ(Y )) = G(X,φ(Y ))−G(X,φ(X)) = (X1 − Y1, . . . , Xr − Yr)R[[X,Y ]]r

and there exist a square matrix of degree r Q(X,Y ) ∈ Mr(R[[X,Y ]]) such thatG1(X,φ(Y ))
...

Gr(X,φ(Y ))

 = Q(X,Y )

X1 − Y1

...
Xr − Yr

 .

Since φi(X) ≡ −Xi (mod deg 2), Q(X,Y ) ≡ Ir (mod deg 1) and Q(X,Y ) is
invertible in Mr(R[[X,Y ]]). Since f −G g = G(f, φ(g)) = Q(f, g)(f − g), the
assertion holds.

In the following, we denote a sum with respect to G by G
∑n

i=0,
G
∑∞

i=0 etc.

Lemma 3.1.2. Let A be a commutative R-algebra, I and ideal of A and assume
that A is I-adically complete. Let r ∈ Z>0 and let a = (an)n∈N ∈

∏
n∈N Ar.

(an = (an,i)1≤i≤r ∈ Ar). If limn→∞ an = 0, then G
∑

n→0 ai converges.

Proof. By Lemma 3.1.1, the sequence of finite sums bn = G
∑n

i=0 ai with respect
to G is a Cauchy sequence.

3.2 Artin-Hasse exponentials

We use the same notation as in §2.1. Let T = (T1, . . . , Tr) be an r-tuple of
indeterminates. We often regard T as a column vector t(T1, . . . , Tr). When
r = 1, we identify T with T1. We fix a series l(T ) ∈ K[[T ]]r of functional
equation type, i.e., l(T ) satisfies

(3.2.1) l(T )−
∞∑
i=1

siσ
i
∗l(T

⟨qi⟩) ∈ O[[T ]]r.

for a sequence of si ∈ Mr(K) such that πs1 ∈ GLr(O) and πsi ∈ Mr(O) for
i ≥ 2. By Hazewinkel’s higher dimensional functional equation lemma (Theo-
rem 1.1.3), l−1(l(X) + l(Y )) ∈ O[[X,Y ]] (X = (X1, . . . , Xr), Y = (Y1, . . . , Yr))
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and defines r-dimensional formal group law (Corollary 2.1.4). We denote it by
G = G(X,Y ). We often denote l−1(T ) by expG(T ). We also fix another series

l0(T ) =

∞∑
i=0

γiT
⟨qi⟩ ∈ K[[T ]]r, (γi ∈ Mr(K))

of Witt type that satisfies the same functional equation (3.2.1). Then l0(T ) is
of Witt type by Theorem 2.1.2. We denote by W the Witt functor for l0(T ).

We denote by ϕn(X) and ϕ̃n(Y ) the n-th ghost polynomials for W .

Definition 3.2.1. We define the Artin-Hasse exponential for l and l0 to be
E(T ) = l−1(l0(T )). By Theorem 1.1.3 (2), E(T ) ∈

∏r
TO[[T ]]. Here TO[[T ]]

is the ideal of O[[T ]] generated by T1, . . . , Tr.

Example 3.2.2. Consider the case where K = Q, p a prime, O = Z(p), σ = id,

r = 1, l(T ) =

∞∑
n=0

Tn

n
and l0(T ) =

∞∑
i=0

T pi

pi
. In this case, G(X,Y ) = X+Y −XY

is the formal multiplicative group, ϕn(X) = Xpn

0 + pXpn−1

1 + · · ·+ pnXn is the
classical n-th ghost polynomial and

l−1(l0(T )) = 1− exp

(
−

∞∑
i=0

T pi

pi

)
∈ TZ(p)[[T ]].

Lemma 3.2.3. Let R be a commutative O-algebra and I an ideal of R. Assume
that R is I-adically complete. Let x = (xn)n∈N ∈ W (R) (xn = (xn,i)1≤i≤r)
and suppose that xn ∈

∏r
I for any n ∈ N and that limn→∞ xn = 0. Then

G
∑∞

n=0 E(xi) converges in
∏r

I.

Proof. By the assumption that xn ∈
∏r

I, each E(xn) converges in
∏r

I, be-
cause E(T ) ∈ TO[[T ]]r. Since limn→∞ E(xn) = 0, G

∑∞
n=0 E(xn) converges by

Lemma 3.1.2.

Let A be a commutative O-algebra and T = (T1, . . . , Tr) an r-tuple of in-
determinates. We denote by TA[[T ]] the ideal of A[[T ]] generated by T1, . . . , Tr

and we equip
∏r

TA[[T ]] with (T1, . . . , Tr)-adic topology. Then
∏r

TA[[T ]] is
complete with respect to this topology and we can define a group structure on
it by G. We denote this group by (

∏r
TA[[T ]],+G).

Let a = (an)n∈N ∈ W (A) and [T ] = (T, 0, 0, . . . ). Let b = (bn)n∈N = a[T ].
then we can easily see by induction that bn ∈

∏r
(TA[[T ]])q

n

. Thus E(a[T ]) =
G
∑∞

n=0 E(bi) converges.

Definition 3.2.4. Let A be a commutative O-algebra and T = t(T1, . . . , Tr).

For a = (ai)i ∈ W (A) (resp. W̃ (A)), we define

E(a, T ) := E(a[T ]) ∈ TA[[T ]]r,

where [T ] = (T, 0, . . . ) ∈ W (A[[T ]]) is a Teichmüller lift (Definition 2.3.7) of T .

Remark 3.2.5. When r = 1, then a[T ] = (aiT
qi) and hence E(a, T ) =

G
∑∞

i=0 E(aiT
qi). In particular, when l(T ) = − log(1−T ) and l0(T ) =

∑∞
m=0 T

pm

/pm

as in Example 3.2.2,

E(a, T ) = 1−
∞∏
i=0

exp

(
−

∞∑
m=0

(aiT
pi

)p
m

pm

)
.
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On the other hand, when r > 2, a[T ] is not necessarily equal to (aiT
qi). See

Remark 2.3.9.

Lemma 3.2.6. Let A be a commutative O-algebra. Let a = (an)n∈N ∈ W (A)

or W̃ (A), T = r(T1, . . . , Tr) and b = (bi)i = a[T ]. Then we have

∞∑
i=0

l0(bi) =

∞∑
n=0

γn

(
ϕn(a)T

⟨qn⟩
)

(
resp.

∞∑
i=0

l0(bi) =

∞∑
n=0

γn

(
ϕ̃n(a)T

⟨qn⟩
))

.

Proof. We show the case of ϕ. The assertion follows from the calculation below.

∞∑
i=0

l0(bi) =

∞∑
i=0

∞∑
j=0

γjb
⟨qj⟩
i =

∞∑
n=0

n∑
i=0

γn−ib
⟨qn−i⟩
i

=

∞∑
n=0

γn

(
n∑

i=0

γ−1
n γn−ib

⟨qn−i⟩
i

)
=

∞∑
n=0

γnϕn(b)

=

∞∑
n=0

γn (ϕn(a)ϕn(T )) =

∞∑
n=0

γn

(
ϕn(a)T

⟨qn⟩
)

We can show the case of ϕ̃ in the same way.

Remark 3.2.7. Note that γn
(
ϕn(a)T

qn
)
does not necessarily equal (γnϕn(a))T

qn

in the above calculation.

Proposition 3.2.8. Let a = (an)n ∈ W (A) (resp. W̃ (A)). In (A⊗O K[[T ]])r,

E(a, T ) = expG

( ∞∑
m=0

γm

(
ϕm(a)T ⟨qm⟩

))
.

Proof. We use the same notation as in Lemma 3.2.6. By Lemma 3.2.6, we have

E(a, T ) = G
∞∑
i=0

l−1l0(bi) = l−1

( ∞∑
i=0

l0(bi)

)
= l−1

( ∞∑
m=0

γm

(
ϕm(a)T ⟨qm⟩

))
.

By E(a, T ), we can define a map

E(−, T ) : W (A) →
r∏

TA[[T ]] (resp. W̃ (A) →
r∏

TA[[T ]])

Proposition 3.2.9. If π is a non zero-divisor in A, then E(−, T ) : W (A) →∏r
TA[[T ]] (resp. W̃ (A) →

∏r
TA[[T ]]) is injective.

Proof. By the assumption, TA[[T ]] → T (A ⊗O K)[[T ]] is injective. Since ϕA :

W (A) →
∏

n∈N Ar (resp. ϕ̃A : W̃ (A) →
∏

n∈N Mr(A)) is injective by Proposi-

tion 2.2.1 (1) and ϕn(a) (resp. ϕ̃n(a)) are determined by
∑∞

n=0 γn
(
ϕn(a)T

⟨qn⟩)
(resp.

∑∞
n=0 γn

(
ϕ̃n(a)T

⟨qn⟩
)
) for all n ∈ N, the assertion holds.
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Corollary 3.2.10. Under the assumption of Lemma 3.2.6, the map E(−, T ) :

W (A) → (TA[[T ]]r,+G) (resp. W̃ (A) → (TA[[T ]]r,+G)) which sends a to
E(a, T ) is a homomorphism of groups, i.e.,

E(a+ b, T ) = E(a, T ) +G E(b, T ).

Proof. We prove the assertion for a ∈ W (A). We can reduce to the case where
A = O[X]. Then it is enough to show the additivity in

∏
(A ⊗O K[[T ]])r. By

Proposition 3.2.8,

E(a+ b, T ) = expG

( ∞∑
m=0

γm

(
ϕm(a+ b)T ⟨qm⟩

))

= expG

( ∞∑
m=0

γm

(
(ϕm(a) + ϕm(b))T ⟨qm⟩

))

= expG

( ∞∑
m=0

γm

(
ϕm(a)T ⟨qm⟩

)
+

∞∑
m=0

γm

(
ϕm(b)T ⟨qm⟩

))

= expG

( ∞∑
m=0

γm

(
ϕm(a)T ⟨qm⟩

))
+G expG

( ∞∑
m=0

γm

(
ϕm(b)T ⟨qm⟩

))
= E(a, T ) +G E(b, T )

The case of a ∈ W̃ (A) can be proven in a similar way.
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